FALL 2022 LEARNING SEMINAR: INTRODUCTION TO IWASAWA THEORY

MURILO CORATO ZANARELLA

November 21, 2022

1. What is Iwasawa theory?

1.1. Inspiration from function fields. Let X be a smooth projective variety over \mathbb{F}_{p}. Its zeta function was originally defined as

$$
\zeta(X, s)=\exp \left(\sum_{m \geq 1} \frac{\# X\left(\mathbb{F}_{p^{m}}\right)}{m} p^{-m s}\right)
$$

To prove the easy parts of the Weil conjecture, one writes $X\left(\mathbb{F}_{p^{m}}\right)=X\left(\overline{\mathbb{F}}_{p}\right)^{\text {Frob }}$ m $=1$, and rewrites this using GrothendieckLefschetz as

$$
\# X\left(\mathbb{F}_{p^{m}}\right)=\sum_{k \geq 0}(-1)^{k} \operatorname{tr}\left(\operatorname{Frob}^{m, *} \mid H_{\mathrm{èt}}^{k}\left(X_{\overline{\mathbb{F}_{p}}}, \mathbb{Q}_{l}\right)\right)
$$

and thus

$$
\zeta(X, s)=\exp \left(\sum_{k \geq 0}(-1)^{k} \operatorname{tr}\left(\left.\sum_{m \geq 1} \frac{1}{m} \operatorname{Frob}^{m} p^{-m s} \right\rvert\, H_{\mathrm{et}}^{k}\left(X_{\overline{\mathbb{F}_{p}}}, \mathbb{Q}_{l}\right)\right)\right)=\prod_{k \geq 0} \operatorname{det}\left(1-\operatorname{Frob} \cdot p^{-s} \mid H_{\mathrm{et}}^{k}\left(X_{\overline{\mathbb{F}_{p}}}, \mathbb{Q}_{l}\right)\right)^{(-1)^{k+1}} .
$$

That is,

$$
\zeta(X, s)=\left.\prod_{k \geq 0} \operatorname{char}\left(\operatorname{Frob} \cdot T \mid H_{\mathrm{et}}^{k}\left(X_{\overline{\mathbb{F}_{p}}}, \mathbb{Q}_{l}\right)\right)^{(-1)^{k+1}}\right|_{T=p^{-s}}
$$

So, very roughly, we see some extra structure when we look at all the $\# X\left(\mathbb{F}_{p^{m}}\right)$ together. For example, the $\# X\left(\mathbb{F}_{p^{m}}\right)$ must satisfy a recurrence relation!
1.2. Iwasawa's idea. Now imagine we want to replace the variety X above by a number field F. Instead of $X\left(\mathbb{F}_{p}\right)$, we should have some other interesting arithmetic quantity. Iwasawa's original investigations were about $\mathrm{Cl}(F)$, so let's take that as the analogue.

For $X\left(\mathbb{F}_{p^{m}}\right)$, we can think of this as the rational points of $X_{\mathbb{F}_{p^{m}}}$. If X corresponds to F, maybe $X_{\mathbb{F}_{p^{m}}}$ corresponds to a finite extension F_{n} of F. But what should be this tower of number fields? The Galois group $\operatorname{Gal}\left(\overline{\mathbb{F}}_{p} / \mathbb{F}_{p}\right)$ is $\hat{\mathbb{Z}}=\prod_{p} \mathbb{Z}_{p}$. It turns out it will be easier, instead, to focus on one of the \mathbb{Z}_{p} components.

Definition 1.1. A \mathbb{Z}_{p}^{d}-extension of a number field F is an infinite Galois extension F_{∞} with $\operatorname{Gal}\left(F_{\infty} / F\right) \simeq \mathbb{Z}_{p}^{d}$. Concretely, this is a tower of number fields F_{n} where $\operatorname{Gal}\left(F_{n} / F\right) \simeq\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{d}$.

Remark 1.2. Leopoldt's conjecture for a number field F and a prime p is equivalent to ${ }^{1}$: if d is the largest positive integer such that there exist a \mathbb{Z}_{p}^{d} extension of F, then $d=1+r_{2}(F)$, where $r_{2}(F)$ is the number of complex places of F. Leopoldt's conjecture is known for abelian extensions of \mathbb{Q} and abelian extensions of a quadratic imaginary field.

Example 1.3. If $F=\mathbb{Q}$, there is a unique \mathbb{Z}_{p}-extension, contained inside the tower of cyclotomic fields $\mathbb{Q}\left(\mu_{p^{n}}\right)$.

[^0]Example 1.4. If $F=K$ is a quadratic imaginary field, There is a unique \mathbb{Z}_{p}^{2}-extension K_{∞}. Complex conjugation acts on $\operatorname{Gal}\left(K_{\infty} / K\right)$, with eigencomponents $\operatorname{Gal}\left(K_{\infty}^{c y c l} / K\right)$ and $\operatorname{Gal}\left(K_{\infty}^{a n t i} / K\right)$. Of course, $K_{\infty}^{c y c l}$ is contained in the tower $K\left(\mu_{p^{n}}\right)$. $K_{\infty}^{a n t i}$ is the unique \mathbb{Z}_{p}-extension contained in the tower of ring class fields of p-power conductor of K.

For concreteness, let's focus our attention on the cyclotomic \mathbb{Z}_{p}-extension. It is contained inside the tower $K_{n}:=\mathbb{Q}\left(\mu_{p^{n+1}}\right)$, say $F_{n} \subseteq K_{n}$ for $n \geq 0$. So $F_{0}=\mathbb{Q}$ and $K_{0}=\mathbb{Q}\left(\mu_{p}\right)$.

If we want an analogue of the zeta function ζ_{X}, we need to somehow assemble the groups $\mathrm{Cl}\left(K_{n}\right)$ together. It turns out that the groups $\mathrm{Cl}\left(K_{n}\right)$ do not behave well in families, but their p-primary parts do. So denote

$$
X_{n}:=\mathrm{Cl}\left(K_{n}\right)\left[p^{\infty}\right]
$$

This is a $\mathbb{Z}_{p}\left[\operatorname{Gal}\left(K_{n} / \mathbb{Q}\right)\right]$-module.
Definition 1.5. We let $X_{\infty}:=\lim _{\rightleftarrows} X_{n}$ with transition maps given by the norm map $\mathrm{Nm}_{K_{n+1} / K_{n}}: \mathrm{Cl}\left(K_{n+1}\right)\left[p^{\infty}\right] \rightarrow$ $\operatorname{Cl}\left(K_{n}\right)\left[p^{\infty}\right]$. This is a $\mathbb{Z}_{p} \llbracket \operatorname{Gal}\left(K_{\infty} / \mathbb{Q}\right) \rrbracket$-module. Call $\Lambda^{c y c l}:=\mathbb{Z}_{p} \llbracket \operatorname{Gal}\left(K_{\infty} / \mathbb{Q}\right) \rrbracket$.

Now note that

Assuming $p>2$ for simplicity, we can choose a topological generator $\gamma \in\left(1+p \mathbb{Z}_{p}\right)^{\times} \xrightarrow[\sim]{\text { log }} \mathbb{Z}_{p}$ (for example $\gamma=1+p$), we identify

$$
\operatorname{Gal}\left(K_{\infty} / \mathbb{Q}\right)=\Delta \times \mathbb{Z}_{p}
$$

where $\Delta=(\mathbb{Z} / p \mathbb{Z})^{\times} \stackrel{\omega}{\hookrightarrow} \mathbb{Z}_{p}^{\times}$for ω the Teichmüller character.
Definition 1.6. Let $\Lambda:=\mathbb{Z}_{p} \llbracket T \rrbracket$ denote the Iwasawa algebra. It is a complete regular local ring of dimension 2 with maximal ideal $\mathfrak{m}=(p, T)$.

Proposition 1.7. $\Lambda^{c y c l} \simeq \Lambda[\Delta]$ where $T \in \Lambda$ is identified with $\gamma-1 .^{2}$
Proof. We just need to show that $\mathbb{Z}_{p} \llbracket \operatorname{Gal}\left(F_{\infty} / \mathbb{Q}\right) \rrbracket \simeq \Lambda$. The problem is seeing that the map and its inverse are well-defined and continuous. That is, we need to see that

$$
(T+1)^{p^{n}} \rightarrow 1 \text { in } \Lambda
$$

and that

$$
(\gamma-1)^{n} \rightarrow 0 \text { in } \mathbb{Z}_{p} \llbracket \operatorname{Gal}\left(F_{\infty} / \mathbb{Q}\right) \rrbracket .
$$

 $(T+1)^{p^{n}}-1 \in \mathfrak{m}^{n+1}$.

For the second one, we need to show that for any $m \geq 0$, we have $(\gamma-1)^{n} \bmod \left(\gamma^{p^{m}}-1\right)$ goes to 0 in $\mathbb{Z}_{p}\left[\operatorname{Gal}\left(F_{m} / \mathbb{Q}\right)\right]$. Write $n=a_{0}+a_{1} p+\cdots+a_{k} p^{k}$ in base p. Then

$$
(\gamma-1)^{n}=\prod_{i=0}^{k}\left(\gamma^{p^{i}}-1+p^{i}(\cdots)\right)^{a_{i}} \equiv \prod_{i=0}^{m-1}\left(\gamma^{p^{i}}-1+p^{i}(\cdots)\right)^{a_{i}} \cdot \prod_{i=m}^{k}\left(p^{i}(\cdots)\right)^{a_{i}}
$$

So $(\gamma-1)^{n} \bmod \left(\gamma^{p^{m}}-1\right)$ is divisible by $p^{\sum_{i \geq m} i a_{i}}$, and $\sum_{i \geq m} i a_{i} \rightarrow \infty$ as $n \rightarrow \infty$.

[^1]Roughly speaking, the goal of Iwasawa theory in this case is to:
(1) Understand the structure of X_{∞} as a $\Lambda^{c y c l}=\Lambda[\Delta]$-module.
(2) "Descend" this information to the finite level modules X_{n}.

2. THE IWASAWA ALGEBRA

${ }^{3}$ We can think of $\Lambda=\mathbb{Z}_{p} \llbracket T \rrbracket$ as the ring of functions of the closed p-adic unit disk. Such a function can only have finitely many zeroes, that is, we have:

Theorem 2.1 (p-adic Weierstraß preparation). Any element $f(T) \in \Lambda$ can be uniquely written as

$$
f(T)=p^{\mu} \lambda(T) u(T)
$$

where $\mu \geq 0, u(T) \in \Lambda^{\times}$and $\lambda(T) \in \mathbb{Z}_{p}[T]$ is a distinguished polynomial, i.e. of the form

$$
\lambda(T)=T^{n}+a_{n-1} T^{n-1}+\cdots+a_{1} T+a_{0} \quad \text { where } \quad p \mid a_{i}
$$

We call μ the μ-invariant of f, and $\operatorname{deg} \lambda$ the λ-invariant of f.

In particular, Λ is a UFD. Its height 1 prime ideals are simply (p) and $(f(T))$ for f irreducible distinguished polynomials. Hence all the localizations $\Lambda_{\mathfrak{p}}$ at height 1 prime ideals are DVRs. ${ }^{4}$

Definition 2.2. A Λ-module M is pseudo-null ${ }^{5}$ if it is annihilated by some power of \mathfrak{m}. A pseudo-isomorphism is a morphism $M_{1} \rightarrow M_{2}$ with pseudo-null kernel and cokernel.

Remark 2.3. If there is a pseudo-isomorphism $M_{1} \rightarrow M_{2}$, it is not true that there must be a pseudo-isomorphism $M_{2} \rightarrow M_{1}$. But this is true if M_{1} and M_{2} are finitely generated torsion Λ-modules, where pseudo-isomorphism gives an equivalence relation.

We note that a Λ-module M has finite cardinality if and only if it is finitely generated and pseudo-null. We have the following analogue of the structure theorem for finitely generated modules over PIDs. ${ }^{6}$

Theorem 2.4. Let M be a finitely generated Λ-module. Then there is a pseudo-isomorphism

$$
M \rightarrow \Lambda^{r} \oplus \bigoplus_{i} \Lambda / f_{i}^{e_{i}} \Lambda
$$

for some $r \geq 0$ and f_{i} are finitely many irreducible elements. r is determined by M and is additive on exact sequences. If $r=0$, then f_{i} and e_{i} are uniquely determined.

We define

Definition 2.5. For M a finitely generated torsion Λ-module, we define its characteristic ideal $\operatorname{Ch}(M)=\prod_{\mathfrak{p}} \mathfrak{p}^{\operatorname{length}_{\Lambda_{\mathfrak{p}}} M \otimes_{\Lambda} \Lambda_{\mathfrak{p}}}$

[^2]By definition, the characteristic ideal is multiplicative in exact sequences of finitely generated torsion Λ-modules. Moreover, for M finitely generated torsion, M is pseudo-null exactly if $\operatorname{Ch}(M)=\Lambda$. Thus

Proposition 2.6. If $M \rightarrow \bigoplus_{i} \Lambda / f_{i}^{e_{i}}$ as above is a pseudo isomorphism, then $\operatorname{Ch}(M)=\left(\prod_{i} f_{i}^{e_{i}}\right)$.

3. The descent procedure

Let's now come back to the case that $X_{n}=\mathrm{Cl}\left(K_{n}\right)\left[p^{\infty}\right]$ for $K_{n}=\mathbb{Q}\left(\mu_{p^{n+1}}\right)$. We formed $X_{\infty}=\lim _{\varliminf_{n}} X_{n}$ under norms. How can we hope to recover X_{n} ? By the definition of X_{∞}, we have a natural map

$$
X_{\infty} \rightarrow X_{n}
$$

Proposition 3.1. The natural map $X_{\infty} \rightarrow X_{n}$ is surjective.

Proof. In fact, we will prove that $\mathrm{Nm}_{K_{n+1} / K_{n}}: X_{n+1} \rightarrow X_{n}$ is surjective for all $n \geq 0$. This will rely on the fact that p is totally ramified in $K_{n+1} \cdot{ }^{7}$ Let L_{n} denote the maximal unramified abelian p-extension of K_{n}. Then we have the diagram, where labels denote the behaviour of primes above p.

By ramification reasons, we must have $L_{n} \cap K_{n+1}=K_{n}$. Thus

$$
X_{n+1}=\operatorname{Gal}\left(L_{n+1} / K_{n+1}\right) \rightarrow \operatorname{Gal}\left(L_{n} K_{n+1} / K_{n+1}\right)=\operatorname{Gal}\left(L_{n} / K_{n}\right)=X_{n}
$$

and such map is identified with $\operatorname{Nm}_{K_{n+1} / K_{n}}: X_{n+1} \rightarrow X_{n}$.

Proposition 3.2 ([Was97, Proposition 13.22]). We have $X_{n}=X_{\infty} / \nu_{n} X_{\infty}$ where

$$
\nu_{n}:=(1+T)^{p^{n}}-1 \in \Lambda
$$

Proof. Recall that $1+T=\gamma$, and thus $\alpha:=1+\nu_{n}$ is a topological generator of $\operatorname{Gal}\left(K_{\infty} / K_{n}\right)$.

[^3]Consider the diagram as in the previous proof

Then $G:=\operatorname{Gal}\left(L_{\infty} / K_{n}\right)=X_{\infty} \hat{\rtimes}\langle\alpha\rangle$ for a choice of lift of α. L_{n} is the maximal unramified abelian subextension of L_{∞} / K_{n}, so

$$
X_{n}=\operatorname{Gal}\left(L_{n} / K_{n}\right)=\left(X_{\infty} \hat{\rtimes}\langle\alpha\rangle\right) / \overline{([G, G], \alpha)}=X_{\infty} /\left(g \sim \alpha \cdot g: g \in X_{\infty}\right)=X_{\infty} / \nu_{n} X_{\infty},
$$

as $\alpha^{-1} g \alpha g^{-1} \in[G, G]$ and thus we must have $\alpha \cdot g=\alpha^{-1} g \alpha \sim g$.
Corollary 3.3. X_{∞} is a finite generated torsion Λ-module.
Proof. As $X_{0} / p X_{0}=X_{\infty} / \mathfrak{m} X_{\infty}$ is finite, we conclude that X_{∞} is a finitely generated Λ-module by Nakayama. It is also Λ-torsion as X_{0} is finite.

Now given $\chi=\omega^{i}$ a power of the Teichmüller character, assume that we had a pseudo-isomorphism $X_{\infty}^{\chi} \rightarrow \oplus \Lambda / f_{i}$. Then we can consider the diagram

to try to compare $X_{n}^{\chi}=X_{\infty}^{\chi} / \nu_{n} X_{\infty}^{\chi}$ and $\oplus \Lambda /\left(f_{i}, \nu_{n}\right)$. Following this, one can prove
Lemma 3.4 ([Was97, Theorem 13.13]). If X is a finitely generated torsion Λ-module with $X / \nu_{n} X$ finite for all $n \geq 0$, then there is $n_{0} \geq 0$ and $c \in \mathbb{Z}$ such that

$$
\# X / \nu_{n} X=p^{n p^{\mu}+n \lambda+c} \text { for all } n \geq n_{0}
$$

where μ, λ are the invariants of $\operatorname{Ch}(X)$.
But often we can be more precise than that. The main issue for the ambiguity in the lemma above is that $X \rightarrow \oplus \Lambda / f_{i}$ in general can have both a kernel and cokernel. But fortunately, often for the modules in Iwasawa theory the kernel must be 0 . For example:

Proposition 3.5. X_{∞}^{χ} has no nonzero pseudo-null submodules.
Proof. If it did contain a nonzero pseudo-null submodule Y, then $\mathfrak{m}^{k} Y=0$ for some k. So it suffices to prove that if $Y \subseteq X_{\infty}^{\chi}$ is a submodule with $\mathfrak{m} Y=0$, then $Y=0$. If $c=\left(c_{n}\right)_{n \geq 0} \in Y$, then $p c=0$, and thus $c_{n} \in \operatorname{Cl}\left(K_{n}\right)[p]$ for all n. As $T c=0$, we also have $(\gamma-1) c=0$ for any $\gamma \in \operatorname{Gal}\left(K_{\infty} / K_{0}\right)$. So $c_{n} \in \operatorname{Cl}\left(K_{n}\right)[p]^{G_{K_{0}}}$ But then $c_{n}=\operatorname{Nm}_{K_{n+1} / K_{n}} c_{n+1}=p \cdot c_{n+1}=0$ for all $n \geq 0$.

Corollary 3.6. We have $\# X_{n}^{\chi}=\prod_{i} \# \Lambda /\left(f_{i}, \nu_{n}\right)$. In particular, $\# X_{0}^{\chi}=\# \mathbb{Z}_{p} / \operatorname{Ch}\left(X_{\infty}^{\chi}\right)(0)$.

Proof. This follows from applying the snake lemma to

Since X_{n}^{χ} is finite, the Snake lemma implies that $\Lambda /\left(f_{i}, \nu_{n}\right)$ must have finite cardinality. This means that f_{i} and ν_{n} are coprime, and hence that $\operatorname{ker}\left(\Lambda / f_{i} \xrightarrow{\cdot \nu_{n}} \Lambda / f_{i}\right)=0$. Now the claim follows from the Snake lemma by noting that coker $\left[\nu_{n}\right]$ and $\operatorname{coker} / \nu_{n}$ have the same cardinality as coker has finite cardinality.

Recall that we should have

$$
\mathrm{Cl}\left(\mathbb{Q}\left(\mu_{p}\right)\right)\left[p^{\infty}\right]^{\chi}=\left\{\begin{array}{cl}
0 & \text { if } \chi=\omega, \\
\left|L\left(0, \chi^{-1}\right)\right|_{p} & \text { if } \chi \text { is odd and } \chi \neq \omega, \\
\left|\left(\mathcal{O}_{\mathbb{Q}\left(\mu_{p}\right)+}^{\times} / C\right)^{\chi}\right|_{p} & \text { if } \chi \text { is even. }
\end{array}\right.
$$

We proved this for χ even using Euler systems, but historically it was first deduced from Mazur-Wiles proof of:

Conjecture 3.7 (Iwasawa Main Conjecture). Let E_{n} denote the units of K_{n}^{+}that are congruent to 1 modulo the prime above p. Let $C_{n} \subseteq E_{n}$ be the subset of cyclotomic units. Denote E_{∞}, C_{∞} their limits under the norm map. For χ even nontrivial, denote also $\mathscr{L}_{K L}^{\chi} \in \Lambda$ the Kubota-Leopoldt p-adic L function for χ. Then for $\chi \neq \omega^{0}, \omega^{1}$, we have

$$
\operatorname{Ch}\left(X_{\infty}^{\chi}\right)=\left\{\begin{array}{cl}
\left(\mathscr{L}_{K L}^{\omega \chi^{-1}}\right) & \text { if } \chi \text { is odd }, \\
\operatorname{Ch}\left(E_{\infty} / C_{\infty}\right)^{\chi} & \text { if } \chi \text { is even } .
\end{array}\right.
$$

Here, for χ even nontrivial, the Kubota-Leopoldt p-adic L-function is the unique element $\mathscr{L}_{K L}^{\chi} \in \Lambda$ such that $\epsilon_{\text {cycl }}^{n}\left(\mathscr{L}_{K L}^{\chi}\right)=$ $L^{*}\left(n, \chi \omega^{n-1}\right)$ for all $n \leq 0$. For an explicit construction of element, see [Was97, Theorem 7.10]. We will later give another way to construct this.

In fact, the Euler system argument we gave can be adapted to prove the above conjecture when χ is even: see [Was97, Section 15] for details. We will explain how, in fact, the two parts of the main conjecture are equivalent. This is often called the reflection theorem in this classical context. We will see next week how this is a particular case of a more general philosophy connecting Euler systems and Iwasawa main conjectures.

To build up for the proof of the reflection theorem, we will reinterpret the modules we have been considering in terms of Selmer groups.

4. In terms of Selmer groups

Suppose we have a p-adic representation V with a G_{K}-stable lattice Λ. Denote $W:=V / \Lambda$. From the exact sequence $0 \rightarrow \Lambda \rightarrow V \rightarrow W \rightarrow 0$, we have for a place v

$$
H^{1}\left(K_{v}, \Lambda\right) \xrightarrow{\alpha} H^{1}\left(K_{v}, V\right) \xrightarrow{\beta} H^{1}\left(K_{v}, W\right) .
$$

A Selmer structure on $H_{\mathcal{L}}^{1}\left(K_{v}, V\right)$ can be propagated to $H^{1}\left(K_{v}, \Lambda\right)$ and $H^{1}\left(K_{v}, W\right)$ simply by defining

$$
H_{\mathcal{L}}^{1}\left(K_{v}, \Lambda\right):=\alpha^{-1}\left(H_{\mathcal{L}}^{1}\left(K_{v}, V\right)\right), \quad H_{\mathcal{L}}^{1}\left(K_{v}, W\right):=\beta\left(H_{\mathcal{L}}^{1}\left(K_{v}, V\right)\right)
$$

We will look mostly at $H_{\mathcal{L}}^{1}(K, W)$. Recall from Gefei's talk
Proposition 4.1. The Kummer map induces an isomorphism $\mathcal{O}_{K}^{\times} \otimes \mathbb{Q}_{p} \xrightarrow{\sim} H_{f}^{1}\left(K, \mathbb{Q}_{p}(1)\right)$. For an elliptic curve E / K, the Kummer map $E(K) \otimes \mathbb{Q}_{p} \rightarrow H_{f}^{1}\left(K, V_{p} E\right)$ is an isomorphism if and only if $\amalg(E / K)\left[p^{\infty}\right]$ is finite.

But in fact, we actually have
Proposition 4.2. The inverse limit of the finite level Kummer maps identify $\mathcal{O}_{K}^{\times} \otimes \mathbb{Z}_{p} \xrightarrow{\sim} H_{f}^{1}\left(K, \mathbb{Z}_{p}(1)\right)$. The direct limit of the finite level Kummer map fits into an exact sequence

$$
0 \rightarrow \mathcal{O}_{K}^{\times} \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p} \rightarrow H_{f}^{1}\left(K, \mathbb{Q}_{p} / \mathbb{Z}_{p}(1)\right) \rightarrow \mathrm{Cl}(K)\left[p^{\infty}\right] \rightarrow 0
$$

Similarly, if E is an elliptic curve over K, then the natural map $E(K) \otimes \mathbb{Z}_{p} \hookrightarrow H_{f}^{1}\left(K, T_{p} E\right)$ is an isomorphism iff $\amalg(E / K)\left[p^{\infty}\right]$ is finite, and we also have that $H_{f}^{1}\left(K, E\left[p^{\infty}\right]\right)=\operatorname{Sel}_{p \infty}(E / K)$ fits into the exact sequence

$$
0 \rightarrow E(K) \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p} \rightarrow H_{f}^{1}\left(K, E\left[p^{\infty}\right]\right) \rightarrow \amalg(E / K)\left[p^{\infty}\right] \rightarrow 0
$$

Let's also look at the trivial representation \mathbb{Q}_{p}. Since its weight is 0 , the Bloch-Kato conditions are unramified everywhere. The propagations to \mathbb{Z}_{p} and $\mathbb{Q}_{p} / \mathbb{Z}_{p}$ can be checked to also be just the unramified cohomology. Thus

$$
H_{f}^{1}\left(K, \mathbb{Q}_{p}\right)=H_{f}^{1}\left(K, \mathbb{Z}_{p}\right)=0, \quad H_{f}^{1}\left(K, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)=\operatorname{Hom}\left(\mathrm{Cl}(K), \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)
$$

So X_{∞} is identified with

$$
\operatorname{Hom}\left(\underset{n}{\lim } H_{f}^{1}\left(K_{n}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right), \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)
$$

where the transition maps are simply the restriction.
Following Greenberg, we an give a different description of this direct limit.
Proposition 4.3. Let V be a p-adic representation of G_{K} unramified away from Σ with G_{K}-stable lattice T. Denote $W=V / T$. Let K_{∞} / K be an abelian tower of finite extensions K_{n} / K unramified away from Σ. Let $\Lambda_{K_{\infty} / K}:=\mathbb{Z}_{p} \llbracket \operatorname{Gal}\left(K_{\infty} / K\right) \rrbracket$, and
 $\mathbb{W}_{T}:=T \otimes_{\mathbb{Z}_{p}} \Lambda_{K_{\infty} / K}^{\vee}$. Then

$$
{\underset{n}{\underset{n}{2}}}_{\lim } H^{1}\left(K_{\Sigma} / K_{n}, T\right)=H^{1}\left(K_{\Sigma} / K, \mathbb{T}_{T}\right) \quad \text { and } \underset{n}{\lim } H^{1}\left(K_{\Sigma} / K_{n}, W\right)=H^{1}\left(K_{\Sigma} / K, \mathbb{W}_{T}\right)
$$

Proof. We only prove the second equality, since the first is analogous.
By Shapiro's lemma, we have $H^{1}\left(K_{\Sigma} / K_{n}, W\right)=H^{1}\left(K_{\Sigma} / K, \operatorname{Ind}_{G_{K_{n}}}^{G_{K}} W\right)$. So It suffices to see that ${\underset{\longrightarrow}{\lim }}_{n} \operatorname{Ind}_{G_{K_{n}}}^{G_{K}} W=\mathbb{W}$ as G_{K}-modules. We have

$$
\operatorname{Ind}_{G_{K_{n}}}^{G_{K}} W=\left\{f: G_{K} \rightarrow W: f(\sigma x)=f(x)^{\sigma} \text { for } x \in G_{K}, \sigma \in G_{K_{n}}\right\}
$$

and so

$$
\underset{n}{\lim } \operatorname{Ind}_{G_{K_{n}}}^{G_{K}} W=\operatorname{Hom}\left(\Lambda_{K_{\infty} / K}, W\right)
$$

which is \mathbb{W}_{T} as $W=T \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p} / \mathbb{Z}_{p}$.
One can define Selmer structures on these cohomology groups by the inverse/direct limit of the Bloch-Kato local conditions. ${ }^{8}$ Then we indeed have $H_{f}^{1}\left(K, \mathbb{T}_{T}\right)=\underset{\rightleftarrows}{\lim } H_{f}^{1}\left(K_{n}, T\right)$ and $H_{f}^{1}\left(K, \mathbb{W}_{T}\right)=\underset{\longrightarrow}{\lim } H_{f}^{1}\left(K_{n}, W\right)$.

Definition 4.4. We denote $\operatorname{Sel}(T)=H_{f}^{1}\left(\mathbb{Q}, \mathbb{T}_{T}\right), S(T)=H_{f}^{1}\left(\mathbb{Q}, \mathbb{W}_{T}\right)$ and $X(T)=\operatorname{Hom}\left(S(T), \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)$ when the extension K_{∞} / K is implied.

Example 4.5. For $T=\mathbb{Z}_{p}$ and $T=\mathbb{Z}_{p}(1)$, we have

$$
\operatorname{Sel}\left(\mathbb{Z}_{p}\right)=0, \quad \operatorname{Sel}\left(\mathbb{Z}_{p}(1)\right)=\underset{{ }_{n}}{\lim }\left(\mathcal{O}_{K_{n}}^{\times} \otimes \mathbb{Z}_{p}\right), \quad X\left(\mathbb{Z}_{p}\right)=\underset{{ }_{n}}{\lim } \operatorname{Cl}\left(K_{n}\right)\left[p^{\infty}\right],
$$

and $X\left(\mathbb{Z}_{p}(1)\right)$ fits in the exact sequence

$$
0 \rightarrow\left(\underset{n}{\lim } \mathrm{Cl}\left(K_{n}\right)\left[p^{\infty}\right]\right)^{\vee} \rightarrow X\left(\mathbb{Z}_{p}(1)\right) \rightarrow\left(\underset{\vec{n}}{\lim }\left(\mathcal{O}_{K_{n}}^{\times} \otimes \mathbb{Z}_{p}\right)\right)^{\vee} \rightarrow 0
$$

5. REFLECTION THEOREM

Let's return to the case $K_{n}=\mathbb{Q}\left(\mu_{p^{n}}\right)$.
5.1. Local conditions. We think of $\Lambda^{c y c l}$ as a p-adic interpolation of the Tate twists $\mathbb{Z}_{p}(k)$. Indeed, we have $G_{\mathbb{Q}}$-equivariant specializations $\mathrm{sp}_{k}: \Lambda^{c y c l} \rightarrow \mathbb{Z}_{p}(k)$ given by $g \mapsto \epsilon_{c y c l}^{k}(g)$. So we note the following quite confusing fact:

Proposition 5.1. $H_{f,\{p\}}^{1}\left(\mathbb{Q}, \mathbb{T}_{\mathbb{Z}_{p}(1)}\right)=H_{f,\{p\}}^{1}\left(\mathbb{Q}, \mathbb{T}_{\mathbb{Z}_{p}}\right) \otimes \epsilon_{\text {cycl }}^{-1}$ as $\Lambda^{c y c l}$-modules. Similarly, $H_{f,\{p\}}^{1}\left(\mathbb{Q}, \mathbb{W}_{\mathbb{Z}_{p}(1)}\right)=H_{f,\{p\}}^{1}\left(\mathbb{Q}, \mathbb{W}_{\mathbb{Z}_{p}}\right) \otimes$ $\epsilon_{\text {cycl }}$ as $\Lambda^{\text {cycl }}$-modules.

Proof. We have $\mathbb{T}_{\mathbb{Z}_{p}(1)}=\mathbb{Z}_{p}(1) \otimes_{\mathbb{Z}_{p}} \Lambda^{c y c l}=\mathbb{Z}_{p} \otimes_{\mathbb{Z}_{p}} \Lambda^{c y c l}(1)$. But note that we have a $G_{\mathbb{Q}^{-}}$equivariant isomorphism of $\Lambda^{c y c l}$ modules $\Lambda^{c y c l}(1) \xrightarrow{\sim} \Lambda^{c y c l}\left(\epsilon_{c y c l}^{-1}\right)$ where $\epsilon_{\text {cycl }}$ denotes a twist only on the $\Lambda^{c y c l}$-action, not on the $G_{\mathbb{Q}}$ action. This is simply given by $g \mapsto \epsilon_{c y c l}^{-1}(g) g$. Hence $\mathbb{T}_{\mathbb{Z}_{p}(1)} \xrightarrow{\sim} \mathbb{T}_{\mathbb{Z}_{p}} \otimes \epsilon_{\text {cycl }}^{-1}$. Similarly, $\mathbb{W}_{\mathbb{Z}_{p}(1)} \xrightarrow{\sim} \mathbb{W}_{\mathbb{Z}_{p}} \otimes \epsilon_{\text {cycl }}$. Finally, one can check that the local conditions outside p agree, since they are in fact trivial for both $\mathbb{W}_{\mathbb{Z}_{p}}$ and $\mathbb{W}_{\mathbb{Z}_{p}(1)}$, as we explain in what follows.

In fact, if $l \neq p$, then $H_{f}^{1}\left(\mathbb{Q}_{l}, \mathbb{T}_{T}\right)=0$ for any T. If p^{e} is the largest power of p that divides $l-1$, then l splits completely over K_{e} / \mathbb{Q}, and each prime λ above l is totally inert in K_{∞} / K_{e}. Fix such λ, and let λ_{n} be the unique prime above it in K_{n}. We are looking at $\lim _{\longrightarrow} H^{1}\left(k\left(\lambda_{n}\right), W^{I_{\lambda_{n}}}\right)$. Now for any $c_{n} \in H^{1}\left(k\left(\lambda_{n}\right), W^{I_{\lambda_{n}}}\right)$, choose a large enough so that $c_{n}\left(\right.$ Frob $\left.\lambda_{n}\right)$ is fixed by $G_{K_{n+a}}$. Then $c_{n}\left(\operatorname{Frob}_{\lambda_{n+a}}\right)=\operatorname{Nm}_{K_{n+a} / K_{n}} c_{n}\left(\operatorname{Frob}_{\lambda_{n}}\right)$ by the cocycle condition. Choose b such that $p^{b} c_{n}\left(\operatorname{Frob}_{\lambda_{n}}\right)=0$. Then the above says that the restriction of c_{n} to $H^{1}\left(k\left(\lambda_{n+a+b}\right), W^{I_{\lambda_{n+a+b}}}\right)$ is zero.

Now let's discuss the local conditions above p.

Proposition 5.2. $H_{f}^{1}\left(\mathbb{Q}_{p}, \mathbb{T}_{\mathbb{Z}_{p}}\right)=0$ and $H_{f}^{1}\left(\mathbb{Q}_{p}, \mathbb{W}_{\mathbb{Z}_{p}(1)}\right)=H^{1}\left(\mathbb{Q}_{p}, \mathbb{W}_{\mathbb{Z}_{p}(1)}\right)$.

Proof. We have

$$
H_{f}^{1}\left(K_{n, p}, \mathbb{Z}_{p}\right)=H_{u n r}^{1}\left(K_{n, p}, \mathbb{Z}_{p}\right)=H^{1}\left(\mathbb{F}_{(p-1) p^{n}}, \mathbb{Z}_{p}\right)=\operatorname{Hom}\left(G_{\mathbb{F}_{(p-1) p^{n}}}, \mathbb{Z}_{p}\right)
$$

[^4]but then the transition maps are identified with the restrictions $G_{\mathbb{F}_{(p-1) p^{n}}} \rightarrow G_{\mathbb{F}_{(p-1) p^{n+1}}}$. And then we conclude $H_{f}^{1}\left(\mathbb{Q}_{p}, \mathbb{T}_{\mathbb{Z}_{p}}\right)=$ $\operatorname{Hom}\left(G_{\mathbb{F}_{(p-1) p^{\infty}}}, \mathbb{Z}_{p}\right)=0$.

The second claim follows from local duality.

For $\mathbb{Z}_{p}(1)$, the local condition at p is more subtle: we have $0 \rightarrow \mu_{p-1} \rightarrow \mathcal{O}_{\mathbb{Q}_{p}\left(\mu_{p^{n}}\right)}^{\times} \rightarrow H_{f}^{1}\left(\mathbb{Q}_{p}\left(\mu_{p^{n}}\right), \mathbb{Z}_{p}(1)\right) \rightarrow 0$, and so we are looking at $\lim _{\mathrm{Nm}}\left(\mathcal{O}_{\mathbb{Q}_{p}\left(\mu_{p^{n}}\right)}^{\times}\right)$. This module can be very concretely described, as done by Coleman:

Theorem 5.3 ([Sha, Theorem 5.4.31]). Fix a choice of norm-compatible roots of unity $\zeta_{p^{n}}$. Then there exist an exact sequence of $\Lambda^{\text {cycl }}$-modules

The map Col is explicit, and we have explicit norm compatible cyclotomic units $C_{\infty} \subseteq \varliminf_{\mathrm{Nm}^{\prime}}\left(\mathcal{O}_{\mathbb{Q}_{p}\left(\mu_{p^{n}}\right)}^{\times}\right)$. One can compute their image on the Coleman map:

Theorem 5.4 (Explicit reciprocity law, [Sha, Theorem 6.13]). If $\chi: \Delta \rightarrow \mathbb{Z}_{p}^{\times}$is even and nontrivial, then the image of $\operatorname{Col}\left(C_{\infty}^{\chi}\right) \in \Lambda^{\text {cycl }, \chi}=\Lambda$ is generated by a function $f(T)$ with $f\left((1+p)^{k}-1\right)=L^{*}\left(1-k, \chi \omega^{-k}\right)$ for all $k>0$. In particular, we must have $\epsilon_{\text {cycl }}^{k}(f)=\epsilon_{\text {cycl }}^{1-k}\left(\mathscr{L}_{K L}^{\chi}\right)$ for all $k \in \mathbb{Z}$.

This result is a very explicit computation. It is also constructing the Kubota-Leopoldt p-adic L-function! Moreover, it gives an interpretation of $\epsilon_{c y c l}^{k}\left(\mathscr{L}_{K L}^{\chi}\right)$ for $k \in \mathbb{Z}$ outside the range of interpolation. For instance, it recovers the following formula.

Corollary 5.5 (Leopoldt). For $\chi: \Delta \rightarrow \mathbb{Z}_{p}^{\times}$a nontrivial even character,

$$
\epsilon_{c y c l}\left(\mathscr{L}_{K L}^{\chi}\right)=\frac{\sum_{a=1}^{p-1} \chi^{-1}(a) \log _{p}\left(1-\zeta_{p}^{a}\right)}{\sum_{a=1}^{p-1} \chi^{-1}(a) \zeta_{p}^{a}} .
$$

5.2. Reflection theorem. By the analysis of the local conditions above, we have

$$
0 \rightarrow \operatorname{Sel}\left(\mathbb{Z}_{p}\right) \otimes \epsilon_{c y c l}^{-1} \rightarrow \operatorname{Sel}\left(\mathbb{Z}_{p}(1)\right) \xrightarrow{\mathrm{loc}_{p}} H_{f}^{1}\left(\mathbb{Q}_{p}, \mathbb{T}_{\mathbb{Z}_{p}(1)}\right)
$$

and

$$
0 \rightarrow S\left(\mathbb{Z}_{p}\right) \otimes \epsilon_{c y c l} \rightarrow S\left(\mathbb{Z}_{p}(1)\right) \xrightarrow{\text { loc }_{p}} H_{/ f}^{1}\left(\mathbb{Q}_{p}, \mathbb{W}_{\mathbb{Z}_{p}}\right) \otimes \epsilon_{c y c l} .
$$

We can piece these together by global duality. Since $\operatorname{Sel}\left(\mathbb{Z}_{p}\right)=0$, we get

$$
0 \rightarrow \operatorname{Sel}\left(\mathbb{Z}_{p}(1)\right) \xrightarrow{\text { loc }_{p}} H_{f}^{1}\left(\mathbb{Q}_{p}, \mathbb{T}_{\mathbb{Z}_{p}(1)}\right) \xrightarrow{\text { loc }_{p}^{\vee}} X\left(\mathbb{Z}_{p}(1)\right) \otimes \epsilon_{c y c l} \rightarrow X\left(\mathbb{Z}_{p}\right) \rightarrow 0 .
$$

Dividing by the cyclotomic units, we get

$$
0 \rightarrow \frac{\operatorname{Sel}\left(\mathbb{Z}_{p}(1)\right)}{C_{\infty}} \xrightarrow{\operatorname{loc}_{p}} \xrightarrow[H_{f}^{1}\left(\mathbb{Q}_{p}, \mathbb{T}_{\mathbb{Z}_{p}(1)}\right)]{\operatorname{loc}_{p}\left(C_{\infty}\right)} \xrightarrow{\operatorname{loc}_{p}^{\vee}} X\left(\mathbb{Z}_{p}(1)\right) \otimes \epsilon_{c y c l} \rightarrow X\left(\mathbb{Z}_{p}\right) \rightarrow 0 .
$$

Since C_{∞}^{χ} is only nonzero if $\chi: \Delta \rightarrow \mathbb{Z}_{p}^{\times}$is even and nontrivial, let's take such χ and consider

$$
0 \rightarrow \frac{\operatorname{Sel}\left(\mathbb{Z}_{p}(1)\right)^{\chi}}{C_{\infty}^{\chi}} \xrightarrow{\operatorname{loc}_{p}} \xrightarrow[H_{f}^{1}\left(\mathbb{Q}_{p}, \mathbb{T}_{\mathbb{Z}_{p}(1)}\right)^{\chi}]{\operatorname{loc}_{p}\left(C_{\infty}^{\chi}\right)} \xrightarrow{\operatorname{loc}_{p}^{\vee}} X\left(\mathbb{Z}_{p}(1)\right)^{\chi \omega^{-1}} \otimes \epsilon_{c y c l} \rightarrow X\left(\mathbb{Z}_{p}\right)^{\chi} \rightarrow 0 .
$$

Now the explicit reciprocity law says that the second Λ-module is torsion. We already known the last one is also torsion. So all four modules are torsion, and we can compare their characteristic ideals.

From the description of $X\left(\mathbb{Z}_{p}(1)\right)$, note that since $\chi \omega^{-1}$ is odd and not ω^{-1}, we have

$$
\operatorname{Hom}\left(\underset{n}{\lim } \mathrm{Cl}\left(K_{n}\right)\left[p^{\infty}\right]^{\omega \chi^{-1}}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \xrightarrow{\sim} X\left(\mathbb{Z}_{p}(1)\right)^{\chi \omega^{-1}}
$$

An exercise in algebra let us conclude from this that $\operatorname{Ch}\left(X\left(\mathbb{Z}_{p}(1)\right)^{\chi}\right)=\iota\left(\operatorname{Ch}\left(X_{\infty}^{\chi^{-1}}\right)\right)$, where $\iota: \Lambda \rightarrow \Lambda$ is the involution given by inversion $\iota(g)=g^{-1}$. More generally, the following is true.

Proposition 5.6 ([Was97, Proposition 15.32]). If X is a finitely generated torsion Λ-module with $X / \nu_{n} X$ finite, then $\operatorname{Ch}\left(\operatorname{Hom}\left(\underset{\longrightarrow}{\lim } X / \nu_{n} X, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)\right)=\iota(\operatorname{Ch}(X))$.

The explicit reciprocity law says that

$$
\operatorname{Ch}\left(\frac{H_{f}^{1}\left(\mathbb{Q}_{p}, \mathbb{T}_{\mathbb{Z}_{p}(1)}\right)^{\chi}}{\operatorname{loc}_{p}\left(C_{\infty}^{\chi}\right)}\right)=(\mathrm{Tw} \circ \iota)\left(\mathscr{L}_{K L}^{\chi}\right)
$$

where Tw: $\Lambda \rightarrow \Lambda$ is $g \mapsto \epsilon_{c y c l}(g) g$. So the above exact sequence tells us that

$$
\frac{\operatorname{Ch}\left(E_{\infty} / C_{\infty}\right)^{\chi}}{\operatorname{Ch}\left(X_{\infty}^{\chi}\right)}=(\mathrm{Tw} \circ \iota)\left(\frac{\left(\mathscr{L}_{K L}^{\chi}\right)}{\operatorname{Ch}\left(X_{\infty}^{\omega \chi^{-1}}\right)}\right)
$$

That is, this proves:

Theorem 5.7 (Reflection Theorem). For $\chi \neq \omega^{0}, \omega^{1}$, the Iwasawa main conjecture for χ and $\omega \chi^{-1}$ are equivalent.

References

[Sha] Romyar Sharifi. Iwasawa Theory, Lecture Notes. URL: https://www.math.ucla.edu/~sharifi/iwasawa.pdf.
[Was97] Lawrence C. Washington. Introduction to cyclotomic fields, volume 83 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1997.

[^0]: ${ }^{1}$ This is explained in [Was97, Theorem 13.4]

[^1]: ${ }^{2}$ In general, the completed group algebra of a \mathbb{Z}_{p}^{d} extension is identified with $\mathbb{Z}_{p} \llbracket T_{1}, \ldots, T_{d} \rrbracket$ in a similar way.

[^2]: ${ }^{3}$ [Was97, Section 13.2] or [Sha, Section 2.4] contain proofs for the statements in this section.
 ${ }^{4}$ More generally, $\mathbb{Z}_{p} \llbracket T_{1}, \ldots, T_{n} \rrbracket$ is still a Krull domain, a certain higher dimension generalization of Dedekind domains
 ${ }^{5}$ A module over a Krull domain is said to be pseudo-null if its annihilator ideal has height ≥ 2.
 ${ }^{6}$ This also holds over Krull domains, although it is not true that pseudo-null is the same as finite cardinality.

[^3]: ${ }^{7}$ This is not true for all \mathbb{Z}_{p} extensions. For instance, it is not true for $K_{\infty}^{a n t i} / K$ for a quadratic imaginary field K.

[^4]: ${ }^{8}$ To be precise, one needs to consider the inverse/direct limit of the semi-local cohomology groups: for a place v of K, consider $H_{f}^{1}\left(K_{n, v}, ?\right):=$ $\bigoplus_{w \mid v \text { in } K_{n}} H_{f}^{1}\left(K_{n, w}, ?\right)$.

