TODAY

• Exponential generating functions
• Combinatorial theory: exponential formula
• Following chap 3.1–3.4 of text
 'generating functionology'
Exponential generating functions

- Given sequence of numbers \(\{a_n\}_{n \geq 0} \), its efg is
 \[
 A(x) = \sum_{n \geq 0} a_n \frac{x^n}{n!}
 \]
 Notation: \(\{a_n\} \leftrightarrow A(x) \).

- Egfs can be used to solve many counting problems.
 Old: set partitions & permutation cycles
 New: labelled graphs
- It requires developing a centralized theory.
Combinatorial interpretation of multiplying e.g.f.s.

\[A(x) = \sum_{n \geq 0} a_n \frac{x^n}{n!} \xrightarrow{\text{e.g.f.}} \{a_n\}_{n \geq 0} \]

\[B(x) = \sum_{n \geq 0} b_n \frac{x^n}{n!} \xrightarrow{\text{e.g.f.}} \{b_n\}_{n \geq 0} \]

From before: \(A(x) \cdot B(x) = \sum_{n \geq 0} c_n x^n \), where

\[c_n = \sum_{k=0}^{n} \frac{a_k b_{n-k}}{k! (n-k)!} = \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} a_k b_{n-k} \]

\[\downarrow \text{combinatorial} \]
We get the following theorem.

Thm: If $A(x) \leftrightarrow \{a_n x^n \}_{n=0}^{\infty}$ and $B(x) \leftrightarrow \{b_n x^n \}_{n=0}^{\infty}$
then $A(x) \cdot B(x) \leftrightarrow \left\{ \sum_{k=0}^{n} \binom{n}{k} a_k b_{n-k} \right\}$.

Combinatorial meaning

Suppose $a_n = \#$ of objects of type A having size n.
$b_n = \#$ of objects of type B having size n.

- Do the experiment: **Partition** \mathbb{N} into two sets (S, T)
 and build type A object on S (with size $|S|$) and type B
object on T [with size $1T1$].

- **Ques:** How many ways are there of doing this experiment?

- **Ans:** Condition on $1S1$ and $1T1$. Say $1S1 = k$, so then $1T1 = n-k$ [they partition n].

- Given $1S1 = k$, $1T1 = n-k$: Build type A object on S in a_k ways. Then type B object on T in b_{n-k} ways. Everything is independent.

- So # ways given $1S1 = k$ & $1T1 = n-k$: $a_k b_{n-k}$.
The total number of ways to do experiment is

\[\sum_{k=0}^{n} \binom{n}{k} a_k b_{n-k} \]

Conditioning \(k=0 \) \(\uparrow \) choose \(S \) build objects

This provides a combinatorial interpretation of \(A(x), B(x) \).

And it generalizes....
Suppose $A_1(x), A_2(x), \ldots, A_K(x)$ are all egfs:

$$A_j(x) = \sum_{n \geq 0} a^{(j)}_n \frac{x^n}{n!},$$
given $a^{(j)}_n = \# \text{ of objects of type } j \text{ having size } n$.

Let $P(x) = A_1(x) \cdot A_2(x) \cdots A_K(x)$ and write

$$P(x) = \sum_{n \geq 0} P_n \frac{x^n}{n!} \xrightarrow{\text{egfs}} \{P_n\}.$$

Then P_n counts the number of ways to do following experiment.
Partition \([n]\) into \(k\) ordered subsets \((S_1, \ldots, S_k)\).

Eg. \((\{1,2,3\}, \{3\}, \{4,5\}) \neq (\{3,3\}, \{1,2,3\}, \{4,5\})\)

are two different partitions of \([5]\) into 3 ordered sets.

- Build an object of type \(j\) on subset \(S_j\) \(1 \leq j \leq k\).

 This can be done in \(a_{S_j}\) ways and object has size \(|S_j|\).

- Put these objects together to make an ordered list of \(k\) objects, one of each type \(j\).
Counting P_n:

1. Conditioning on the sizes of the subsets S_1, \ldots, S_k.
 Suppose $|S_j|=S_j$. Then (S_1, \ldots, S_k) is a composition of n:

 $S_1 + S_2 + \ldots + S_k = n$ with $S_j \geq 0$ integer.

2. Given composition (S_1, \ldots, S_k), # of ordered partitions of $[n]$ with
 $|S_j|=S_j$ is the multinomial coefficient

 \[
 \binom{n}{S_1, S_2, \ldots, S_k}
 \]

 [Recall we solved this in Lecture 4].
Given ordered partition \((S_1, \ldots, S_k)\) of \(\mathbb{N}\), the number of ways to build an object is

\[
\prod_{j=1}^{k} a_{S_j}^{(i)} \quad \text{[By independence]}
\]

So,

\[
P_n = \sum_{(S_1, \ldots, S_k) \text{ compositions}} \binom{n}{S_1, \ldots, S_k} a_{S_1}^{(1)} \cdots a_{S_k}^{(k)}
\]

Choose ordered partition of given sizes

Build objects
By induction of the multiplication thm on slide 4, one can show the following.

Egf multiplication Thm: Let A_1, \ldots, A_K be egfs with $A_j \leftrightarrow \{a_{jn} \}_{n \geq 0}$. Then

$$P(x) = A_1(x) \cdots A_K(x) \leftrightarrow \{p_{jn} \}_{n \geq 0}$$

with

$$P_n = \sum_{(S_1, \ldots, S_K) \in \mathbb{N}^K} \binom{n}{S_1, \ldots, S_K} a_1^{S_1} \cdots a_K^{S_K},$$

where $S_1 + \cdots + S_K = n$ and $S_j \geq 0$ are integers.
What is so good about this?

- To solve a comb. prob. of type , use egfs to write p_n as a product of simpler egfs. Then read off coefficients.

Example: How many ways are there to divide a class of n students into 3 groups labelled 1, 2, and 3?

Soln: Divide $\binom{n}{2}$ into an ordered partition (S_1, S_2, S_3). 2 students

Build a group on students from each S_j. 3 groups
So let \(A_1, A_2, A_3 \) be the cdfs of

\[
A_j \left(\frac{e^{x}}{n} \right) \leq \# \text{ of ways to make a group of } n \text{ students from n} \]n

\[
= \sum_{j=0}^{n} 13^{n-0} = \frac{e^{x}}{n!} = e^{x}
\]

Want \(P_n \), where \(P(x) = \frac{e^{x}}{n!} \).

\[
P(x) = A_1(x) \cdot A_2(x) \cdot A_3(x) = e^{3x}
\]

So \(p_n = 3^n \) since \(e^{3x} = \sum_{n=0}^{\infty} \frac{3^n x^n}{n!} \).
The Exponential formula [Building Hands from Decks]

- Have a sequence $\{d_n\}_{n=0}^\infty$.

 d_n = # of decks of size n.

 Want to make a hand:

 - Partition $[n]$ into K subsets $\{S_1, S_2, \ldots, S_k\}$.

 Not ordered.

 - Build a deck of size $S_j = |S_j|$ on set S_j.

 Weave them together to make a hand.
\(h(n,k) \): \# of hands of size \(n \) weaved with \(k \) decks (that is, \(\{u\} \) is partitioned into \(k \) subsets as above).

\[
\text{Thm: } \sum_{n>0} h(n,k) \frac{x^n}{n!} = \frac{D(x)^k}{k!}, \text{ where}
\]

\[
D(x) = \sum_{n>0} d(n) \frac{x^n}{n!} \xrightarrow{\text{egf}} \sum_{n>0} d(n) 3^n x^n.
\]

That is, \(\{ h(n,k) \}_{n>0} \xrightarrow{\text{egf}} \frac{D(x)^k}{k!} \).