Lecture \# 17 -November $9^{\text {th }}, 2023$

Lemma: $\quad f, g: X \rightarrow Y$ are homotopic rel $X_{0} \in X$, then $f_{*}=g_{*}$.

Proof: Let $H_{t}: X \rightarrow Y$ be the homotopy from f to g.

$$
f_{*}([\alpha])=[f \circ \alpha]=\left[H_{0} \circ \alpha\right]=\left[H_{1} \circ \alpha\right]=[g \circ \alpha]=g_{*}([\alpha])
$$

Prop: If $f: X \rightarrow Y$ is a homotopy equiv, then $f_{*}=$ isom.

Lemma: $H_{t}: X \rightarrow Y$ is a hpty and $\gamma(s)=H_{s}\left(x_{0}\right): I \longrightarrow Y$, then

$$
\begin{aligned}
& \pi_{1}\left(X, x_{0}\right) \xrightarrow{\left(H_{1}\right)_{*}} \pi_{1}\left(Y, H_{1}(x,)\right) \\
& \left(H_{0}\right)_{*} \downarrow \\
& \pi_{1}\left(Y, H_{0}\left(x_{0}\right)\right)
\end{aligned}
$$

\longrightarrow ie, $\left(H_{0}\right)_{*}=\Phi{ }^{\text {玉 }} \circ\left(H_{1}\right)_{*}$

Proof: NTS $\forall[\alpha] \in \pi_{1}\left(X, x_{0}\right), \gamma \cdot\left(H_{1} \circ \alpha\right) \cdot \gamma^{-1} \simeq H_{0} \circ \alpha$ rel ∂I.

$$
G_{t}(s)= \begin{cases}\gamma(3 s t) & , 0 \leq s \leq 1 / 3 \\ H_{t} \circ \alpha(3 s-1) & , 1 / 3 \leq s \leq 2 / 3 \\ \gamma(t(3-3 s)) & , 2 / 3 \leq s \leq 1\end{cases}
$$

G_{t} cts by Pasting Lemma.

$$
\begin{aligned}
& G_{t}(0)=H_{0}\left(x_{0}\right)=G_{t}(1), G_{0} \simeq H_{0} \cdot \alpha, G_{1} \simeq \gamma \cdot H_{1} \cdot \alpha \cdot \gamma^{-1} \\
& \Rightarrow H_{0} \cdot \alpha \simeq \gamma \cdot H_{1} \cdot \alpha \cdot \gamma^{-1} \mathrm{rel} 2 I
\end{aligned}
$$

Proof: Let $g: Y \rightarrow X$ be st $f \circ g=\mathbb{K}_{Y}, g \circ f=\mathbb{I}_{X}$.
Let H_{t} be katy from $f \circ g$ to $\mathbb{I}_{Y} . \quad V(s)=H_{s}\left(x_{0}\right)$

$$
\begin{aligned}
& G_{t} \quad \text {. } g \circ f \text { to } \mathbb{I} x . ~ \delta(s)=G_{s}\left(f\left(x_{0}\right)\right) \text {. }
\end{aligned}
$$

$\pi_{1}\left(S^{\prime}\right)=\mathbb{Z}$

Notn: $\pi: \mathbb{R} \rightarrow S^{\prime}, \pi(\lambda)=(\cos (2 \pi \cdot \lambda), \sin (2 \pi \cdot \lambda))$

Fact: (1) Given $\gamma: I \rightarrow S^{\prime}$ w $\gamma(0)=(1,0) \in S^{\prime}$ and $n \in \mathbb{Z}, \exists$! cts $\operatorname{map} \tilde{\gamma}: I \longrightarrow \mathbb{R}$ st $\pi \cdot \tilde{\gamma}=\gamma$ and $\tilde{\gamma}(0)=n$
(2) Given a hpty $H_{t}: I \longrightarrow S^{\prime} w / H_{t}(0)=(1,0) \in S^{\prime}$ and $x \in \mathbb{Z}$, $\exists!$ cts map $\tilde{H}_{t}: I \rightarrow \mathbb{R}$ st $\pi \circ \tilde{H}_{t}=H_{t}$ and $\tilde{H}_{t}(0)=n$

The: $\pi_{1}\left(S^{\prime}\right)=\mathbb{Z}$.

Proof: Step 1: Define a map Φ : $\pi_{1}\left(S^{\prime}\right) \longrightarrow \mathbb{Z}$.
If $\alpha(0)=(1,0)=\alpha(1)=(1,0)$, then $\tilde{\alpha}(1) \in \mathbb{Z}$.
So def n $\Phi: \pi_{1}\left(S^{\prime}\right) \rightarrow \mathbb{Z}$ by $\Phi([\alpha])=\tilde{\alpha}(1)$.
UTS $\bar{\Phi}$ is well-defn
If $\alpha \simeq \beta$ rel $\{0,1\}$ w/ hpty H_{t}
By Fact (2), $\exists \tilde{H}_{t}: エ \rightarrow \mathbb{R}$ w/ $\pi \circ \tilde{H}_{t}=H_{t}, \tilde{H}_{t}(0)=0$. By uniqueness in Fact $\left(\mathbb{1}, \tilde{\alpha}=\tilde{H}_{0}\right.$ and $\widetilde{\beta}=\widetilde{H}_{1}$.
$H_{t}(1)$ is cts and $H_{t}(1) \in \mathbb{Z} \Rightarrow H_{t}(1)=$ constant.

$$
\Rightarrow \tilde{\alpha}(1)=\tilde{H}_{0}(1)=\bar{H}_{1}(1)=\tilde{\beta}(1) .
$$

$\Rightarrow \Phi$ is well-defined.

Step 2: 玉 is a homomorphism
Spae $[\alpha],[\beta] \in \pi_{1}\left(\delta^{\prime}\right)$
Defn $\vec{\gamma}: I \rightarrow \mathbb{R}$ by

$$
\bar{\gamma}(s)= \begin{cases}\tilde{\alpha}(2 s) & , 0 \leq s \leq 1 / 2 \\ \tilde{\alpha}(1)+\tilde{\beta}(2 s-1) & , 1 / 2 \leq s \leq 1\end{cases}
$$

So $\tilde{\gamma}$ is a lift of $\alpha \cdot \beta$ w/ $\tilde{\gamma}(0)=0$

$$
\Phi([\alpha] \cdot[\beta])=\Phi([\alpha \cdot \beta])=\tilde{\gamma}(1)=\bar{\alpha}(1)+\tilde{\beta}(1)
$$

Step 3: Φ is surjective

$$
\tilde{\gamma}_{n}: I \rightarrow \mathbb{R}, \quad \tilde{\gamma}_{n}(t)=n \cdot t
$$

Def n $\gamma_{n}=\pi \cdot \tilde{\gamma}_{n}$, so $\tilde{\gamma}_{n}=$ lift of γ_{n} based at 0 .

$$
\Rightarrow I\left(\left[\gamma_{n}\right]\right)=\tilde{\gamma}_{n}(1)=n \in \mathbb{Z}
$$

Step 4: I is injective

$$
\Phi([\alpha])=0 \Rightarrow \tilde{\alpha}(1)=0
$$

$\operatorname{Defn} \tilde{H}_{t}: I \rightarrow \mathbb{R}$ by $\tilde{H}_{t}(s)=t \cdot \tilde{\alpha}(s)$.
Defn $H_{t}=\pi \circ \tilde{H}_{t}$.

$$
\begin{aligned}
& H_{0}=\pi \cdot \tilde{H}_{0}=(1,0) \\
& H_{1}=\pi \cdot \tilde{H}_{1}=\pi \cdot \tilde{\alpha}=\alpha \\
& H_{t}(0)=\pi \circ \tilde{H}_{t}(0)=\pi \cdot(t \cdot \tilde{\alpha}(0))=\pi(0)=(1,0) \\
& H_{t}(1)=\pi \cdot \vec{H}_{t}(1)=\pi \cdot(t \cdot \tilde{\alpha}(1))=\pi(0)=(1,0) \\
& \Rightarrow[\alpha]=[e]
\end{aligned}
$$

Cor: \mathbb{R}^{2} is not homed to \mathbb{R}^{n} for $n \neq 2$.

Proof:
$\pi_{1}\left(S^{n-1}\right)=0$ for $n>2, \quad \pi \sigma_{1}\left(S^{1}\right)=\mathbb{Z}$
$\Rightarrow S^{n-1} \neq S^{1}$ for $n \neq 1$
$\Rightarrow S^{1} \simeq \mathbb{R}^{2}, 0 \neq \mathbb{R}^{n}, 0 \simeq S^{n-1}$ for $n \neq 1$
$\Rightarrow \mathbb{R}^{2}, 0 \neq \mathbb{R}^{n}, 0$ for $n \neq 1$
$\Rightarrow \mathbb{R}^{2} \cong \mathbb{R}^{n}$ for $n \neq 1$.

Brouwer's Fixed Point Tum

Lemma: If X retracts onto A, then $i: A \leftrightarrow X$ gives an ing hoo $i_{*}: \pi_{1}(A) \rightarrow \pi_{1}(X)$. If X defo retracts onto A, then $i_{*}=$ ism.

Proof:
Let $r: X \rightarrow A$ be the retraction.
$r \circ i=\mathbb{1} \Rightarrow r_{*} \circ i_{*}=(r \circ i)_{*}=\mathbb{1}_{*} \Rightarrow i_{x}=$ injective.
If X defo retracts $\Rightarrow i$ is a holy equiv. $\Rightarrow i_{*}=$ isom.

The: (Browner's Fixed Pt theorem) $f: D^{2} \longrightarrow D^{2}$ cts $\Rightarrow \exists x$ st $f(x)=x$.

Proof:
Spae that $f(x) \neq x \quad \forall x \in X$.
Def $r: D^{2} \longrightarrow S^{\prime}$ by

$r=$ retract $\Rightarrow i_{*}: \pi_{1}\left(S^{\prime}\right)=\mathbb{Z} \hookrightarrow \pi_{1}\left(D^{2}\right)=0$ is ing. $\Rightarrow \Leftarrow$

