Minimal Taylor Algebras

Zarathustra Brady
Taylor algebras

Definition

\(\mathbb{A} \) is called a set if all of its operations are projections. Otherwise, we say \(\mathbb{A} \) is nontrivial.
Taylor algebras

Definition
A is called a set if all of its operations are projections. Otherwise, we say A is nontrivial.

Definition
An idempotent algebra is Taylor if the variety it generates does not contain a two element set.
Taylor algebras

Definition
\(\mathbb{A} \) is called a set if all of its operations are projections. Otherwise, we say \(\mathbb{A} \) is nontrivial.

Definition
An idempotent algebra is *Taylor* if the variety it generates does not contain a two element set.

- All algebras in this talk will be idempotent, so I won’t mention idempotence further.
Useful facts about Taylor algebras

- Theorem (Bulatov and Jeavons)

 A finite algebra \mathbb{A} is Taylor iff there is no set in $HS(\mathbb{A})$.

- Theorem (Barto and Kozik)

 A finite algebra \mathbb{A} is Taylor iff for every number n such that every prime factor of n is greater than $|\mathbb{A}|$, there is an n-ary cyclic term c, i.e. $c(x_1, x_2, \ldots, x_n) \approx c(x_2, \ldots, x_n, x_1)$.

- Corollary

 A finite algebra is Taylor iff it has a 4-ary term t satisfying the identity $t(x, x, y, z) \approx t(y, z, z, x)$.

Useful facts about Taylor algebras

- **Theorem (Bulatov and Jeavons)**

 A finite algebra \mathbb{A} is Taylor iff there is no set in $HS(\mathbb{A})$.

- **Theorem (Barto and Kozik)**

 A finite algebra \mathbb{A} is Taylor iff for every number n such that every prime factor of n is greater than $|\mathbb{A}|$, there is an n-ary cyclic term c, i.e.

 $$c(x_1, x_2, \ldots, x_n) \approx c(x_2, \ldots, x_n, x_1).$$
Useful facts about Taylor algebras

- **Theorem (Bulatov and Jeavons)**

 A finite algebra \mathbb{A} is Taylor iff there is no set in $\text{HS}(\mathbb{A})$.

- **Theorem (Barto and Kozik)**

 A finite algebra \mathbb{A} is Taylor iff for every number n such that every prime factor of n is greater than $|\mathbb{A}|$, there is an n-ary cyclic term c, i.e.

 $$c(x_1, x_2, \ldots, x_n) \approx c(x_2, \ldots, x_n, x_1).$$

- **Corollary**

 A finite algebra is Taylor iff it has a 4-ary term t satisfying the identity

 $$t(x, x, y, z) \approx t(y, z, z, x).$$
Minimal Taylor algebras

- My interest in Taylor algebras comes from the study of CSPs.

Definition

An algebra is a minimal Taylor algebra if it is Taylor, and has no proper reduct which is Taylor.

Proposition

Every finite Taylor algebra has a reduct which is a minimal Taylor algebra.

Proof.

There are only finitely many 4-ary terms t which satisfy $t(x,x,y,z) \approx t(y,z,z,x)$.

Larger CSPs \iff smaller clones.
Minimal Taylor algebras

- My interest in Taylor algebras comes from the study of CSPs.
- Larger CSPs \iff smaller clones.
Minimal Taylor algebras

▶ My interest in Taylor algebras comes from the study of CSPs.
▶ Larger CSPs \iff smaller clones.
▶ So it makes sense to study Taylor algebras whose clones are as small as possible.
Minimal Taylor algebras

- My interest in Taylor algebras comes from the study of CSPs.
- Larger CSPs \iff smaller clones.
- So it makes sense to study Taylor algebras whose clones are as small as possible.

- **Definition**
 An algebra is a *minimal Taylor algebra* if it is Taylor, and has no proper reduct which is Taylor.
Minimal Taylor algebras

- My interest in Taylor algebras comes from the study of CSPs.
- Larger CSPs \iff smaller clones.
- So it makes sense to study Taylor algebras whose clones are as small as possible.

- Definition
 An algebra is a *minimal Taylor algebra* if it is Taylor, and has no proper reduct which is Taylor.

- Proposition
 Every finite Taylor algebra has a reduct which is a minimal Taylor algebra.
Minimal Taylor algebras

- My interest in Taylor algebras comes from the study of CSPs.
- Larger CSPs \iff smaller clones.
- So it makes sense to study Taylor algebras whose clones are as small as possible.

Definition
An algebra is a minimal Taylor algebra if it is Taylor, and has no proper reduct which is Taylor.

Proposition
Every finite Taylor algebra has a reduct which is a minimal Taylor algebra.

Proof.
There are only finitely many 4-ary terms t which satisfy $t(x, x, y, z) \approx t(y, z, z, x)$.

First hints of a nice theory

Theorem

If \mathbb{A} is a minimal Taylor algebra, $\mathbb{B} \in HSP(\mathbb{A})$, $S \subseteq \mathbb{B}$, and t a term of \mathbb{A} satisfy

- S is closed under t,
- (S, t) is a Taylor algebra,

then S is a subalgebra of \mathbb{B}, and is also a minimal Taylor algebra.
Theorem

If \(A \) is a minimal Taylor algebra, \(B \in HSP(A) \), \(S \subseteq B \), and \(t \) a term of \(A \) satisfy

- \(S \) is closed under \(t \),
- \((S, t) \) is a Taylor algebra,

then \(S \) is a subalgebra of \(B \), and is also a minimal Taylor algebra.
First hints of a nice theory

Theorem
If \mathbb{A} is a minimal Taylor algebra, $\mathbb{B} \in HSP(\mathbb{A})$, $S \subseteq \mathbb{B}$, and t a term of \mathbb{A} satisfy

- S is closed under t,
- (S, t) is a Taylor algebra,

then S is a subalgebra of \mathbb{B}, and is also a minimal Taylor algebra.

Choose p a prime bigger than $|\mathbb{A}|$ and $|S|$.
First hints of a nice theory

Theorem

If \mathbb{A} is a minimal Taylor algebra, $\mathbb{B} \in HSP(\mathbb{A})$, $S \subseteq \mathbb{B}$, and t a term of \mathbb{A} satisfy

- S is closed under t,
- (S, t) is a Taylor algebra,

then S is a subalgebra of \mathbb{B}, and is also a minimal Taylor algebra.

- Choose p a prime bigger than $|\mathbb{A}|$ and $|S|$.
- Choose c a p-ary cyclic term of \mathbb{A}, u a p-ary cyclic term of (S, t).
First hints of a nice theory

Theorem

If A is a minimal Taylor algebra, $B \in HSP(A)$, $S \subseteq B$, and t a term of A satisfy

- S is closed under t,
- (S, t) is a Taylor algebra,

then S is a subalgebra of B, and is also a minimal Taylor algebra.

Choose p a prime bigger than $|A|$ and $|S|$.

Choose c a p-ary cyclic term of A, u a p-ary cyclic term of (S, t).

Then

$$f = c(u(x_1, x_2, \ldots, x_p), u(x_2, x_3, \ldots, x_1), \ldots, u(x_p, x_1, \ldots, x_{p-1}))$$

is a cyclic term of A.
First hints of a nice theory

▶ **Theorem**
If \mathbb{A} is a minimal Taylor algebra, $\mathbb{B} \in HSP(\mathbb{A})$, $S \subseteq \mathbb{B}$, and t a term of \mathbb{A} satisfy

- S is closed under t,
- (S, t) is a Taylor algebra,

then S is a subalgebra of \mathbb{B}, and is also a minimal Taylor algebra.

▶ Choose p a prime bigger than $|\mathbb{A}|$ and $|S|$.
▶ Choose c a p-ary cyclic term of \mathbb{A}, u a p-ary cyclic term of (S, t).
▶ Then

$$f = c(u(x_1, x_2, \ldots, x_p), u(x_2, x_3, \ldots, x_1), \ldots, u(x_p, x_1, \ldots, x_{p-1}))$$

is a cyclic term of \mathbb{A}.
▶ Have $f|_S = u|_S$ by idempotence.
A few consequences

- **Proposition**

 For \(\mathbb{A} \) minimal Taylor, \(a, b \in \mathbb{A} \), then \(\{a, b\} \) is a semilattice subalgebra of \(\mathbb{A} \) with absorbing element \(b \) iff

\[
\begin{bmatrix}
 b \\
 b
\end{bmatrix} \in Sg_{\mathbb{A}^2} \left\{ \begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} b \\ a \end{bmatrix} \right\}.
\]
A few consequences

- **Proposition**

 For \(A \) minimal Taylor, \(a, b \in A \), then \(\{a, b\} \) is a semilattice subalgebra of \(A \) with absorbing element \(b \) iff

 \[
 \begin{bmatrix}
 b \\
 b
 \end{bmatrix} \in S_{g_A}^2 \left\{ \begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} b \\ a \end{bmatrix} \right\}.
 \]

- **Proposition**

 For \(A \) minimal Taylor, \(a, b \in A \), then \(\{a, b\} \) is a majority subalgebra of \(A \) iff

 \[
 \begin{bmatrix}
 a & b \\
 a & b \\
 a & b
 \end{bmatrix} \in S_{g_A}^{3 \times 2} \left\{ \begin{bmatrix} a & b \\ a & b \\ b & a \end{bmatrix}, \begin{bmatrix} a & b \\ b & a \\ a & b \end{bmatrix}, \begin{bmatrix} b & a \\ a & b \\ a & b \end{bmatrix} \right\}.
 \]
A few consequences, ctd.

- Proposition

For \mathbb{A} minimal Taylor, $a, b \in \mathbb{A}$, then $\{a, b\}$ is a $\mathbb{Z}/2^\text{aff}$ subalgebra of \mathbb{A} iff

$$
\begin{bmatrix}
 b & a \\
 b & a \\
 b & a
\end{bmatrix}
\in Sg_{\mathbb{A}^{3 \times 2}} \left\{ \begin{bmatrix}
 a & b \\
 a & b \\
 b & a
\end{bmatrix}, \begin{bmatrix}
 a & b \\
 b & a \\
 a & b
\end{bmatrix}, \begin{bmatrix}
 b & a \\
 b & a \\
 a & b
\end{bmatrix} \right\}.
$$
A few consequences, ctd.

- **Proposition**

 For a minimal Taylor, \(a, b \in \mathbb{A} \), then \(\{a, b\} \) is a \(\mathbb{Z}/2^{\text{aff}} \) subalgebra of \(\mathbb{A} \) iff

 \[
 \begin{bmatrix}
 b & a \\
 b & a \\
 b & a \\
 \end{bmatrix}
 \in Sg_{\mathbb{A}^{3\times2}} \left\{ \begin{bmatrix}
 a & b \\
 a & b \\
 b & a \\
 \end{bmatrix}, \begin{bmatrix}
 a & b \\
 b & a \\
 a & b \\
 \end{bmatrix}, \begin{bmatrix}
 b & a \\
 a & b \\
 a & b \\
 \end{bmatrix} \right\}.
 \]

- If there is an automorphism of \(\mathbb{A} \) which interchanges \(a, b \), then we only have to consider

 \[
 Sg_{\mathbb{A}^{3}} \left\{ \begin{bmatrix}
 a \\
 a \\
 b \\
 \end{bmatrix}, \begin{bmatrix}
 a \\
 b \\
 a \\
 \end{bmatrix}, \begin{bmatrix}
 b \\
 a \\
 a \\
 \end{bmatrix} \right\}.
 \]
Daisy Chain Terms

- It’s difficult to write down explicit examples without nice terms.
Daisy Chain Terms

- It’s difficult to write down explicit examples without nice terms.
- Choose a p-ary cyclic term c.

\[
w(x, y, z) = c(x, \ldots, x, a, y, \ldots, y, p-2a, z, \ldots, z)
\]

- This satisfies $w(x, x, y) \approx w(y, x, x)$.
- Also have $w(x, y, x) = c(x, \ldots, x, a, y, \ldots, y, p-2a, x, \ldots, x)$.
Daisy Chain Terms

- It’s difficult to write down explicit examples without nice terms.

- Choose a \(p \)-ary cyclic term \(c \).

- For any \(a < \frac{p}{2} \), can make a ternary term \(w(x, y, z) \) via:

\[
w(x, y, z) = c_{\{x, \ldots, x, y, \ldots, y, z, \ldots, z\}_{\{a, p-2a, a\}}}.\]
Daisy Chain Terms

- It's difficult to write down explicit examples without nice terms.

- Choose a p-ary cyclic term c.

- For any $a < \frac{p}{2}$, can make a ternary term $w(x, y, z)$ via:

$$w(x, y, z) = c\left(x, \ldots, x, y, \ldots, y, z, \ldots, z\right).$$

$$\begin{array}{c}
\underbrace{x, \ldots, x} \\
a
\end{array} \quad \begin{array}{c}
\underbrace{y, \ldots, y} \\
p-2a
\end{array} \quad \begin{array}{c}
\underbrace{z, \ldots, z} \\
a
\end{array}$$

- This satisfies

$$w(x, x, y) \approx w(y, x, x).$$
Daisy Chain Terms

- It's difficult to write down explicit examples without nice terms.

- Choose a p-ary cyclic term c.

- For any $a < \frac{p}{2}$, can make a ternary term $w(x, y, z)$ via:

 $$w(x, y, z) = c(x, \ldots, x, y, \ldots, y, z, \ldots, z).$$

 \[a \quad p-2a \quad a\]

- This satisfies

 $$w(x, x, y) \approx w(y, x, x).$$

- Also have

 $$w(x, y, x) = c(x, \ldots, x, y, \ldots, y, x, \ldots, x).$$

 \[a \quad p-2a \quad a\]
Daisy Chain Terms, ctd.

- From a sequence

\[a, p - 2a, p - 2(p - 2a), \ldots \]

we get a sequence of ternary terms:

\[w_0(x, x, y) \approx w_0(y, x, x) \approx w_1(x, y, x), \]
\[w_1(x, x, y) \approx w_1(y, x, x) \approx w_2(x, y, x), \]
\[\vdots \]

If \(p \) is large enough and \(a \) is close enough to \(p^3 \), then the sequence can become arbitrarily long. Since there are only finitely many ternary functions in \(\text{Clo}(A) \), we eventually get a cycle.
Daisy Chain Terms, ctd.

- From a sequence

\[a, \ p - 2a, \ p - 2(p - 2a), \ldots \]

we get a sequence of ternary terms:

\[w_0(x, x, y) \approx w_0(y, x, x) \approx w_1(x, y, x), \]
\[w_1(x, x, y) \approx w_1(y, x, x) \approx w_2(x, y, x), \]
\[\vdots \]

- If \(p \) is large enough and \(a \) is close enough to \(\frac{p}{3} \), then the sequence can become arbitrarily long.
Daisy Chain Terms, ctd.

- From a sequence

\[a, p - 2a, p - 2(p - 2a), \ldots \]

we get a sequence of ternary terms:

\[w_0(x, x, y) \approx w_0(y, x, x) \approx w_1(x, y, x), \]
\[w_1(x, x, y) \approx w_1(y, x, x) \approx w_2(x, y, x), \]
\[\vdots \]

- If \(p \) is large enough and \(a \) is close enough to \(\frac{p}{3} \), then the sequence can become arbitrarily long.

- Since there are only finitely many ternary functions in \(\text{Clo}(A) \), we eventually get a cycle.
What do they mean?

- How can daisy chain terms be useful to us?
What do they mean?

- How can daisy chain terms be useful to us?

- For \(a, b \in A \), define a binary relation \(D_{ab} \subseteq A^2 \) by

\[
D_{ab} = \left\{ \begin{bmatrix} c \\ d \end{bmatrix} \text{ s.t. } \begin{bmatrix} c \\ d \\ c \end{bmatrix} \in Sg_{A^3} \left\{ \begin{bmatrix} a \\ a \\ b \end{bmatrix}, \begin{bmatrix} a \\ b \\ a \end{bmatrix}, \begin{bmatrix} b \\ a \\ a \end{bmatrix} \right\} \right\}.
\]
What do they mean?

- How can daisy chain terms be useful to us?

- For $a, b \in A$, define a binary relation $D_{ab} \leq A^2$ by

$$D_{ab} = \left\{ \begin{bmatrix} c \\ d \end{bmatrix} \text{ s.t. } \begin{bmatrix} c \\ d \end{bmatrix} \in Sg_{A^3} \left\{ \begin{bmatrix} a \\ b \\ a \end{bmatrix}, \begin{bmatrix} a \\ b \\ a \end{bmatrix}, \begin{bmatrix} b \\ a \\ a \end{bmatrix} \right\} \right\}.$$

- If $\begin{bmatrix} a \\ a \end{bmatrix} \in D_{ab}$ and there is an automorphism interchanging a, b, then $\{a, b\}$ is a majority algebra.
What do they mean?

- How can daisy chain terms be useful to us?

- For $a, b \in \mathbb{A}$, define a binary relation $D_{ab} \subseteq \mathbb{A}^2$ by

$$D_{ab} = \left\{ \begin{bmatrix} c \\ d \end{bmatrix} \mid \begin{bmatrix} c \\ d \\ c \end{bmatrix} \in Sg_{\mathbb{A}^3} \left\{ \begin{bmatrix} a \\ a \\ b \end{bmatrix}, \begin{bmatrix} a \\ b \\ a \end{bmatrix}, \begin{bmatrix} b \\ a \\ a \end{bmatrix} \right\} \right\}.$$

- If $\begin{bmatrix} a \\ a \end{bmatrix} \in D_{ab}$ and there is an automorphism interchanging a, b, then $\{a, b\}$ is a majority algebra.

- Proposition

 If \mathbb{A} has daisy chain terms and $a, b \in \mathbb{A}$, then if we consider D_{ab} as a digraph, it must contain a directed cycle.
Describing a minimal Taylor algebra

- If $p = w_i$, $q = w_{i+1}$ are any pair of adjacent daisy chain terms, then they satisfy the system

\[p(x, x, y) \approx p(y, x, x) \approx q(x, y, x), \]
\[q(x, x, y) \approx q(y, x, x). \]
Describing a minimal Taylor algebra

- If $p = w_i, q = w_{i+1}$ are any pair of adjacent daisy chain terms, then they satisfy the system

 \[
 p(x, x, y) \approx p(y, x, x) \approx q(x, y, x), \\
 q(x, x, y) \approx q(y, x, x).
 \]

- Thus p, q generate a Taylor clone, so $\text{Clo}(A) = \langle p, q \rangle$ if A is minimal Taylor.
Describing a minimal Taylor algebra

- If \(p = w_i, q = w_{i+1} \) are any pair of adjacent daisy chain terms, then they satisfy the system

\[
\begin{align*}
p(x, x, y) &\approx p(y, x, x) \approx q(x, y, x), \\
q(x, x, y) &\approx q(y, x, x).
\end{align*}
\]

- Thus \(p, q \) generate a Taylor clone, so \(\text{Clo}(A) = \langle p, q \rangle \) if \(A \) is minimal Taylor.

- In particular, the number of minimal Taylor clones on a set of \(n \) elements is at most \(n^{2n^3} \).
Describing a minimal Taylor algebra

- If \(p = w_i, q = w_{i+1} \) are any pair of adjacent daisy chain terms, then they satisfy the system

\[
\begin{align*}
 p(x, x, y) & \approx p(y, x, x) \approx q(x, y, x), \\
 q(x, x, y) & \approx q(y, x, x).
\end{align*}
\]

- Thus \(p,q \) generate a Taylor clone, so \(\text{Clo}(A) = \langle p, q \rangle \) if \(A \) is minimal Taylor.

- In particular, the number of minimal Taylor clones on a set of \(n \) elements is at most \(n^{2n^3} \).

- **Conjecture**

 Every minimal Taylor clone can be generated by a *single* ternary function.
Daisy chain terms in the basic algebras

- Proposition

 If \(w_i \) are daisy chain terms and \(A \) is a semilattice, then each \(w_i \) is the symmetric ternary semilattice operation on \(A \).
Daisy chain terms in the basic algebras

Proposition

If \(w_i \) are daisy chain terms and \(\mathbb{A} \) is a semilattice, then each \(w_i \) is the symmetric ternary semilattice operation on \(\mathbb{A} \).

Proposition

If \(w_i \) are daisy chain terms and \(\mathbb{A} \) is a majority algebra, then each \(w_i \) is a majority operation on \(\mathbb{A} \).
Daisy chain terms in the basic algebras

Proposition

If \(w_i \) are daisy chain terms and \(\mathbb{A} \) is a semilattice, then each \(w_i \) is the symmetric ternary semilattice operation on \(\mathbb{A} \).

Proposition

If \(w_i \) are daisy chain terms and \(\mathbb{A} \) is a majority algebra, then each \(w_i \) is a majority operation on \(\mathbb{A} \).

Proposition

If \(w_i \) are daisy chain terms and \(\mathbb{A} \) is affine, then there is a sequence \(a_i \) such that \(w_i \) is given by

\[
w_i(x, y, z) = a_ix + (1 - 2a_i)y + a_iz,
\]

with \(a_{i+1} = 1 - 2a_i \).

If \(a_0 = 0 \), then \(w_1 \) is the Mal’cev operation \(x - y + z \) and \(w_{-1} \) is the operation \(\frac{x + z}{2} \).
Bulatov’s graph

- Bulatov studies finite Taylor algebras via three types of edges: semilattice, majority, and affine.
Bulatov’s graph

- Bulatov studies finite Taylor algebras via three types of edges: semilattice, majority, and affine.
- In minimal Taylor algebras, we can define his edges more simply.

Definition

If A is minimal Taylor and $a, b \in A$, then (a, b) is an edge if there is a congruence θ on $Sg\{a, b\}$ s.t. $Sg\{a, b\}/\theta$ is isomorphic to either a two-element semilattice, a two element majority algebra, or an affine algebra.
Bulatov’s graph

Bulatov studies finite Taylor algebras via three types of edges: semilattice, majority, and affine.

In minimal Taylor algebras, we can define his edges more simply.

Definition
If \mathbb{A} is minimal Taylor and $a, b \in \mathbb{A}$, then (a, b) is an edge if there is a congruence θ on $Sg\{a, b\}$ s.t.

$$Sg\{a, b\}/\theta$$

is isomorphic to either a two-element semilattice, a two element majority algebra, or an affine algebra.
Connectivity

- **Theorem (Bulatov)**

 If A is minimal Taylor, then the associated graph is connected.
Connectivity

- **Theorem (Bulatov)**

 *If \mathbb{A} is minimal Taylor, then the associated graph is connected.***

- We can simplify the proof!
Connectivity

- **Theorem (Bulatov)**

 If \mathbb{A} is minimal Taylor, then the associated graph is connected.

- We can simplify the proof!
- If \mathbb{A} is a minimal counterexample:
 - the hypergraph of proper subalgebras must be disconnected,
 - \mathbb{A} is generated by two elements a, b, and
 - \mathbb{A} has no proper congruences.
Connectivity

- **Theorem (Bulatov)**

 If \mathbb{A} is minimal Taylor, then the associated graph is connected.

- We can simplify the proof!
- If \mathbb{A} is a minimal counterexample:
 - the hypergraph of proper subalgebras must be disconnected,
 - \mathbb{A} is generated by two elements $a, b,$ and
 - \mathbb{A} has no proper congruences.
- It’s not hard to show there must be an automorphism interchanging $a, b.$
Connectivity

- **Theorem (Bulatov)**

 If \(A \) is minimal Taylor, then the associated graph is connected.

- We can simplify the proof!
- If \(A \) is a minimal counterexample:
 - the hypergraph of proper subalgebras must be disconnected,
 - \(A \) is generated by two elements \(a, b \), and
 - \(A \) has no proper congruences.
- It’s not hard to show there must be an automorphism interchanging \(a, b \).
- Consider the binary relation \(D_{ab} \)!
Connectivity, ctd.

- Recall the definition of \mathcal{D}_{ab}:

$$
\mathcal{D}_{ab} = \left\{ \begin{bmatrix} c \\ d \\ c \end{bmatrix} \text{ s.t. } \begin{bmatrix} c \\ d \\ c \end{bmatrix} \in Sg_{A^3} \left\{ \begin{bmatrix} a \\ b \\ a \end{bmatrix}, \begin{bmatrix} a \\ b \\ a \end{bmatrix}, \begin{bmatrix} b \\ a \\ a \end{bmatrix} \right\} \right\}.
$$
Connectivity, ctd.

- Recall the definition of \mathbb{D}_{ab}:

$$
\mathbb{D}_{ab} = \left\{ \begin{bmatrix} c \\ d \end{bmatrix} \, \text{s.t.} \, \begin{bmatrix} c \\ d \end{bmatrix} \in Sg_{\mathbb{A}^3} \left\{ \begin{bmatrix} a \\ b \\ a \end{bmatrix}, \begin{bmatrix} a \\ b \\ a \end{bmatrix}, \begin{bmatrix} b \\ a \\ a \end{bmatrix} \right\} \right\}.
$$

- Have $\begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{D}_{ab}$, want to show that either $\begin{bmatrix} a \\ a \end{bmatrix} \in \mathbb{D}_{ab}$ or \mathbb{A} is affine.
Connectivity, ctd.

- Recall the definition of D_{ab}:

$$D_{ab} = \left\{ \begin{bmatrix} c \\ d \end{bmatrix} \text{ s.t. } \begin{bmatrix} c \\ d \\ c \end{bmatrix} \in S_{g_{A^3}} \left\{ \begin{bmatrix} a \\ a \\ b \end{bmatrix}, \begin{bmatrix} a \\ b \\ a \end{bmatrix}, \begin{bmatrix} b \\ a \\ a \end{bmatrix} \right\} \right\}.$$

- Have $\begin{bmatrix} a \\ b \end{bmatrix} \in D_{ab}$, want to show that either $\begin{bmatrix} a \\ a \end{bmatrix} \in D_{ab}$ or A is affine.

- The daisy chain terms give us $c, d, e \in A$ such that

$$\begin{bmatrix} c \\ d \end{bmatrix}, \begin{bmatrix} d \\ e \end{bmatrix} \in D_{ab}.$$
Connectivity, ctd.

- Recall the definition of \mathbb{D}_{ab}:

$$
\mathbb{D}_{ab} = \left\{ \begin{bmatrix} c \\ d \\ c \\ d \end{bmatrix} \text{ s.t. } \begin{bmatrix} c \\ d \\ c \\ d \end{bmatrix} \in Sg_{\mathbb{A}^{3}} \left\{ \begin{bmatrix} a \\ a \\ b \\ a \end{bmatrix}, \begin{bmatrix} a \\ b \\ a \\ a \end{bmatrix}, \begin{bmatrix} b \\ a \\ a \\ a \end{bmatrix} \right\} \right\}.
$$

- Have $\begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{D}_{ab}$, want to show that either $\begin{bmatrix} a \\ a \end{bmatrix} \in \mathbb{D}_{ab}$ or \mathbb{A} is affine.

- The daisy chain terms give us $c, d, e \in \mathbb{A}$ such that

$$
\begin{bmatrix} c \\ d \\ c \\ d \end{bmatrix}, \begin{bmatrix} d \\ e \\ d \\ e \end{bmatrix} \in \mathbb{D}_{ab}.
$$

- If both $Sg\{a, d\}$ and $Sg\{d, b\}$ are proper subalgebras, then the hypergraph of proper subalgebras is connected.
Connectivity, ctd.

- Recall the definition of D_{ab}:

$$D_{ab} = \left\{ \begin{bmatrix} c \\ d \end{bmatrix} \text{ s.t. } \begin{bmatrix} c \\ d \\ c \end{bmatrix} \in Sg_{\mathbb{A}^3} \left\{ \begin{bmatrix} a \\ b \\ a \end{bmatrix}, \begin{bmatrix} a \\ b \\ a \end{bmatrix}, \begin{bmatrix} b \\ a \\ a \end{bmatrix} \right\} \right\}. $$

- Have $\begin{bmatrix} a \\ b \end{bmatrix} \in D_{ab}$, want to show that either $\begin{bmatrix} a \\ a \end{bmatrix} \in D_{ab}$ or \mathbb{A} is affine.

- The daisy chain terms give us $c, d, e \in \mathbb{A}$ such that

$$\begin{bmatrix} c \\ d \end{bmatrix}, \begin{bmatrix} d \\ e \end{bmatrix} \in D_{ab}. $$

- If both $Sg\{a, d\}$ and $Sg\{d, b\}$ are proper subalgebras, then the hypergraph of proper subalgebras is connected.

- Then we can show D_{ab} is subdirect, and the proof flows naturally from here.
Can we do better?

- Can we get rid of congruences in the definition of the edges?
Can we do better?

- Can we get rid of congruences in the definition of the edges?
- Proposition (Bulatov)

 For every semilattice edge from a to b, there is a b' in the congruence class of b such that $\{a, b'\}$ is a two element semilattice algebra.

Similar statements fail for majority edges and affine edges.

There are minimal Taylor algebras A, B of size 4 which have congruences θ such that:

- A/θ is a two element majority algebra and B/θ is $\mathbb{Z}/2$ aff,
- each congruence class of θ is a copy of $\mathbb{Z}/2$ aff,
- every proper subalgebra of A or B is contained in a congruence class of θ,
- A has a 3-edge term and B is Mal’cev,
- θ is the center of A or B in the sense of commutator theory.
Can we do better?

» Can we get rid of congruences in the definition of the edges?

» Proposition (Bulatov)

For every semilattice edge from a to b, there is a b' in the congruence class of b such that $\{a, b'\}$ is a two element semilattice algebra.

» Similar statements fail for majority edges and affine edges.
Can we do better?

- Can we get rid of congruences in the definition of the edges?

- Proposition (Bulatov)

 For every semilattice edge from a to b, there is a b' in the congruence class of b such that \{a, b'\} is a two element semilattice algebra.

 - Similar statements fail for majority edges and affine edges.
 - There are minimal Taylor algebras A, B of size 4 which have congruences θ such that:
 - A/θ is a two element majority algebra and B/θ is $\mathbb{Z}/2^{\text{aff}}$,
 - each congruence class of θ is a copy of $\mathbb{Z}/2^{\text{aff}}$,
 - every proper subalgebra of A or B is contained in a congruence class of θ,
 - A has a 3-edge term and B is Mal’cev,
 - θ is the center of A or B in the sense of commutator theory.
Evil algebra #1

- $\mathbb{A} = (\{a, b, c, d\}, g)$, where g is an idempotent ternary symmetric operation.
Evil algebra #1

\(\mathbb{A} = (\{a, b, c, d\}, g) \), where \(g \) is an idempotent ternary symmetric operation.

\(g \) commutes with the cyclic permutation \(\sigma = (a \ b \ c \ d) \) and satisfies

\[
\begin{align*}
g(a, a, b) &= a, \\
g(a, a, c) &= c, \\
g(a, a, d) &= c, \\
g(a, b, c) &= c.
\end{align*}
\]
Evil algebra #1

- $\mathbb{A} = (\{a, b, c, d\}, g)$, where g is an idempotent ternary symmetric operation.
- g commutes with the cyclic permutation $\sigma = (a b c d)$ and satisfies

 \[
 g(a, a, b) = a, \\
 g(a, a, c) = c, \\
 g(a, a, d) = c, \\
 g(a, b, c) = c.
 \]

- θ corresponds to the partition $\{a, c\}, \{b, d\}$.
Evil algebra #1

- \(A = (\{a, b, c, d\}, g) \), where \(g \) is an idempotent ternary symmetric operation.

- \(g \) commutes with the cyclic permutation \(\sigma = (a \ b \ c \ d) \) and satisfies
 \[
 g(a, a, b) = a, \\
 g(a, a, c) = c, \\
 g(a, a, d) = c, \\
 g(a, b, c) = c.
 \]

- \(\theta \) corresponds to the partition \(\{a, c\} , \{b, d\} \).

- The algebra \(S = Sg_{\mathbb{A}^2} \{(a, b), (b, a)\} \) has a congruence \(\psi \) corresponding to the partition
 \[
 \left\{ \begin{bmatrix} a \\ b \end{bmatrix} , \begin{bmatrix} b \\ c \end{bmatrix} , \begin{bmatrix} c \\ d \end{bmatrix} , \begin{bmatrix} d \\ a \end{bmatrix} \right\} , \left\{ \begin{bmatrix} a \\ d \end{bmatrix} , \begin{bmatrix} b \\ a \end{bmatrix} , \begin{bmatrix} c \\ b \end{bmatrix} , \begin{bmatrix} d \\ c \end{bmatrix} \right\},
 \]
 such that \(S/\psi \) is isomorphic to \(\mathbb{Z}/2^{\text{aff}} \).
Evil algebra #2

\[\mathbb{B} = \{a, b, c, d\}, p \), where \(p \) is a Mal’cev operation.
Evil algebra #2

- $\mathcal{B} = (\{a, b, c, d\}, p)$, where p is a Mal’cev operation.
- p commutes with the permutations $\sigma = (a \ c)(b \ d)$ and $\tau = (a \ c)$.
Evil algebra #2

- $\mathcal{B} = (\{a, b, c, d\}, p)$, where p is a Mal’cev operation.
- p commutes with the permutations $\sigma = (a \ c)(b \ d)$ and $\tau = (a \ c)$.
- The polynomials $+_a = p(\cdot, a, \cdot), +_b = p(\cdot, b, \cdot)$ define abelian groups:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>d</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
<td>c</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>c</td>
<td>d</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

- θ corresponds to the partition $\{a, c\}, \{b, d\}$.
Evil algebra #2

- \(B = (\{a, b, c, d\}, p) \), where \(p \) is a Mal’cev operation.
- \(p \) commutes with the permutations \(\sigma = (a \ c)(b \ d) \) and \(\tau = (a \ c) \).
- The polynomials \(+_a = p(\cdot, a, \cdot) \), \(+_b = p(\cdot, b, \cdot) \) define abelian groups:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>d</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
<td>c</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>c</td>
<td>d</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

- \(\theta \) corresponds to the partition \(\{a, c\}, \{b, d\} \).
- The algebra \(S = Sg_{B^2}\{(a, b), (b, a)\} \) has a congruence \(\psi \) such that \(S/\psi \) is isomorphic to \(\mathbb{Z}/4^{aff} \).
Zhuk’s four cases

- **Theorem (Zhuk)**

 If \mathbb{A} is minimal Taylor, then at least one of the following holds:

 - \mathbb{A} has a proper binary absorbing subalgebra,
 - \mathbb{A} has a proper “center”,
 - \mathbb{A} has a nontrivial affine quotient, or
 - \mathbb{A} has a nontrivial polynomially complete quotient.
Zhuk’s four cases

- **Theorem (Zhuk)**

 If A is minimal Taylor, then at least one of the following holds:
 - A has a proper binary absorbing subalgebra,
 - A has a proper “center”,
 - A has a nontrivial affine quotient, or
 - A has a nontrivial polynomially complete quotient.

- **Definition**

 $C \leq A$ is a *center* of A if there exist
 - a binary-absorption-free Taylor algebra B and
 - a subdirect relation $R \leq_{sd} A \times B$, such that
 - $C = \left\{ c \in A \text{ s.t. } \forall b \in B, \begin{bmatrix} c \\ b \end{bmatrix} \in R \right\}$.
Zhuk’s four cases

▶ Theorem (Zhuk)

If A is minimal Taylor, then at least one of the following holds:

▶ A has a proper binary absorbing subalgebra,
▶ A has a proper “center”,
▶ A has a nontrivial affine quotient, or
▶ A has a nontrivial polynomially complete quotient.

▶ Definition

$C \leq A$ is a *center* of A if there exist

▶ a binary-absorption-free Taylor algebra B and
▶ a subdirect relation $R \leq_{sd} A \times B$, such that
▶ $C = \left\{ c \in A \text{ s.t. } \forall b \in B, \begin{bmatrix} c \end{bmatrix} \in R \right\}$.

▶ Theorem (Zhuk)

If C is a center of A, then C is a ternary absorbing subalgebra of A.
Centers and Daisy Chain terms

Theorem

If A is minimal Taylor and $M \in HSP(A)$ is the two element majority algebra on the domain $\{0, 1\}$, then the following are equivalent:

- C is a ternary absorbing subalgebra of A,
- there is a p-ary cyclic term c of A such that whenever $\#\{x_i \in C\} > \frac{p}{2}$, we have $c(x_1, \ldots, x_p) \in C$,
- the binary relation $R \subseteq A \times M$ given by

 $$R = (A \times \{0\}) \cup (C \times \{0, 1\})$$

 is a subalgebra of $A \times M$,
- every daisy chain term $w_i(x, y, z)$ witnesses the fact that C ternary absorbs A.
Centers produce majority quotients

- If C, D are centers, then for any daisy chain terms w_i, we must have

$$w_i(C, C, D), w_i(C, D, C), w_i(D, C, C) \subseteq C$$

and

$$w_i(C, D, D), w_i(D, C, D), w_i(D, D, C) \subseteq D,$$

so $C \cup D$ is a subalgebra of A.

Centers produce majority quotients

- If \(C, D \) are centers, then for any daisy chain terms \(w_i \), we must have

\[
\begin{align*}
 w_i(C, C, D), w_i(C, D, C), w_i(D, C, C) & \subseteq C \\
 w_i(C, D, D), w_i(D, C, D), w_i(D, D, C) & \subseteq D,
\end{align*}
\]

so \(C \cup D \) is a subalgebra of \(A \).

- If \(C \cap D = \emptyset \), then the equivalence relation \(\theta \) on \(C \cup D \) with parts \(C, D \) is preserved by each daisy chain term \(w_i \), and \((C \cup D)/\theta \) is a two element majority algebra.
Binary absorption is strong absorption

Theorem

If \mathbb{A} is minimal Taylor, then the following are equivalent:

- \mathbb{B} binary absorbs \mathbb{A},
- there exists a cyclic term c such that if any $x_i \in \mathbb{B}$, then $c(x_1, ..., x_p) \in \mathbb{B}$,
- the ternary relation $R = \{(x, y, z) \text{ s.t. } (x \not\in \mathbb{B}) \implies (y = z)\}$ is a subalgebra of \mathbb{A}^3,
- every term f of \mathbb{A} which depends on all its inputs is such that if any $x_i \in \mathbb{B}$, then $f(x_1, ..., x_n) \in \mathbb{B}$.
Minimal Taylor algebras generated by two elements

Theorem

If \(A \) is minimal Taylor and \(A = Sg\{a, b\} \), then the following are equivalent:

\[\begin{align*}
\text{B binary absorbs } A, \\
\text{A} = \text{B} \cup \{a, b\} \text{ and there is a congruence } \theta \text{ such that } \text{B is a congruence class of } \theta, \text{ and } A/\theta \text{ is a semilattice.}
\end{align*} \]
Minimal Taylor algebras generated by two elements

Theorem
If \mathbb{A} is minimal Taylor and $\mathbb{A} = \text{Sg}\{a, b\}$, then the following are equivalent:

1. \mathbb{B} binary absorbs \mathbb{A},
2. $\mathbb{A} = \mathbb{B} \cup \{a, b\}$ and there is a congruence θ such that \mathbb{B} is a congruence class of θ, and \mathbb{A}/θ is a semilattice.

Theorem
If \mathbb{A} is minimal Taylor and $\mathbb{A} = \text{Sg}\{a, b\}$, then \mathbb{A} is not polynomially complete.
Minimal Taylor algebras generated by two elements

▶ Theorem
If \mathbb{A} is minimal Taylor and $\mathbb{A} = \text{Sg}\{a,b\}$, then the following are equivalent:
- \mathbb{B} binary absorbs \mathbb{A},
- $\mathbb{A} = \mathbb{B} \cup \{a,b\}$ and there is a congruence θ such that \mathbb{B} is a congruence class of θ, and \mathbb{A}/θ is a semilattice.

▶ Theorem
If \mathbb{A} is minimal Taylor and $\mathbb{A} = \text{Sg}\{a,b\}$, then \mathbb{A} is not polynomially complete.

▶ Minimal Taylor algebras generated by two elements are nicer than general minimal Taylor algebras.
Minimal Taylor algebras generated by two elements

▶ Theorem
If A is minimal Taylor and $A = Sg\{a, b\}$, then the following are equivalent:
▶ B binary absorbs A,
▶ $A = B \cup \{a, b\}$ and there is a congruence θ such that B is a congruence class of θ, and A/θ is a semilattice.

▶ Theorem
If A is minimal Taylor and $A = Sg\{a, b\}$, then A is not polynomially complete.

▶ Minimal Taylor algebras generated by two elements are nicer than general minimal Taylor algebras.
▶ It’s good enough to understand such algebras.
Big conjecture

- Conjecture
 Suppose \mathbb{A} is minimal Taylor, generated by two elements a, b, and has no affine or semilattice quotient. Then each of a, b is contained in a proper ternary absorbing subalgebra of \mathbb{A}.
Big conjecture

- **Conjecture**

 Suppose \mathbb{A} is minimal Taylor, generated by two elements a, b, and has no affine or semilattice quotient. Then each of a, b is contained in a proper ternary absorbing subalgebra of \mathbb{A}.

- **Proposition**

 Suppose the conjecture holds. Then any daisy chain term w_i which is nontrivial on every affine algebra in $HS(\mathbb{A})$ generates $\text{Clo}(\mathbb{A})$. In particular, $\text{Clo}(\mathbb{A})$ is generated by a single ternary term.
Big conjecture

- **Conjecture**
 Suppose \mathbb{A} is minimal Taylor, generated by two elements a, b, and has no affine or semilattice quotient. Then each of a, b is contained in a proper ternary absorbing subalgebra of \mathbb{A}.

- **Proposition**
 Suppose the conjecture holds. Then any daisy chain term w_i which is nontrivial on every affine algebra in $HS(\mathbb{A})$ generates $\text{Clo}(\mathbb{A})$. In particular, $\text{Clo}(\mathbb{A})$ is generated by a single ternary term.

- **Theorem (Kearnes)**
 Suppose a minimal Taylor algebra has no semilattice edges and has its clone generated by a single ternary term. Then it has a 3-edge term.
Thank you for your attention.