Permutations: The number of ways to arrange n distinct objects is

$$n! = n(n-1)(n-2) \cdots 2 \cdot 1$$

- n choices for the first place, $(n-1)$ choices for the second, $(n-2)$ choices for the third, and so on.
- # of ways = product of all num. of choices.

$$n \ n! \ n-2 \ n-3 \ \cdots$$

- Permutations are also functions $\sigma: \{n\} \rightarrow \{n\}$ that are bijective (one to one and onto).
Combinations:

- How many ways are there to make an ordered list of \(k \) distinct elements from \(n \) elements?

\[h, (n-1), (n-2) \ldots (n-k+1) =: (n)_k = \binom{n}{k} \]

\(\Rightarrow \) 2nd choices \(\Rightarrow (n-1)_k \) ways to make the choice

1st choice for position 1

- How many ways are there to make an unordered choice of \(k \) distinct elements from \(\binom{n}{k} \)?

\(\# \) of ordered choices = \((\# \) of unordered choices) \(\times \) \(k! \)

Thus, \(\# \) of unordered choices = \(\frac{(n)_k}{k!} \) ways to order the list.
Binomial Coefficients

\[\binom{n}{k} = \frac{n!}{k!(n-k)!} \]

is called a binomial coefficient. Need \(0 \leq k \leq n\), but set \(\binom{n}{k} = 0\) if \(k > n\).

\(\binom{n}{k}\) = \# of \(k\)-element subsets of \([n]\) as unordered list are the same as subsets list are the same as subsets.

Note that \(\binom{n}{k}\) can be defined even if \(n\) is not a integer. \(\binom{z}{k} = \frac{z(z-1)\ldots(z-k+1)}{k!} \) for \(z \in \mathbb{C}\) and \(k \geq 0\) integer.

Set \(\binom{z}{k} = \frac{z(z-1)\ldots(z-k+1)}{k!} \) for \(z \in \mathbb{C}\) and \(k \geq 0\) integer.

This is called analytic continuation.
Pascal's Triangle
Binomial coefficients can be arranged in triangular form. How N'th triangle contains the numbers \(\binom{n}{k} \) where \(0 \leq k \leq n \). Many patterns!
Combinatorial identities

1) \(\binom{n}{k} = \binom{n}{n-k} \)

Proof: k-subsets of \([n]\) are in bijection with \((n-k)\)-subsets via complementation: \(S \) is a k-subset \(\iff \) \([n] \setminus S \) is a \((n-k)\)-subset.

2) \(\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \)

LHS = k-subsets of \([n]\).

RHS counts k-subsets by conditioning on whether \(n \) is included or not. If \(n \) is included then we must select a \((k-1)\)-subset from \([n-1]\) in \(\binom{n-1}{k-1} \) ways. Otherwise, select k-subset from \([n-1]\).
\[2) \binom{n}{0} + \binom{n+1}{1} + \ldots + \binom{n+k}{k} = \binom{n+k+1}{k} \quad \text{[hockey stick pattern]} \]

RHS: \# of ways to choose \(n+1\) people from a group of \(n+k+1\).
\[\binom{k}{k} = \binom{n+1}{n} \cdot \binom{h+k+1}{h} = \binom{n+k+1}{n+1} . \]

LHS: Condition on the label of the highest person picked. Suppose it is \(n+i\) for some \(k\).
Then there are \(n\) more people to be picked from \(n+i\) people with smaller label.
\# of ways = \(\binom{n+i}{n}\). These are mutually exclusive.
Total \# of ways = \(\sum_{i=0}^{k} \binom{n+i}{n} = \sum_{i=0}^{k} \binom{n+i}{i} \).
\[
(\binom{n}{0})^2 + (\binom{n}{1})^2 + \cdots + (\binom{n}{n})^2 = \binom{2n}{n}
\]

RHS: \# of ways to pick \(n \) people from \(2n \) people.

LHS: Partition the \(2n \) people into 2 groups of

\[n \in \{1, 2, \ldots, n\} \text{ and } \{n+1, \ldots, 2n\}\]

Condition on the \# of people chosen from 1st group.

Suppose it is \(k \) with \(0 \leq k \leq n \).

Then \(\binom{k}{k} \) ways to pick \(k \) people from 1st group.

Then \(\binom{n}{k-k} = \binom{k}{k} \) ways to pick remaining people from 2nd group.

Total = \(\sum_{k=0}^{n} \binom{k}{k}^2 \), as needed.
Multinomial coefficients

How many ways are there to arrange \(n \) distinct balls into \(r \) distinct boxes where box \(K \) has \(q_k \) balls?

\[
\frac{n!}{q_1!q_2!\cdots q_r!}
\]

\(q_1 + q_2 + \cdots + q_r = n \)

(\(\binom{n}{q_1} \)) ways to put \(q_1 \) balls in box 1

(\(\binom{n-a_1}{q_2} \)) ways to put \(q_2 \) balls in box 2 after insertion into box 1.

(\(\binom{n-a_1}{a_r} \)) ways to put \(a_r \) balls in box \(r \).

\(\cdots \binom{n-a_1-a_2-\cdots-a_{r-1}}{a_r} \) ways to put \(a_r \) balls in box \(r \).

\# of ways = \(\frac{n!}{q_1!q_2!\cdots q_r!} \)
Simplification gives
\[
\binom{n}{a_1 a_2 \ldots a_r} \frac{n!}{a_1! a_2! \cdots a_r!} = \frac{n!}{a_1! a_2! \cdots a_r!}
\]

\[
\frac{n!}{a_1! a_2! \cdots a_r!} = \binom{n}{a_1, \ldots, a_r} \text{ is the multinomial coefficient.}
\]
Binomial Thm:

\[(X+Y)^n = \sum_{k=0}^{n} \binom{n}{k} X^k Y^{n-k} \quad \forall x, y \in \mathbb{C}.
\]

Reality: \(x, y\) are commuting variables: \(xy = yx\).

Pr: The term \(X^k Y^{n-k}\) occurs by choosing \(k\) \(X\)'s from the \(n\)-fold product. There are \(\binom{n}{k}\) ways to choose which of the \(n\) terms will contribute the \(k\) \(X\)'s.
Alternate proof:

\[(1+x)^n = \# \text{ of length } n \text{ sequences where each element of the sequence is a number from } 1, \ldots, 1+x \quad (\text{assume } x \geq 0 \text{ integer})\]

Condition on the \# of occurrences of \(1+x\) in the sequence. Suppose it equals \(n-k\) for some \(k \leq n\).

- Choose the places for \((1+x)\) in \(\binom{n}{n-k} = \binom{n}{k}\) ways.
- Choose the places for \(1, \ldots, x\). There are \(x^k\) of those numbers.

The remaining sequence has length \(k\) and consists of \(1\)'s.

Thus, \(\sum_{k=0}^{n} \binom{n}{k} x^k = (1+x)^n\).
Now, \((x^n)^k = \sum_{k=0}^{n} \binom{n}{k} x^k\) is a polynomial identity of degree \(n\), true for all \(x > 0\) and integer. It follows that this holds for all \(x > 0\).

\[X = \frac{a}{b} \quad \text{and multiply by } b^n, \text{ we get} \]

\[(bta)^n = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k}, \quad a, b > 0. \]
Multinomial Thm.:

\[(X_1 + X_2 + \cdots + X_r)^n \leq \binom{n}{a_1, a_2, \ldots, a_r} X_1^{a_1} X_2^{a_2} \cdots X_r^{a_r},\]

where \(a_1 + a_2 + \cdots + a_r = n\) and \(a_i \geq 0\).

Proof: Thus as before. Use the combinatorial meaning of multinomial coefficient.

Ex.: Do it using the alternate proof idea.