Lecture ${ }^{\#} 20$ - November $28^{\text {th }}, 2023$

The van Kampen Theorem

The: Apse $X=U \cup V$ w/
(1) $U, V=$ open + path - conn
(2) $x_{0} \in U \cap V$
(3) $U \cap V=$ path -connected

We have maps

$$
\begin{aligned}
& \pi_{1}\left(u \cap v, x_{0}\right) \xrightarrow{\left(i^{u}\right)_{*}} \pi_{1}\left(u, x_{0}\right) \\
& \left(i^{v}\right)_{*} \downarrow \\
& \pi_{1}\left(V, x_{0}\right)
\end{aligned}
$$

from the inclusions $i^{U}: U \cap \vee \rightarrow U, i^{v}: U \cap \vee \rightarrow V$.
Then $\pi_{1}\left(X, x_{0}\right)=\pi_{1}\left(U, x_{0}\right) * \pi_{1}\left(u \cap v, x_{0}\right) \pi_{1}\left(V, x_{0}\right)$

Thu 1: Let $Y=$ space obtained from X by attaching 2 -cells:

$$
X=\text { Space, } C_{\alpha}: \partial D_{\alpha}^{2} \rightarrow X, Y=X \cup_{\alpha} D_{\alpha}^{2} / \sim
$$

Let $\gamma_{\alpha}: I \rightarrow X$ st $\gamma_{\alpha}(0)=X_{0}, \quad \gamma_{\alpha}(1)=\varphi_{\alpha}(0)$.
Let $H=$ subgroup of $\pi_{1}\left(X, x_{0}\right)$ generated by $\left\{\gamma_{\alpha} \cdot \varphi_{\alpha} \cdot \gamma_{\alpha}^{-1}\right\}$.
$\Rightarrow \pi_{1}(X) \rightarrow \pi_{1}(Y)$ is surg/ $\operatorname{Ker}=N(H)$
So $\pi_{1}\left(Y, x_{0}\right)=\pi_{1}\left(X, x_{0}\right) *_{H} 0=\pi_{1}\left(X, x_{0}\right) / N(H)$

Them 2: Let $Y=$ space obtained from X by attaching n-cells $w / n \geqslant 3$:

$$
X=\text { Space, } C_{\alpha}: \partial D_{\alpha}^{n} \rightarrow X, Y=X \cup_{\alpha} D_{\alpha}^{n} / \sim
$$

$\Rightarrow \pi_{1}(X) \rightarrow \pi_{1}(Y)$ is an isom.

Cor: $\quad X=C W-c p X$, the inclusion $X^{2} \hookrightarrow X$ induces an isom.

$$
\pi_{1}\left(X^{2}, X_{0}\right) \xrightarrow{\Longrightarrow} \pi_{1}\left(X, X_{0}\right)
$$

Def: Let $\Sigma, \Sigma^{\prime}=$ surfaces. The connect sum of $\Sigma \mathrm{wl} \Sigma^{\prime}$, denoted

$$
\Sigma \neq \Sigma^{\prime}=\left(\Sigma \cdot \operatorname{int}\left(D^{2}\right)\right) U\left(\Sigma^{\prime}-\operatorname{int}\left(D^{2}\right)\right) / \sim
$$

where ~ identifies boundary points.

Picture:

$$
\omega \# \infty=(\omega) / \sim=\infty
$$

Deft: The surface of genus g is the space $\frac{T^{2} \# \ldots \# T^{2} \# S^{2} \text {-times }}{g}$.
Prop: $\quad \pi_{1}\left(\Sigma_{g}\right)=\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g} \mid a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \cdots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}\right\rangle$

Proof: $\quad \sum_{g}$ has a Clu-str. given by

One constructs it inductively:
(1)

(2)

(3)

So the CW-str. on Σ_{g} has $2 g$ 1-cells all connected to same 0 -cell. So $\pi_{1}\left(\varepsilon_{g}{ }^{\prime}\right)=\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g}\right\rangle$.
Now the attaching map is $\varphi=a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \cdots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}$.
$\operatorname{Thm} 1 \Rightarrow \pi_{1}\left(\Sigma_{g}\right)=\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g} \mid a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \ldots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}\right\rangle$

Set-up to prove Thus $\underline{1}+2$

Not:

- Write $D_{\alpha}^{n}=\left\{(r, \theta) \in I \times S^{n-1}\right\}$, ie, use polar coosds.
- $S_{\alpha}=S_{\alpha}=I \times[0,1 / 2]$
- $B_{\alpha}^{n}=D_{\alpha}^{n} \cup S_{\alpha} /((t+1 / 2,0) \sim(1, t)$ for $0 \leq t \leq 1 / 2)$
- $L_{\alpha}^{n}=\partial D_{\alpha}^{n} \cup(0 \times[0,1 / 2]) /(1,0) \sim(1,0)=I \vee S^{n-1} \subseteq B_{\alpha}^{n}$

Picture:

Not: Consider attaching maps $\varphi_{\alpha}: \partial D_{\alpha}^{n} \longrightarrow X$.
Def n $\psi_{\alpha}: L_{\alpha}^{n} \rightarrow X$ by, $\psi_{\alpha}=\gamma_{\alpha} \vee \varphi_{\alpha}$.
$\tilde{Y}=X U_{\alpha} B_{\alpha}^{n} /\left(\psi_{\alpha}(x) \sim x, E_{\alpha}^{\hat{\alpha}} \cong I s t \sim t \in E_{\beta}^{n}\right)$

Picture:

Not:

- $U=\tilde{Y}-X$
- $V=\tilde{Y}-U_{a} O_{\alpha}$ w/ $O_{\alpha}=\operatorname{origin~in~} D_{\alpha}$.

Lemma:
(1) V defo retracts onto X
(2) $U \simeq *$
(3) \bar{Y} defy retracts onto Y
(4) $V \cap U \simeq V_{\alpha} S^{n-1}$.

Proof: We will argue (1) fairly explicitly, the details of the others are sim.
(1) Let $H_{\alpha, t}$ be the defo retract of $B_{\alpha}^{n}-0 \alpha$ onto L_{α}^{n}.

$$
\begin{array}{cc}
X \cup_{\alpha}\left(B_{\alpha}^{n}-O_{\alpha}\right) \xrightarrow{\mathbb{I} L_{\alpha} H_{\alpha, t}} X \omega_{\alpha}\left(B_{\alpha}^{n}-O_{\alpha}\right) \xrightarrow{q} X \omega_{\alpha}\left(B_{a}^{n}-O_{\alpha}\right) / \sim \\
V \xrightarrow{H_{t}} & \|
\end{array}
$$

So $H_{t}([x])=q \cdot\left(\mathbb{1} U_{\alpha} H_{\alpha, t}\right)(x), 4[x]=$ equiv class in quotient.
Note, H_{t} is well-defn + cts.
H_{t} is a defo retract of V onto X.
(2) $U=\left(L_{\alpha} B_{\alpha}^{n} \backslash L_{\alpha}^{n}\right) /\left(E_{\alpha}^{n} \sim E_{\beta}^{n}\right) \stackrel{(A)}{\simeq} V_{\alpha}\left(I \vee D_{\alpha}^{n}\right) \simeq *$
w/ (A) given by applying the retracts

(3) Apply retracts

(4)

$$
U \cap V \simeq V_{\alpha} I \sim \partial D_{\alpha}^{n} \simeq V_{\alpha} S^{n-1}
$$

Pf the 2: When $n \geqslant 3, \pi_{1}(u \cap v)=0$

$$
\Rightarrow \pi_{1}(\tilde{y})=\pi_{1}(U) *_{\pi_{1}(u n v)} \pi_{1}(V)=\pi_{1}(V)
$$

We have a commutative gm:

$$
\begin{aligned}
& \pi_{1}(X) \quad \longrightarrow \pi_{1}(Y) \\
& \simeq \downarrow \quad \backsim \\
& \pi_{1}(V) \quad \leadsto \quad \pi_{1}(\tilde{Y})
\end{aligned}
$$

$\Rightarrow \pi_{1}(X) \rightarrow \pi_{1}(Y)$ is isom.

Pf the 1: If $n=2, \pi_{1}(\tilde{Y})=\pi_{1}(u) *_{\pi_{1}(u n v)} \pi_{1}(V)=\pi_{1}(V) / N\left(i_{1}\left(\pi_{1}(u \cap v)\right)\right)$ π_{1} (Un) is generated by the loops $\delta \alpha$ given by

$\Rightarrow i_{n}\left(\pi_{1}(u \cap v)\right)$ is generated by the loops ε_{a}

Consider the commutative gm:

$$
\begin{array}{lll}
\pi_{1}(X) & \xrightarrow{玉} & \pi_{1}(Y) \\
\approx \downarrow & \text { Cu } & \downarrow \simeq \\
\pi_{1}(V) & \xrightarrow{\Phi} & \pi_{1}(\tilde{Y})
\end{array}
$$

Note, $\Phi=\operatorname{sur} j \Rightarrow \Phi=$ surj. and $\operatorname{Ker}(\Phi)$ is identified $w / \operatorname{Ker}(\Phi)$

$$
\operatorname{ker}(\underline{\underline{\Phi}})=N\left(\gamma_{\alpha} \cdot \varphi_{\alpha} \cdot \gamma_{\alpha}^{-1}\right) \Rightarrow \operatorname{ker}(玉)=N\left(\gamma_{\alpha} \cdot \varphi_{\alpha} \cdot \gamma_{\alpha}^{-1}\right)
$$

