18.211 Midterm Exam Solutions

1) Provide the combinatorial definition of each of the following terms.
 • The binomial coefficient \(\binom{n}{k} \): It is the number of ways to choose a \(k \)-element subset from an \(n \)-element set.
 • The Stirling number of the 2nd kind \(S(n, k) \): It is the number of ways to partition an \(n \)-element set into \(k \) non-empty subsets.
 • The \(n \)-th Fibonacci number \(F_n \): It is the number of ways to tile a \(1 \times (n - 1) \) board using squares and dominoes (assuming that \(n \geq 1 \)).

2) How many arrangements of TALLAHASSEE are there such that the first L and first the S are adjacent in either order? For example, TALSASHALEE and TAASLASHALEE are valid arrangements but TALASSHALEE is not.

Solution: There are 2 Ls, 2 Ss, 3 As, 2 Es, 1 H and 1 T in the word. Since the number of Ls and Ss are the same, the number of arrangements where the first L and S appear together as LS equals the number of arrangements where the first L ans S appear together as SL.

We now count arrangements of the former type. There are two ways to arrange the remaining L and S after the first LS. So we have the template

\[\wedge_1 LS \wedge_2 X \wedge_3 Y \wedge, \quad \text{where} \quad X Y = L S \text{ or } S L. \]

The remaining 7 letters can be inserted into the 4 wedges in

\[\binom{7 + 4 - 1}{4 - 1} \]

ways.

These can then be arranged in

\[\frac{7!}{3!2!} \]

ways.

So the total number of valid arrangements is

\[2 \cdot 2 \cdot \binom{10}{3} \cdot \frac{7!}{3!2!} \cdot \]

3) A restaurant has 4 identical circular tables. How many ways are there for 20 customers to sit around the tables if there are 10 people on one table, 4 on another, and 3 each on the remaining two tables?

Solution: This counts the number of permutations of \([20]\) whose cycle type is one 10-cycle, one 4-cycle and two 3-cycles. It equals

\[\frac{20!}{2! \cdot 10 \cdot 4 \cdot 3^2}. \]
4) Give a combinatorial proof of the identity

\[\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^2. \]

Solution: The LHS counts the number of ways to choose \(n \) people from a set of \(2n \) people. On the RHS this is counted by conditioning on the number of people what are chosen from the first \(n \) set of persons. Say this number equals \(k \) for \(0 \leq k \leq n \). Then there are \(\binom{n}{k} \) ways to choose the \(k \) persons from the first \(n \) and \(\binom{n}{n-k} = \binom{n}{k} \) ways to choose the remaining \(n - k \) persons from the last \(n \). By the product and sum rules the total number of ways to choose \(n \) people from \(2n \) equals the RHS.