
FALL 2022 LEARNING SEMINAR: INTRODUCTION TO IWASAWA THEORY

MURILO CORATO ZANARELLA
November 21, 2022

1. What is Iwasawa theory?

1.1. Inspiration from function fields. Let X be a smooth projective variety over Fp. Its zeta function was originally

defined as

ζ(X, s) = exp

∑
m≥1

#X(Fpm)

m
p−ms

 .

To prove the easy parts of the Weil conjecture, one writes X(Fpm) = X(Fp)
Frobm=1, and rewrites this using Grothendieck–

Lefschetz as

#X(Fpm) =
∑
k≥0

(−1)ktr
(
Frobm,∗ | Hk

èt(XFp
,Ql)

)
and thus

ζ(X, s) = exp

∑
k≥0

(−1)ktr

∑
m≥1

1

m
Frobmp−ms | Hk

èt(XFp
,Ql)

 =
∏
k≥0

det
(
1− Frob · p−s | Hk

èt(XFp
,Ql)

)(−1)k+1

.

That is,

ζ(X, s) =
∏
k≥0

char
(
Frob · T | Hk

èt(XFp
,Ql)

)(−1)k+1

|T=p−s .

So, very roughly, we see some extra structure when we look at all the #X(Fpm) together. For example, the #X(Fpm)

must satisfy a recurrence relation!

1.2. Iwasawa’s idea. Now imagine we want to replace the variety X above by a number field F. Instead of X(Fp), we

should have some other interesting arithmetic quantity. Iwasawa’s original investigations were about Cl(F ), so let’s take that

as the analogue.

For X(Fpm), we can think of this as the rational points of XFpm
. If X corresponds to F, maybe XFpm

corresponds to a

finite extension Fn of F. But what should be this tower of number fields? The Galois group Gal(Fp/Fp) is Ẑ =
∏

p Zp. It

turns out it will be easier, instead, to focus on one of the Zp components.

Definition 1.1. A Zd
p-extension of a number field F is an infinite Galois extension F∞ with Gal(F∞/F ) ≃ Zd

p. Concretely,

this is a tower of number fields Fn where Gal(Fn/F ) ≃ (Z/pnZ)d.

Remark 1.2. Leopoldt’s conjecture for a number field F and a prime p is equivalent to1: if d is the largest positive integer

such that there exist a Zd
p extension of F, then d = 1+ r2(F ), where r2(F ) is the number of complex places of F. Leopoldt’s

conjecture is known for abelian extensions of Q and abelian extensions of a quadratic imaginary field.

Example 1.3. If F = Q, there is a unique Zp-extension, contained inside the tower of cyclotomic fields Q(µpn).

1This is explained in [Was97, Theorem 13.4]
1
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Example 1.4. If F = K is a quadratic imaginary field, There is a unique Z2
p-extension K∞. Complex conjugation acts on

Gal(K∞/K), with eigencomponents Gal(Kcycl
∞ /K) and Gal(Kanti

∞ /K). Of course, Kcycl
∞ is contained in the tower K(µpn).

Kanti
∞ is the unique Zp-extension contained in the tower of ring class fields of p-power conductor of K.

For concreteness, let’s focus our attention on the cyclotomic Zp-extension. It is contained inside the tower Kn := Q(µpn+1),

say Fn ⊆ Kn for n ≥ 0. So F0 = Q and K0 = Q(µp).

If we want an analogue of the zeta function ζX , we need to somehow assemble the groups Cl(Kn) together. It turns out

that the groups Cl(Kn) do not behave well in families, but their p-primary parts do. So denote

Xn := Cl(Kn)[p
∞].

This is a Zp[Gal(Kn/Q)]-module.

Definition 1.5. We let X∞ := lim←−n
Xn with transition maps given by the norm map NmKn+1/Kn

: Cl(Kn+1)[p
∞] →

Cl(Kn)[p
∞]. This is a ZpJGal(K∞/Q)K-module. Call Λcycl := ZpJGal(K∞/Q)K.

Now note that

Gal(K∞/Q) = lim←−
n

Gal(Kn/Q) = lim←−
n

(Z/pn+1Z)× = Z×
p .

Assuming p > 2 for simplicity, we can choose a topological generator γ ∈ (1 + pZp)
× log−−→∼ Zp (for example γ = 1 + p), we

identify

Gal(K∞/Q) = ∆× Zp

where ∆ = (Z/pZ)× ω
↪−→ Z×

p for ω the Teichmüller character.

Definition 1.6. Let Λ := ZpJT K denote the Iwasawa algebra. It is a complete regular local ring of dimension 2 with maximal

ideal m = (p, T ).

Proposition 1.7. Λcycl ≃ Λ[∆] where T ∈ Λ is identified with γ − 1.2

Proof. We just need to show that ZpJGal(F∞/Q)K ≃ Λ. The problem is seeing that the map and its inverse are well-defined

and continuous. That is, we need to see that

(T + 1)p
n

→ 1 in Λ

and that

(γ − 1)n → 0 in ZpJGal(F∞/Q)K.

The first one simply follows from (T + 1)p
n − 1 ∈ mmin1≤a≤pn (a+νp(p

n

a )). Since νp
(
pn

a

)
= n − νp(a) for 1 ≤ a ≤ pn, we have

(T + 1)p
n − 1 ∈ mn+1.

For the second one, we need to show that for any m ≥ 0, we have (γ − 1)n mod (γpm − 1) goes to 0 in Zp[Gal(Fm/Q)].

Write n = a0 + a1p+ · · ·+ akp
k in base p. Then

(γ − 1)n =

k∏
i=0

(γpi

− 1 + pi(· · · ))ai ≡
m−1∏
i=0

(γpi

− 1 + pi(· · · ))ai ·
k∏

i=m

(pi(· · · ))ai .

So (γ − 1)n mod (γpm − 1) is divisible by p
∑

i≥m iai , and
∑

i≥m iai →∞ as n→∞. □

2In general, the completed group algebra of a Zd
p extension is identified with ZpJT1, . . . , TdK in a similar way.
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Roughly speaking, the goal of Iwasawa theory in this case is to:

(1) Understand the structure of X∞ as a Λcycl = Λ[∆]-module.

(2) “Descend” this information to the finite level modules Xn.

2. The Iwasawa algebra
3 We can think of Λ = ZpJT K as the ring of functions of the closed p-adic unit disk. Such a function can only have finitely

many zeroes, that is, we have:

Theorem 2.1 (p-adic Weierstraß preparation). Any element f(T ) ∈ Λ can be uniquely written as

f(T ) = pµλ(T )u(T )

where µ ≥ 0, u(T ) ∈ Λ× and λ(T ) ∈ Zp[T ] is a distinguished polynomial, i.e. of the form

λ(T ) = Tn + an−1T
n−1 + · · ·+ a1T + a0 where p | ai.

We call µ the µ-invariant of f, and deg λ the λ-invariant of f.

In particular, Λ is a UFD. Its height 1 prime ideals are simply (p) and (f(T )) for f irreducible distinguished polynomials.

Hence all the localizations Λp at height 1 prime ideals are DVRs.4

Definition 2.2. A Λ-module M is pseudo-null5 if it is annihilated by some power of m. A pseudo-isomorphism is a morphism

M1 →M2 with pseudo-null kernel and cokernel.

Remark 2.3. If there is a pseudo-isomorphism M1 →M2, it is not true that there must be a pseudo-isomorphism M2 →M1.

But this is true if M1 and M2 are finitely generated torsion Λ-modules, where pseudo-isomorphism gives an equivalence

relation.

We note that a Λ-module M has finite cardinality if and only if it is finitely generated and pseudo-null. We have the

following analogue of the structure theorem for finitely generated modules over PIDs.6

Theorem 2.4. Let M be a finitely generated Λ-module. Then there is a pseudo-isomorphism

M → Λr ⊕
⊕
i

Λ/fei
i Λ

for some r ≥ 0 and fi are finitely many irreducible elements. r is determined by M and is additive on exact sequences. If

r = 0, then fi and ei are uniquely determined.

We define

Definition 2.5. For M a finitely generated torsion Λ-module, we define its characteristic ideal Ch(M) =
∏

p p
lengthΛp

M⊗ΛΛp

3[Was97, Section 13.2] or [Sha, Section 2.4] contain proofs for the statements in this section.
4More generally, ZpJT1, . . . , TnK is still a Krull domain, a certain higher dimension generalization of Dedekind domains
5A module over a Krull domain is said to be pseudo-null if its annihilator ideal has height ≥ 2.
6This also holds over Krull domains, although it is not true that pseudo-null is the same as finite cardinality.
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By definition, the characteristic ideal is multiplicative in exact sequences of finitely generated torsion Λ-modules. Moreover,

for M finitely generated torsion, M is pseudo-null exactly if Ch(M) = Λ. Thus

Proposition 2.6. If M →
⊕

i Λ/f
ei
i as above is a pseudo isomorphism, then Ch(M) = (

∏
i f

ei
i ) .

3. The descent procedure

Let’s now come back to the case that Xn = Cl(Kn)[p
∞] for Kn = Q(µpn+1). We formed X∞ = lim←−n

Xn under norms. How

can we hope to recover Xn? By the definition of X∞, we have a natural map

X∞ → Xn.

Proposition 3.1. The natural map X∞ → Xn is surjective.

Proof. In fact, we will prove that NmKn+1/Kn
: Xn+1 → Xn is surjective for all n ≥ 0. This will rely on the fact that p is

totally ramified in Kn+1.
7 Let Ln denote the maximal unramified abelian p-extension of Kn. Then we have the diagram,

where labels denote the behaviour of primes above p.

Ln+1

LnKn+1

Kn+1

Ln

Kn

tot.ram

unr

By ramification reasons, we must have Ln ∩Kn+1 = Kn. Thus

Xn+1 = Gal(Ln+1/Kn+1) ↠ Gal(LnKn+1/Kn+1) = Gal(Ln/Kn) = Xn

and such map is identified with NmKn+1/Kn
: Xn+1 → Xn. □

Proposition 3.2 ([Was97, Proposition 13.22]). We have Xn = X∞/νnX∞ where

νn := (1 + T )p
n

− 1 ∈ Λ.

Proof. Recall that 1 + T = γ, and thus α := 1 + νn is a topological generator of Gal(K∞/Kn).

7This is not true for all Zp extensions. For instance, it is not true for Kanti
∞ /K for a quadratic imaginary field K.
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Consider the diagram as in the previous proof

L∞

LnK∞

K∞

Ln

Kn

tot.ram

unr

Then G := Gal(L∞/Kn) = X∞⋊̂⟨α⟩ for a choice of lift of α. Ln is the maximal unramified abelian subextension of L∞/Kn,

so

Xn = Gal(Ln/Kn) = (X∞⋊̂⟨α⟩)/([G,G], α) = X∞/(g ∼ α · g : g ∈ X∞) = X∞/νnX∞,

as α−1gαg−1 ∈ [G,G] and thus we must have α · g = α−1gα ∼ g. □

Corollary 3.3. X∞ is a finite generated torsion Λ-module.

Proof. As X0/pX0 = X∞/mX∞ is finite, we conclude that X∞ is a finitely generated Λ-module by Nakayama. It is also

Λ-torsion as X0 is finite. □

Now given χ = ωi a power of the Teichmüller character, assume that we had a pseudo-isomorphism Xχ
∞ →

⊕
Λ/fi. Then

we can consider the diagram
Xχ

∞
⊕

Λ/fi

Xχ
∞

⊕
Λ/fi

·νn

to try to compare Xχ
n = Xχ

∞/νnX
χ
∞ and

⊕
Λ/(fi, νn). Following this, one can prove

Lemma 3.4 ([Was97, Theorem 13.13]). If X is a finitely generated torsion Λ-module with X/νnX finite for all n ≥ 0, then

there is n0 ≥ 0 and c ∈ Z such that

#X/νnX = pnp
µ+nλ+c for all n ≥ n0,

where µ, λ are the invariants of Ch(X).

But often we can be more precise than that. The main issue for the ambiguity in the lemma above is that X →
⊕

Λ/fi

in general can have both a kernel and cokernel. But fortunately, often for the modules in Iwasawa theory the kernel must be

0. For example:

Proposition 3.5. Xχ
∞ has no nonzero pseudo-null submodules.

Proof. If it did contain a nonzero pseudo-null submodule Y, then mkY = 0 for some k. So it suffices to prove that if Y ⊆ Xχ
∞

is a submodule with mY = 0, then Y = 0. If c = (cn)n≥0 ∈ Y, then pc = 0, and thus cn ∈ Cl(Kn)[p] for all n. As Tc = 0, we

also have (γ − 1)c = 0 for any γ ∈ Gal(K∞/K0). So cn ∈ Cl(Kn)[p]
GK0 But then cn = NmKn+1/Kn

cn+1 = p · cn+1 = 0 for all

n ≥ 0. □
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Corollary 3.6. We have #Xχ
n =

∏
i #Λ/(fi, νn). In particular, #Xχ

0 = #Zp/Ch(X
χ
∞)(0).

Proof. This follows from applying the snake lemma to

0 Xχ
∞

⊕
i Λ/fi coker 0

0 Xχ
∞

⊕
i Λ/fi coker 0

·νn ·νn ·νn

Since Xχ
n is finite, the Snake lemma implies that Λ/(fi, νn) must have finite cardinality. This means that fi and νn are

coprime, and hence that ker(Λ/fi
·νn−−→ Λ/fi) = 0. Now the claim follows from the Snake lemma by noting that coker[νn] and

coker/νn have the same cardinality as coker has finite cardinality. □

Recall that we should have

Cl(Q(µp))[p
∞]χ =


0 if χ = ω,

|L(0, χ−1)|p if χ is odd and χ ̸= ω,

|(O×
Q(µp)+

/C)χ|p if χ is even.

We proved this for χ even using Euler systems, but historically it was first deduced from Mazur–Wiles proof of:

Conjecture 3.7 (Iwasawa Main Conjecture). Let En denote the units of K+
n that are congruent to 1 modulo the prime above

p. Let Cn ⊆ En be the subset of cyclotomic units. Denote E∞, C∞ their limits under the norm map. For χ even nontrivial,

denote also L χ
KL ∈ Λ the Kubota–Leopoldt p-adic L function for χ. Then for χ ̸= ω0, ω1, we have

Ch(Xχ
∞) =

 (L ωχ−1

KL ) if χ is odd,

Ch(E∞/C∞)χ if χ is even.

Here, for χ even nontrivial, the Kubota–Leopoldt p-adic L-function is the unique element L χ
KL ∈ Λ such that ϵncycl(L

χ
KL) =

L∗(n, χωn−1) for all n ≤ 0. For an explicit construction of element, see [Was97, Theorem 7.10]. We will later give another

way to construct this.

In fact, the Euler system argument we gave can be adapted to prove the above conjecture when χ is even: see [Was97,

Section 15] for details. We will explain how, in fact, the two parts of the main conjecture are equivalent. This is often

called the reflection theorem in this classical context. We will see next week how this is a particular case of a more general

philosophy connecting Euler systems and Iwasawa main conjectures.

To build up for the proof of the reflection theorem, we will reinterpret the modules we have been considering in terms of

Selmer groups.

4. In terms of Selmer groups

Suppose we have a p-adic representation V with a GK-stable lattice Λ. Denote W := V/Λ. From the exact sequence

0→ Λ→ V →W → 0, we have for a place v

H1(Kv,Λ)
α−→ H1(Kv, V )

β−→ H1(Kv,W ).
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A Selmer structure on H1
L(Kv, V ) can be propagated to H1(Kv,Λ) and H1(Kv,W ) simply by defining

H1
L(Kv,Λ) := α−1(H1

L(Kv, V )), H1
L(Kv,W ) := β(H1

L(Kv, V )).

We will look mostly at H1
L(K,W ). Recall from Gefei’s talk

Proposition 4.1. The Kummer map induces an isomorphism O×
K ⊗ Qp

∼−→ H1
f (K,Qp(1)). For an elliptic curve E/K, the

Kummer map E(K)⊗Qp → H1
f (K,VpE) is an isomorphism if and only if X(E/K)[p∞] is finite.

But in fact, we actually have

Proposition 4.2. The inverse limit of the finite level Kummer maps identify O×
K ⊗Zp

∼−→ H1
f (K,Zp(1)). The direct limit of

the finite level Kummer map fits into an exact sequence

0→ O×
K ⊗Qp/Zp → H1

f (K,Qp/Zp(1))→ Cl(K)[p∞]→ 0.

Similarly, if E is an elliptic curve over K, then the natural map E(K)⊗Zp ↪→ H1
f (K,TpE) is an isomorphism iff X(E/K)[p∞]

is finite, and we also have that H1
f (K,E[p∞]) = Selp∞(E/K) fits into the exact sequence

0→ E(K)⊗Qp/Zp → H1
f (K,E[p∞])→X(E/K)[p∞]→ 0.

Let’s also look at the trivial representation Qp. Since its weight is 0, the Bloch–Kato conditions are unramified everywhere.

The propagations to Zp and Qp/Zp can be checked to also be just the unramified cohomology. Thus

H1
f (K,Qp) = H1

f (K,Zp) = 0, H1
f (K,Qp/Zp) = Hom(Cl(K),Qp/Zp).

So X∞ is identified with

Hom

(
lim−→
n

H1
f (Kn,Qp/Zp),Qp/Zp

)
,

where the transition maps are simply the restriction.

Following Greenberg, we an give a different description of this direct limit.

Proposition 4.3. Let V be a p-adic representation of GK unramified away from Σ with GK-stable lattice T. Denote W = V/T.

Let K∞/K be an abelian tower of finite extensions Kn/K unramified away from Σ. Let ΛK∞/K := ZpJGal(K∞/K)K, and

Λ∨
K∞/K

:= Hom(ΛK∞/K ,Qp/Zp) as GK-modules, and Λcycl-action by (λ · f)(x) = f(xλ). Let TT := T ⊗Zp
ΛK∞/K and

WT := T ⊗Zp
Λ∨
K∞/K . Then

lim←−
n

H1(KΣ/Kn, T ) = H1(KΣ/K,TT ) and lim−→
n

H1(KΣ/Kn,W ) = H1(KΣ/K,WT ).

Proof. We only prove the second equality, since the first is analogous.

By Shapiro’s lemma, we have H1(KΣ/Kn,W ) = H1(KΣ/K, IndGK

GKn
W ). So It suffices to see that lim−→n

IndGK

GKn
W = W as

GK-modules. We have

IndGK

GKn
W = {f : GK →W : f(σx) = f(x)σ for x ∈ GK , σ ∈ GKn

}

and so

lim−→
n

IndGK

GKn
W = Hom(ΛK∞/K ,W )
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which is WT as W = T ⊗Zp Qp/Zp. □

One can define Selmer structures on these cohomology groups by the inverse/direct limit of the Bloch–Kato local condi-

tions.8 Then we indeed have H1
f (K,TT ) = lim←−H1

f (Kn, T ) and H1
f (K,WT ) = lim−→H1

f (Kn,W ).

Definition 4.4. We denote Sel(T ) = H1
f (Q,TT ), S(T ) = H1

f (Q,WT ) and X(T ) = Hom(S(T ),Qp/Zp) when the extension

K∞/K is implied.

Example 4.5. For T = Zp and T = Zp(1), we have

Sel(Zp) = 0, Sel(Zp(1)) = lim←−
n

(O×
Kn
⊗ Zp), X(Zp) = lim←−

n

Cl(Kn)[p
∞],

and X(Zp(1)) fits in the exact sequence

0→

(
lim−→
n

Cl(Kn)[p
∞]

)∨

→ X(Zp(1))→

(
lim−→
n

(O×
Kn
⊗ Zp)

)∨

→ 0

5. Reflection theorem

Let’s return to the case Kn = Q(µpn).

5.1. Local conditions. We think of Λcycl as a p-adic interpolation of the Tate twists Zp(k). Indeed, we have GQ-equivariant

specializations spk : Λ
cycl → Zp(k) given by g 7→ ϵkcycl(g). So we note the following quite confusing fact:

Proposition 5.1. H1
f,{p}(Q,TZp(1)) = H1

f,{p}(Q,TZp
)⊗ϵ−1

cycl as Λcycl-modules. Similarly, H1
f,{p}(Q,WZp(1)) = H1

f,{p}(Q,WZp
)⊗

ϵcycl as Λcycl-modules.

Proof. We have TZp(1) = Zp(1) ⊗Zp
Λcycl = Zp ⊗Zp

Λcycl(1). But note that we have a GQ-equivariant isomorphism of Λcycl-

modules Λcycl(1)
∼−→ Λcycl(ϵ−1

cycl) where ϵcycl denotes a twist only on the Λcycl-action, not on the GQ action. This is simply

given by g 7→ ϵ−1
cycl(g)g. Hence TZp(1)

∼−→ TZp
⊗ ϵ−1

cycl. Similarly, WZp(1)
∼−→ WZp

⊗ ϵcycl. Finally, one can check that the local

conditions outside p agree, since they are in fact trivial for both WZp
and WZp(1), as we explain in what follows.

In fact, if l ̸= p, then H1
f (Ql,TT ) = 0 for any T. If pe is the largest power of p that divides l−1, then l splits completely over

Ke/Q, and each prime λ above l is totally inert in K∞/Ke. Fix such λ, and let λn be the unique prime above it in Kn. We

are looking at lim−→n
H1(k(λn),W

Iλn ). Now for any cn ∈ H1(k(λn),W
Iλn ), choose a large enough so that cn(Frobλn

) is fixed

by GKn+a . Then cn(Frobλn+a) = NmKn+a/Kn
cn(Frobλn) by the cocycle condition. Choose b such that pbcn(Frobλn) = 0.

Then the above says that the restriction of cn to H1(k(λn+a+b),W
Iλn+a+b ) is zero. □

Now let’s discuss the local conditions above p.

Proposition 5.2. H1
f (Qp,TZp

) = 0 and H1
f (Qp,WZp(1)) = H1(Qp,WZp(1)).

Proof. We have

H1
f (Kn,p,Zp) = H1

unr(Kn,p,Zp) = H1(F(p−1)pn ,Zp) = Hom(GF(p−1)pn
,Zp)

8To be precise, one needs to consider the inverse/direct limit of the semi-local cohomology groups: for a place v of K, consider H1
f (Kn,v , ?) :=⊕

w|v in Kn
H1

f (Kn,w, ?).
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but then the transition maps are identified with the restrictions GF(p−1)pn
→ GF(p−1)pn+1 . And then we conclude H1

f (Qp,TZp) =

Hom(GF(p−1)p∞ ,Zp) = 0.

The second claim follows from local duality. □

For Zp(1), the local condition at p is more subtle: we have 0 → µp−1 → O×
Qp(µpn ) → H1

f (Qp(µpn),Zp(1)) → 0, and so we

are looking at lim←−Nm
(O×

Qp(µpn )). This module can be very concretely described, as done by Coleman:

Theorem 5.3 ([Sha, Theorem 5.4.31]). Fix a choice of norm-compatible roots of unity ζpn . Then there exist an exact sequence

of Λcycl-modules

0→ µp−1 × Zp(1)
(ξ,a) 7→(ξζa

pn )n−−−−−−−−−→ lim←−
Nm

(O×
Qp(µpn ))

Col−−→ Λcycl ϵcycl−−−→ Zp(1)→ 0.

The map Col is explicit, and we have explicit norm compatible cyclotomic units C∞ ⊆ lim←−Nm
(O×

Qp(µpn )). One can compute

their image on the Coleman map:

Theorem 5.4 (Explicit reciprocity law, [Sha, Theorem 6.13]). If χ : ∆ → Z×
p is even and nontrivial, then the image of

Col(Cχ
∞) ∈ Λcycl,χ = Λ is generated by a function f(T ) with f((1 + p)k − 1) = L∗(1− k, χω−k) for all k > 0. In particular,

we must have ϵkcycl(f) = ϵ1−k
cycl (L

χ
KL) for all k ∈ Z.

This result is a very explicit computation. It is also constructing the Kubota–Leopoldt p-adic L-function! Moreover, it

gives an interpretation of ϵkcycl(L
χ
KL) for k ∈ Z outside the range of interpolation. For instance, it recovers the following

formula.

Corollary 5.5 (Leopoldt). For χ : ∆→ Z×
p a nontrivial even character,

ϵcycl(L
χ
KL) =

∑p−1
a=1 χ

−1(a) logp(1− ζap )∑p−1
a=1 χ

−1(a)ζap
.

5.2. Reflection theorem. By the analysis of the local conditions above, we have

0→ Sel(Zp)⊗ ϵ−1
cycl → Sel(Zp(1))

locp−−→ H1
f (Qp,TZp(1))

and

0→ S(Zp)⊗ ϵcycl → S(Zp(1))
locp−−→ H1

/f (Qp,WZp
)⊗ ϵcycl.

We can piece these together by global duality. Since Sel(Zp) = 0, we get

0→ Sel(Zp(1))
locp−−→ H1

f (Qp,TZp(1))
loc∨p−−−→ X(Zp(1))⊗ ϵcycl → X(Zp)→ 0.

Dividing by the cyclotomic units, we get

0→ Sel(Zp(1))

C∞

locp−−→
H1

f (Qp,TZp(1))

locp(C∞)

loc∨p−−−→ X(Zp(1))⊗ ϵcycl → X(Zp)→ 0.

Since Cχ
∞ is only nonzero if χ : ∆→ Z×

p is even and nontrivial, let’s take such χ and consider

0→ Sel(Zp(1))
χ

Cχ
∞

locp−−→
H1

f (Qp,TZp(1))
χ

locp(C
χ
∞)

loc∨p−−−→ X(Zp(1))
χω−1

⊗ ϵcycl → X(Zp)
χ → 0.
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Now the explicit reciprocity law says that the second Λ-module is torsion. We already known the last one is also torsion. So

all four modules are torsion, and we can compare their characteristic ideals.

From the description of X(Zp(1)), note that since χω−1 is odd and not ω−1, we have

Hom

(
lim−→
n

Cl(Kn)[p
∞]ωχ−1

,Qp/Zp

)
∼−→ X(Zp(1))

χω−1

An exercise in algebra let us conclude from this that Ch (X(Zp(1))
χ) = ι(Ch(Xχ−1

∞ )), where ι : Λ→ Λ is the involution given

by inversion ι(g) = g−1. More generally, the following is true.

Proposition 5.6 ([Was97, Proposition 15.32]). If X is a finitely generated torsion Λ-module with X/νnX finite, then

Ch
(
Hom(lim−→X/νnX,Qp/Zp)

)
= ι(Ch(X)).

The explicit reciprocity law says that

Ch

(
H1

f (Qp,TZp(1))
χ

locp(C
χ
∞)

)
= (Tw ◦ ι)(L χ

KL)

where Tw: Λ→ Λ is g 7→ ϵcycl(g)g. So the above exact sequence tells us that

Ch(E∞/C∞)χ

Ch(Xχ
∞)

= (Tw ◦ ι)

(
(L χ

KL)

Ch(Xωχ−1

∞ )

)
.

That is, this proves:

Theorem 5.7 (Reflection Theorem). For χ ̸= ω0, ω1, the Iwasawa main conjecture for χ and ωχ−1 are equivalent.

References

[Sha] Romyar Sharifi. Iwasawa Theory, Lecture Notes. URL: https://www.math.ucla.edu/~sharifi/iwasawa.pdf.

[Was97] Lawrence C. Washington. Introduction to cyclotomic fields, volume 83 of Graduate Texts in Mathematics. Springer-Verlag, New York,

second edition, 1997.

https://www.math.ucla.edu/~sharifi/iwasawa.pdf

	1. What is Iwasawa theory?
	1.1. Inspiration from function fields
	1.2. Iwasawa's idea

	2. The Iwasawa algebra
	3. The descent procedure
	4. In terms of Selmer groups
	5. Reflection theorem
	5.1. Local conditions
	5.2. Reflection theorem

	References

