Lecture # 1 - September 7th, 2023

Defn:
A topology on a set X is a set of subsets of X, Ö, called
open sets st
(i)
$$\varphi, X \in O$$

(ii) $O' \subseteq O \implies \bigcup_{u \in O'} U \in O$
(iii) $U_1, ..., U_n \in J \implies \bigcap_{u \in O'} U_i \in O$.
(X, O) is a topological space

Deh^s Spse
$$\mathcal{O}, \mathcal{O}'$$
 are two top. on $X \cup \mathcal{O} \subseteq \mathcal{O}'$.
 \mathcal{O}' is finer than \mathcal{O} and \mathcal{O} is coarser than \mathcal{O}'

Example: ① The discrete top on X is
$$O =$$
 power set of X
② The trivial top on X is $O = \{ \varphi, X \}$.

Example:
$$X = \{1, 2, 3\}$$

 $i = \{1, 2, 3\}$
 $i = \{1, 3, 3$

Defn:
$$B = set of subsets of X is a basis if
 $X = \bigcup_{D \in \mathcal{B}} B$
 $X \in B' \cap B'' \quad w/ B', B'' \in B => \exists B \in B \ st \ X \in B \subseteq B_1 \cap B_2$$$

(ii)
$$x \in U_1 \land U_2 \Rightarrow \exists x \in B_1 \subset U_1, x \in B_2 \in U_2$$

 $\Rightarrow \exists x \in B \subseteq B_1 \land B_2 \subset U_1 \land U_2$
 $\Rightarrow U_1 \land U_2 \text{ open}$
By induction, $\bigcap_{i=1}^{n} U_i \text{ open}$

ロ

Rem:uncountable intersections need not be open.X = R u/ std. top.
Un =
$$(^{-1}/n, ^{1}/n)$$

 $\Lambda_n U_n = [o] \neq open.$ Rem:Same top. could be generated by wultiple different bases.
 $X = R^2$
 \odot Basis = $\begin{cases} Bx(r) & 3 = 2 \\ 0 \end{cases}$ open ball of radius r centered at $x \\ g \end{pmatrix}$
 \odot = $\begin{cases} Sgx(r) & 3 = 2 \\ 0 \end{cases}$ open ball of radius r centered at $x \\ g \end{pmatrix}$
 \odot = $\begin{cases} Sgx(r) & 3 = 2 \\ 0 \end{cases}$ open ball of radius r centered at $x \\ g \end{pmatrix}$
 \odot = $\begin{cases} Sgx(r) & 3 = 2 \\ 0 \end{cases}$ open ball of radius r centered at $x \\ g \end{pmatrix}$
 \odot = $\begin{cases} Sgx(r) & 3 = 2 \\ 0 \end{cases}$ open ball of radius r centered at $x \\ g \end{pmatrix}$
 \odot = $\begin{cases} Sgx(r) & 3 = 2 \\ 0 \end{cases}$ open ball of radius r centered at $x \\ g \end{pmatrix}$
 \odot = $\begin{cases} Sgx(r) & 3 = 2 \\ 0 \end{cases}$ open ball of radius r centered at $x \\ g \end{pmatrix}$
 \odot = $\begin{cases} Sgx(r) & 3 = 2 \\ 0 \end{cases}$ open ball of radius r centered at $x \\ g \end{pmatrix}$
 \odot = $\begin{cases} Sgx(r) & 3 = 2 \\ 0 \end{cases}$ open ball of radius r centered at $x \\ g \end{pmatrix}$
 \odot = $\begin{cases} Sgx(r) & 3 = 2 \\ 0 \end{cases}$ open square $w/diag 2r$ = $r \times x \\ g \end{pmatrix}$
 \end{cases} DefinitX = space. $A \subset X$ is closed
($G > Finite union of closed nets is closed($G > Any$ intersection of closed nets is closed
($G > Any$ intersection of closed nets is closed
($G > Finite union of closed sets is closed($G > Finite union of closed sets is closed($G > Finite union of closed sets is closed($G > Finite union of closed sets is closed($G > Finite union of closed sets is closed($G > Finite union of closed sets is closed($G > Finite union of closed sets is closed($G > Finite union of closed sets is closed($G > Finite union of closed sets is closed($G > Finite union of closed sets is closed($G > Finite union of closed sets is closed($G > Finite union (Finite union union (Finite Union (Fini$$$$$$$$$$$$$

Lemma:
$$\bigcirc \overline{A} = \frac{2}{1}$$
 limit points of $A^{7}_{J} = int(A) \cup \partial A$
 $\bigcirc X = int(A) \cup \partial A \cup int(X \cdot A)$ (Exer)

Proof:

$$\overline{A} \subseteq \{limit rts\}$$

 $x \in \overline{A} \text{ and syse } x \notin \{lim\}$
 $\Rightarrow \exists U \ni x w \mid UnA = \emptyset$
 $\Rightarrow A \subseteq X \cdot U = closed$
 $\Rightarrow \overline{A} \subseteq X \cdot U = > \subset$
 $\{lim\} \subseteq int(A) \cup \Im A$
 $x \in lim \Rightarrow \forall U \ni x, UnA \neq \emptyset$
if $\exists x \in U \subset A \Rightarrow x \in int(A)$
 $else \forall U^{\ni x}, Un(X \cdot A) \neq \emptyset => x \in \Im A$.
 $int(A) \cup \Im A \subseteq \overline{A}$
 $x \in \Im A, spse x \notin \overline{A}$
 $= ? \exists x \in X \cdot \overline{A} = open$
 $= > (X \cdot \overline{A}) nA \in (X \cdot A) \cap A = \emptyset => \subset$

Lemmas If Uo, U. = dense opens => Uo NU. = dense open.

 \Box