More Combinatorial bijections.

- Recall \(\binom{n+k-1}{k} = \# \) of \(k \)-multisets of \([n]\) i.e. \(k \) element sets with repeated entries such as \([1,1,2,4,5,5]\) is a \(6 \)-multiset of \([5]\).

- Notation \(\binom{n+k-1}{k} = \binom{n}{k} \).

\[
\binom{n}{k-m} = \binom{k-1}{n-m} = \binom{k-1}{m-1}.
\]
Is there a formula for partial sums like

\[\sum_{k=0}^{m} \binom{n}{k} = ? \]

If \(m = n \) then we get \(2^n \) (Binomial Thm).

Not a 'simple' formula for general \(m, n \).

But,

\[\sum_{k=0}^{m} \binom{n}{k} = \binom{n+1}{m} \]

Proof: RHS = \# of \(m \)-multisets of \(\{n+1\} \).

(CS: condition on the number of times elements from \(\{n\} \) is chosen.)
If \(k \) total elements from \(\mathbb{C}_n \) is chosen (including multiplicity) then there are \(\binom{n}{k} \) of those.

The remaining \(m-k \) elements will be \(\text{"anti"} \).

So \(\sum_{k=0}^{m} \binom{n}{k} \) in total.

Inclusion-Exclusion with multiplicity

Problem: Given subsets \(A_1, ..., A_n \subseteq U \), let

\[N_m = \# \text{ of } x \in U \text{ s.t. } x \text{ appears in at least } m \text{ of the sets } A_1, ..., A_n. \]

\[N_i = \# \bigcup_{i \in I} A_i. \]
Then x contributes 0 to the RHS of (9).

Hope to prove this in a combinatorial way.

Suppose $x\in A_i$ does not belong to N_m and also

apart of $\bigcup_{1 \leq k \leq m} N_k^{(i)}$.

\[N_m = \bigcap_{1 \leq k \leq m} N_k^{(i)} \]

Let $A = \{ A_i : i \in \mathbb{N} \}$ for $\mathbb{N} \in \mathbb{N}$. \[A = \mathbb{N} \]
Suppose \(x \in \mathbb{U} \) belongs to the sets \(A_j \) for \(j \in T \) with \(|T| = m+j \) (Ts \(m+j \)).

Then \(x \) contributes once to \(\sum_{m+j} \) and contributes

\[
\leq \binom{k-1}{m-1} (-1)^{k-m} \binom{m+j}{k}
\]

to the RHS.

Have to show that

\[
\sum_{k=m}^{m+j} \binom{k-1}{m-1} (-1)^{k-m} \binom{m+j}{k} = 1 \quad \text{for} \quad j \geq 0.
\]

0. \(\binom{k-1}{m-1} = \frac{(m)}{k-m} \) \(\text{Reindex} \) \(k \leq k+m \) \(\text{get} \)
\[\sum_{k=0}^{j} \binom{m}{k} (-1)^{k} \binom{m+j}{j-k} = 1 \quad \text{for } j \geq 0. \]

Consider all pairs \((S, T)\) with \(S, T \subseteq \{m+j\}\) such that:

1. \(S \subseteq \{m\}\) and is a multiset.
2. \(T \subseteq \{m+j\}\) and is a subset.
3. \(|S| + |T| = j\).

\(E\) = all such pairs \((S, T)\) with \(|S|\) even.

\(O\) = \(\ldots\) with \(|S|\) odd.
$$|E| \leq \binom{m}{k} \binom{m+j}{j-k}$$

k even

$$|E| \leq \binom{m}{k} \binom{m+j}{j-k}$$

k odd

Want $|E|-|O|$

Consider map on pairs (S,T) as follows

Consider map on pairs (S,T) as follows

Suppose $\exists i \in [m]$ s.t. $i \in S \cup T$. Consider the

Suppose $\exists i \in [m]$ s.t. $i \in S \cup T$. Consider the

largest i. If $i \in T$ then send i to S to

largest i. If $i \in T$ then send i to S

get $(S \cup i \setminus S, T \setminus i)$. If $i \in T$ then $i \in S$

so send i to T to get $(S \setminus i \cup S, T \cup i)$.

so send i to T to get $(S \setminus i \cup S, T \cup i)$.

This map is an involution so long as SUT contains at least one element from \([m]\).

Map sends \(E \cup \{S\} \rightarrow 0 \cup \{S\}
\)

\(0 \cup \{\text{constraint}\} \rightarrow E \cup \{\text{constraint}\}\)

How many pairs \((S,T)\) do not contain at least

1 element from \([m]\).

Only 1 : \(S = \emptyset\) and \(T = \{m+1, \ldots, m+j\}\).

Only \((\emptyset, \{m+1, \ldots, m+j\}) \in E\) and so \(|E| = |0| + 1\).

Thus, \(|E| - |0| = 1\), as needed.
Show that \[\sum_{k=0}^{n} \binom{n}{k} \binom{k}{m} (-1)^k = (-1)^n \delta_{m,n} \]

where \(\delta_{m,n} = \begin{cases} 1 & \text{if } m = n \\ 0 & \text{otherwise} \end{cases} \).

- Consider pairs \((S,T)\) such that \(S, T \subseteq [n]\) with
 \(T \subseteq S\) and \(|T| = m\).

\[E = \{ \text{all pairs with } |S| \text{ even} \} \]

\[O = \{ \text{all pairs with } |S| \text{ odd} \} \]

We have \(|E| - |O| = \text{LHS of the identity.}\)
If \(m > n \) then there are no pairs.

If \(m = n \) then there is only one term, equals \((-)^n\).

Case \(m < n \).

Given \((s, t) \in x \in \mathbb{N} \mid t\) because \(t < n \).

Pick largest \(x \in \mathbb{N} \mid t\).

If \(x \in S \) then map \((s, t) \rightarrow (s \times x, t)\).

If \(x \notin S \) then map \((s, t) \rightarrow (s \times x^2, t)\).
This map is an involution from all pairs \((s,T)\) into themselves and it maps \(E \to O\) and \(O \to E\).

This is a bijection between \(E\) and \(O \Rightarrow\)

\(|E| = |O| \) as required.