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Warning: These notes are meant to give a big picture overview of the subject. I will not try to spell out all the technical

assumptions for the “big” theorems in this exposition, and many claims will only be approximately correct. For precise result,

one should follow the references given.

1. General philosophy

Let T ⊆ V be a lattice inside a geometric p-adic representation, and denote W = V/T. We consider the Bloch–Kato

Selmer groups H1
f (F, ?) for ? ∈ {T, V,W}. The group H1

f (F,W ) contains interesting information besides just the dimension

dimH1
f (F, V ). Namely, we define

Xf (W/F ) := H1
f (F,W )/div

where the subscript means the quotient by the maximal divisible submodule (which is the image of H1
f (F, V )).

Example 1.1. If T = Zp(1), then Xf (W/F ) = Cl(F )[p∞]. If T = Zp, then Xf (W/F ) = Hom(Cl(F ),Qp/Zp). If T = TpE,

then Xf (WpE/F ) = X(E/F )[p∞]/div, which is, of course, X(E/F )[p∞] if this is finite.

Paraphrasing Kato, there are three phases of understanding of special values of L-functions. Here we think of V to be the

p-adic realization of some motive.

(0) The Bloch–Kato conjecture predicts the order of vanishing ords=0L(s, V ) to be dimH1
f (F, V

∗(1))−dimH0(F, V ∗(1)).

So let’s assume this is 0.

(1) L(0, V ) is often algebraic except for certain periods. In some cases, Deligne and Beillison conjecture certain periods

ΩV,r, such that L(0, V ) ∈ ΩV,r ·Q
×
. We will denote L(0, V )/ΩV,r by L(0, V )alg.

(2) As we vary V in some suitable p-adic family, the values L(0, V )alg often vary p-adically as well.

(3) The value L(0, V )alg often have deep arithmetic significance.

Example 1.2. Last week we saw this for the family Qp(k) ⊗ ωkχ for χ : Gal(Q(µp)/Q) → Z×
p as we vary k ≤ 0. We have

L(0,Qp(k) ⊗ ωkχ) = L(k, ωkχ), which is nonzero only if χ is odd. Then these values are exactly what are interpolated by

L χω−1

KL . As we discussed, this p-adic L-function is deeply related to the p-primary part of class groups of p-power cyclotomic

fields.

This is still quite vague, so let’s start to get more concrete. Let K∞/K be a Zd
p-extension and denote Γ := Gal(K∞/K).

Let Λ = ZpJΓK be the Iwasawa algebra. It is isomorphic to ZpJT1, . . . , TdK.

For a suitable subset Ξ ⊆ Homcont(Γ,Qp
×
) of characters, we will consider the p-adic representations V (χ) as χ ∈ Ξ. Here

V (χ) means twisting V by GK ↠ Γ
χ−→ Q×

p (after extending scalars to contain the image of χ). From the specialization

morphisms χ : Λ→ Qp
×
, we have maps H1(K,TT )→ H1(K,T (χ)), and we can define a Selmer group SelΞ(T ) to be the set

1



2 MURILO CORATO ZANARELLA

of classes that specialize to H1
f (K,T (χ)) for all χ ∈ Ξ. Similarly we can define SΞ(T ) ⊆ H1(K,WT ) and XΞ(T ) = SΞ(T )

∨.

Of course, this will only actually capture the Selmer groups H1
f (K,V (χ)) if Ξ is chosen suitably.

Assume that almost all of L(s, V ∗(1)(χ−1)) have the same order of vanishing r at s = 0. Then we expect SelΞ(T ) and

XΞ(T ) to have Λ-rank r. Furthermore, if r = 0, then we can hope that L(s, V ∗(1)(χ−1))alg vary p-adically. That is, that

there exist an element LV,Ξ ∈ Λ such that

χ(LV,Ξ) = (∗) · L(0, V ∗(1)(χ−1))alg

up to some simple factors (∗). Finally, as we expect that L(0, V ∗(1)(χ−1))alg is related to Xf (W (χ)/F ), one can have the

hopeful expectation that

Ch(XΞ(T )) = (LV,Ξ).

There an ambiguity in this expectation, as the right hand side does not depend on the lattice T. However, different choices

of T should only change the left side by a power of p, and we can hope that the choice of T determines a precise choice of

period for LV,Ξ.

1.1. Greenberg Selmer groups. This is an exposition of the conjectures in [Gre89]. We consider the following condition

for a p-adic place v of K.

Definition 1.3. A p-adic representation V of Kv is ordinary if there exists a Qp[GKv
]-stable Z-filtration F iV ⊆ V that is

exhaustive and separated such that the action of inertia in F iV/F i+1V is by ϵicycl. Denote V + := F 1V.

In particular, ordinary representations are de Rham with Hodge–Tate weight −i of multiplicity dimF iV/F i+1V.

Proposition 1.4. If V is an ordinary Kv-representation, then

H1
g (Kv, V ) = ker(H1(Kv, V )→ H1(Iv, V/V

+)).

Proof. First note that H1
g (Kv, V/V

+) = H1
unr(Kv, V/V

+) by dimension counting, as (V/V +)GKv and Dϕ=1
crys(V/V

+) are 0

because V/V + has only strictly positive Hodge–Tate weights. The second assertion follows since Fil1Bϕ=1
crys = 0.

Now in Hao’s talk we saw that H1(Kv, V ⊗ B+
dR) → H1(Kv, V ⊗ BdR) is injective for V de Rham, and we also saw

that H1(Kv, V
+ ⊗ B+

dR) = 0 as V + has strictly positive Hodge–Tate weights. Now the claim follows from the commutative

diagram
H1(Kv, V ) H1(Kv, V/V

+)

0 = H1(Kv, V
+ ⊗B+

dR) H1(Kv, V ⊗B+
dR) H1(Kv, (V/V

+)⊗B+
dR)

α

as then

H1
g (Kv, V ) = α−1H1

g (Kv, V/V
+) = α−1H1

unr(Kv, V/V
+) = ker

(
H1(Kv, V )

α−→ H1(Kv, V/V
+)→ H1(Iv, V/V

+)
)
. □

Remark 1.5. For many cases of interest, we have that H1
f (Kv, V ) = H1

g (Kv, V ). By dimension counting, this happens precisely

if Dϕ=1
crys(V

∗(1)) = 0. For example, this is true if V is pure of weight w ̸= −2.

For a lattice T ⊆ V, we have the induced filtrations F iT ⊆ V iT, and F iW = F iT ⊗Qp/Zp.
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Proposition 1.6. Assume that (F 0V/F 1V )GKv = 0. Then H1
g (Kv,W ) = im(H1(Kv,W

+)div → H1(Kv,W )). We also have

H1
g (Kv, T ) = ker(H1(Kv, T )→ H1(Kv, T/T

+)/tor).

Proof. The assumption guarantees that H1(Kv, V/V
+) ↪→ H1(Iv, V/V

+). Thus H1
g (Kv, V ) = im(H1(Kv, V

+)→ H1(Kv, V )).

For the first claim, consider the commutative diagram

H1(Kv, V
+) H1(Kv, V )

H1(Kv,W
+) H1(Kv,W )

So H1
g (Kv,W ) is the image of the above composition. Since the image of the left map is H1(Kv,W

+)div, the claim follows.

For the second claim, consider the commutative diagram

H1(Kv, T ) H1(Kv, V )

H1(Kv, T/T
+) H1(Kv, V/V

+)

So H1
g (Kv,W ) is the kernel of the above composition. Since the bottom map has kernel H1(Kv, T/T

+)tor, the claim

follows. □

Take K = Q and Q∞ the cyclotomic Zp-extension of Q.

Then for a GQ-stable lattice T ⊆ V, we have the induced filtration F iT, and Greenberg defines the following Selmer group.1

Definition 1.7. SGr(Q∞,W ) ⊆ H1(QΣ/Q,WT ) defined by the local conditions: unramified at v ∤ p, and

H1
Gr(Qp,WT ) := ker

(
H1(Qp,WT )→ H1(Ip,WT/F+T )

)
.

This Selmer group correspond to the subset ΞGr ⊆ Homcont(Γ,Z×
p ) of finite order characters. If we look at L(s, V (χ)) for

χ ∈ ΞGr, then their Archimedean factors are all the same2, and they have a pole at 0 of order

rV :=
∑

0≤k<w/2

mk(V ) + (a+(V )−mw/2(V )),

where we let a+(V ) = mw/2(V ) = 0 if w is odd. So we expect that L(s, V (χ)) have a zero of order exactly rV at 0 for all

but finitely many χ. So Greenberg conjectures

Conjecture 1.8. For T ⊆ V an ordinary p-adic representation, XGr(Q∞, T ) is a finitely generated Λ-module of rank rV ∗(1).

The case that rV = rV ∗(1) = 0 is exactly the critical case considered by Deligne, where the special values are supposed

to be algebraic up to a precise period. In the critical case and if V is ordinary, Coates and Perrin-Riou conjecture a precise

p-adic interpolation property of L(0, V (χ)). So there is an explicit conjectured p-adic L-function LV ∈ Frac(Λ).

Then Greenberg also conjectures

Conjecture 1.9. For T ⊆ V an ordinary p-adic representation with rV = rV ∗(1) = 0, the characteristic ideal Ch(XGr(Q∞, T ∗(1)))

is the numerator of LV as ideals in Λ⊗Zp
Qp.

1This is non-standard notation.
2As twisting by finite order characters does not change the Hodge–Tate weights
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Here the ambiguity of powers of p come from an ambiguity in the definition of LV and also on the choice of lattice T.

There should also be a natural way to “normalize” L with respect to T to get the equality in Λ.

Example 1.10. Take T = Zp(k). Then for Σ = {p,∞},

SGr(Q∞,Zp(k)) =

 H1(QΣ/Q,WZp(k)) if k ≥ 1,

H1
unr(Q,WZp(k)) if k ≤ 0.

So if X∞ = lim←−n
Cl(Q(µpn)[p∞] denotes the Λ[∆]-module of last time, we have XGr(Q∞,Zp(k)) = Xωk

∞ ⊗ ϵkcycl if k ≤ 0, and

0→ Hom

(
(lim−→

n

Cl(Q(µpn)[p∞])ω
1−k

, Qp/Zp

)
⊗ ϵk−1

cycl → XGr(Q∞,Zp(k))→ Hom

(
(lim−→

n

(O×,p
Q(µpn ))

ω1−k

, Qp/Zp

)
⊗ ϵk−1

cycl → 0

if k ≥ 1. So indeed, we can see that XGr(Q∞,Zp(k)) has rank 1 iff k ≥ 1 is odd, corresponding to the trivial zero at 1 − k

for even nontrivial Dirichlet characters. The critical cases are if k ≥ 1 is even or k ≤ 0 is odd. So the above conjecture

recovers the Iwasawa main conjecture. Note that for k ≤ 0 even (which is non-critical), the characteristic ideal is not a p-adic

L-function.

2. Greenberg Selmer groups of elliptic curves

Let E/Q be an elliptic curve, and p ≥ 5. We consider TpE ⊆ VpE. Recall that VpE is polarized of motivic weight −1, and

has Hodge–Tate weights 0, 1. For simplicity, we will also assume

(irred) E[p] is an irreducible GQ-module.

Let K be a quadratic imaginary field. For simplicity, we will assume that (NE , DK) = 1, and that p ∤ DK .

We will consider the extensions
K∞

Kcyc
∞ Kanti

∞

Q∞

K

Q

ΓK

Γ+
K

Γ−
K

Γ

and choose topological generators γ, γ+, γ− of Γ,Γ+
K ,Γ−

K . So if T ? = γ? − 1 for ? ∈ {∅,+,−}, we have Λ = ZpJT K, Λ+
K =

ZpJT+K, Λ−
K = ZpJT−K and ΛK = ZpJT+, T−K the corresponding Iwasawa algebras.

For what follows, let F∞/F be one of the four extensions above.

2.1. Greenberg main conjectures. VpE is an ordinary representation at a place p exactly when one of the following:

(1) E has good reduction at p and p ∤ ap(E). That is, E has good non-supersingular reduction.

(2) E has multiplicative reduction.
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In the first case, the reduction Ẽ/Fp has TpẼ ≃ Zp, and the surjection TpE ↠ TpẼ give us the filtration. In the second case,

the surjection comes from Tate’s parametrization E(Qp) ≃ Qp
×
/qZ

val−−→ Q/eZ. There is also a lot of work that has been done

to do Iwasawa theory in the case of supersingular reduction, but we will not consider this here for simplicity.3

In both cases, V/V + is unramified, and Frobenius act by multiplication by αp. In the first case, αp is the unit root of

x2 − apx+ p, and in the second case it is ap.

Then we can define the Greenberg local condition at p as before. As for the places not above p, we have:

Proposition 2.1. Let v ∤ p be a place of F.

(1) H1
unr(Fv,WT ) has finite exponent as an abelian group.

(2) If E has good reduction at v, then H1
unr(Fv,WT ) = 0.

(3) If v only has finitely many primes above it in F∞/F, then H1
unr(Fv,WT ) = 0 as well.

Proof. The third point has the same proof as in the last talk (where we considered the cyclotomic extension of Q).

For L/Fv a finite extension, let E be the Néron model of E over OL. Let E0 be the open subgroup scheme of E whose

generic fiber is E and special fiber is the identity component of the special fiber E0 of E . Then we have an exact sequence

0→ E0(Lunr)→ E(Lunr)→ π0(E0)→ 0

and E(Lunr) = E(Lunr). But by Lang’s theorem, H1(k(L), E0(Lunr)) = 0. Also, H2(k(L), E0(Lunr)) = 0 because Gk(L) has

cohomological dimension 1. Thus H1
unr(L,W ) ≃ H1(k(L), π0(E0))[p∞], which has size H0(k(L), π0(E0))[p∞] since π0(E0) is

finite. In particular, H1
unr(L,W ) = 0 if E has good reduction over L, and in general #π0(E0) kills H1

unr(L,W ) independently

of L. Now the first two claims follow from H1
unr(Fv,WT ) = lim−→n

⊕
w|v H

1
unr(Fn,w,W ). □

We note that the third condition can only happen if F∞/F is a Zp-extension. For Q∞/Q and Kcyc
∞ /K, this happens for

any v ∤ p. For Kanti
∞ /K, we have the following splitting behaviour for v ∤ p: i) if v is split in K, then it is totally inert in

Kanti
∞ /K, ii) if v is inert in K, then it is totally split in Kanti

∞ /K.

Given this, we may define the following Iwasawa theoretic Selmer groups:

Definition 2.2. Let S(F∞, E) ⊆ H1(FΣ/F,WT ) be the Selmer group defined by the unramified local conditions for v ∤ p,

and Greenberg at v | p. Let also S0(F∞, E) be the Selmer group defined by the trivial local conditions for v ∤ p, and Greenberg

at v | p.4

Proposition 2.3. S0(F∞, E) is identified with the direct limit lim−→F⊆F ′⊆F∞
H1

f (F
′,WpE).

Proof. We have H1
f (Fv,W ) = 0 for v ∤ p. So it suffices to see that lim−→n

⊕
w|v H

1
f (Fn,w,W ) = H1

Gr(Fv,WT ). This follows from

Shapiro’s lemma, Proposition 1.6, the fact that H1
? (L, V ) for ? ∈ {e, f, g} are the same for any p-adic field L, as V ≃ V ∗(1)

are pure of weight −1, and the fact that if v | p, lim−→n

⊕
w|v H

1(Fn,w,W
+)/div = 0.

For the last claim, note that for a p-adic field L, we have H1(L,W+)/div ↪→ H2(L, T+)tor and H2(L, T+)tor is dual

to H0(L,W/W+)/div. Thus lim−→n

⊕
w|v H

1(Fn,w,W/W+)/div injects into the dual of lim←−n

⊕
w|v((W/W+)

GFn,w

/div . But for n

sufficiently large, all primes of Fn above p are totally ramified along F∞. So we are looking at lim←−n
((W/W+)

GLn

/div for a

3See Skinner’s notes [Ski18] for some references.
4For comparison with [Ski18], S0(F∞, E) corresponds to S(E/F∞).
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totally ramified Zd
p-extension L∞/L of p-adic fields. But W/W+ is unramified, and the restriction maps (W/W+)GLn →

(W/W+)GLn+1 are identities, and thus the inverse limit is 0. □

For Q∞/Q and K∞/K, one expects the L-values L(1, E, χ) = L(0, V ⊗ χ) to be nonzero most of the time for finite order

characters. Indeed, we have p-adic L-functions LQ∞,E ∈ Λ and LK∞,E ∈ ΛK . For example, for a finite order character

χ : Γ→ Qp
×

of conductor pt, we have

χ(LQ∞,E) = ep(χ)
L(1, E, χ−1)

ΩE
, ep(χ) =

 α−t
p

pt

G(χ−1) if t > 0,(
1− 1

αp

)2−νp(NE)

if t = 0.

LQ∞,E was first constructed by Amice–Vélu and Vishik, see [MTT86]. LK∞,E was constructed by Perrin–Riou [PR88].

We have the Iwasawa main Conjectures5

Conjecture 2.4 (Cyclotomic main conjecture). X(Q∞, E) is Λ-torsion, and its characteristic ideal is (LQ∞,E).

Conjecture 2.5 (Two-variable main conjecture). X0(K∞, E) is ΛK-torsion, and its characteristic ideal is (LK∞,E).

Now we restrict to the case of good ordinary reduction. Note that if Q ⊆ F ⊆ Q∞, then by inflation restriction

H1(F/Q,WGF )→ H1(GQ,Σ,W )→ H1(GF,Σ,W )

and since WGF = E(F )[p∞] is finite and F/Q is cyclic, #H1(F/Q,WGF ) = #Ĥ0(F/Q,WGF ) and Ĥ0(F/Q,WGF ) =

WGQ/TrF/QW
GF = E(Q)[p∞]/TrF/QE(F )[p∞]. In particular, since we are assuming (irred), we have H1

f (Q,W ) ↪→ S(Q∞, E)[T ].

Analyzing it further, one can prove

Proposition 2.6 ([Gre99]). If X(Q∞, E) is Λ-torsion and E has good ordinary reduction at p, then there is an exact sequence

0→ H1
f (Q,W )→ S(Q∞, E)[T ]→

∏
l∈Σ

Kl

where Kl = ker(H1
/f (Ql,W )→ H1

/Gr(Ql,WT )). We have

#Kl =

 |cl(E/Q)|−1
p if l ̸= p,

#(Zp/(1− αp))
2 if l = p.

Furthermore, if H1
f (Q,W ) is finite, then the above exact sequence is also exact on the right.

This implies that

Corollary 2.7. Assume X(Q∞, E) is Λ-torsion. Then we have

r(E/Q) = 0 and X(E/Q)[p∞] is finite ⇐⇒ T ∤ Ch(X(Q∞, E)).

Proof. The above implies that

H1
f (Q,W ) is finite ⇐⇒ X0(Q∞, E)/TX(Q∞, E) is finite.

But the right hand side is a finite quantity times Λ/(T,Ch(X(Q∞, E))). This is finite if and only if T ∤ Ch(X(Q∞, E)). □

5If (irred) does not hold, then the equality of characteristic ideals must be modified by a factor of p
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Together with the main conjecture, this would imply the rank 0 case of Bloch–Kato for E:

r(E/Q) = 0 and X(E/Q)[p∞] is finite ⇐⇒ L(1, E) ̸= 0.

But in the rank 0 case, we can do even better, since

Proposition 2.8 ([Gre99, Proposition 4.8]). X(Q∞, E) has no nonzero pseudo-null submodules.

So the main conjecture would imply that: if L(1, E) ̸= 0, then

#Zp/triv(LQ∞,E) = #H1
f (Q,W ) ·

∏
l∈Σ

#Kl,

that is, that

#Zp/

(
α−2
p (αp − 1)2

L(1, E)

ΩE

)
= |X(E/Q)|−1

p ·
∏
l|NE

|cl(E/Q)|−1
p ·#Zp/(1− αp)

2,

which is simply ∣∣∣∣L(1, E)

ΩE

∣∣∣∣−1

p

=

∣∣∣∣∣∣X(E/Q) ·
∏
l|NE

cl(E/Q)

∣∣∣∣∣∣
−1

p

.

This is the p-part of the BSD formula. See [SU14, Theorem 2] for precise results on this.

2.2. Anticyclotomic extension. The situation over the anticyclotomic extension is more delicate. Write NE = N+N−

where primes in N+ are split in K and primes in N− are inert in K. We will assume that N− is square-free. Then a local

root number computation shows that for any χ : Γ−
K → Z×

p of finite order,

ϵ(E,χ) = (−1)ν(N
−)+1.

In particular, we can only expect L(E,χ, 1) to be nonzero for almost all χ when N− is a product of an odd number of primes.

2.2.1. Case ϵ = 1. In the case ϵ = 1, we have a Jacquet–Langlands transfer of fE to a definite quaternion algebra B of

discriminant N−∞. Up to a certain normalization, this is a modular form ϕ of level N+ of B. A formula of Gross, and

generalized by Shou-Wu Zhang give us that for χ : Γ−
K → Z×

p of finite order,

L(E/K,χ−1, 1)

ΩE
=

4ηE,N+,N−

w2
K

√
−DK

|ϕ(Pχ)|2

where Pχ are certain CM cycles, and ηE,N+,N− ∈ Zp is a factor related to the normalization of the Jacquet–Langlands

transfer.

The periods ϕ(Pχ) can be p-adically interpolated6 as in [BD05, Definition 1.6] into a Lϕ ∈ Λ−
K .

Conjecture 2.9 (Anticyclotomic main conjecture for ϵ = 1). X0(Kanti
∞ , E) is Λ−

K-torsion, and its characteristic ideal is

(Lϕ)
2 in Λ−

K ⊗Zp
Qp.

Remark 2.10. The factor ηE,N+,N− is related to the product of Tamagawa factors at primes of N−, but is not always exactly

that, see for example [RT97].

6This requires p to be ordinary.
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2.2.2. Case ϵ = −1. In this case, we expect X(Kanti
∞ , E) to have rank 1, and we would hope to interpolate L′(E/K,χ−1, 1).

However, we do not do this directly. For this discussion, we need that N is square-free if N− ̸= 1.

A root number computation shows that if χ : Γ−
K → Qp

×
is associated to an unramified algebraic Hecke character of

infinity type (n,−n) for n ≥ 1 and n ≡ 0 mod (p− 1). Then the root number of L(E,χ−1, s) is forced to be 1. So consider

ΞBDP ⊆ Homcont(Γ
−
K ,Qp

×
) the subset of such characters. Then again a Waldspurger-type formula says that

L(E/K,χ−1, 1)

Ω4n
∞

= ηE,N+,N− · (∗) · (L(E/K,χ−1, 1)alg)
2

where Ω∞ is a complex period, and L(E/K,χ−1, 1)alg is the result of applying certain powers of the Mass–Shimura operator

to the Jacquet–Langlands transfer of fE , and then evaluate this at a CM divisor determined by χ. Then one can p-adically

interpolate, for χ ∈ ΞBDP , the quantity

ep(χ)
L(E/K,χ−1, 1)

Ω2n
p

where Ωp is a certain p-adic period and

ep(χ) =

 L(E/Kv, χ
−1, 1)−1 if p = vv in K where v corresponds to Q→ Qp,

1 otherwise.

This corresponds to an element LBDP ∈ (Λ−
K)ur := Zur

p JΓ−
KK. In the case p is split, this was done [BDP13] in the case

N− = 1, [HB15] for general N− (and [LZZ18] over totally real fields). In the case p is non-split, this was done by [AI19].7

Finite order characters χ : Γ−
K → Zp

×
are now outside the interpolation range, but one can prove a p-adic Gross–Zagier

formula. In this sense, LBDP is still capturing the information of L′(E/K, 1) via Gross–Zagier, and more generally Yuan–

Zhang–Zhang [YZZ13].

Theorem 2.11 (BDP formula, [HB15, Proposition 8.13]). We have

triv(LBDP ) = ep(1) · logωE
yN

+,N−

K

where yN
+,N−

K is a certain generalized Heegner point on E(K), and logE(Kv) is the formal group logarithm. There is a similar

formula for other finite order characters.

Remark 2.12. In the case N− = 1, the above yK is the usual Heegner point in E(K), and the above logarithm can be

identified with the logarithm on the formal group associated to E.

Now assume p is split. The characters χ ∈ ΞBDP have Hodge–Tate weights < −1 at v and > 1 at v. So H1
f (Kv, V (χ)) = 0,

while H1
f (Kv, V (χ)) = H1(Kv, V (χ)). Now consider

Definition 2.13. Let S?1,?2(K
?
∞, E) for ?1, ?2 ∈ {Gr, ∅, 0} denote the Iwasawa theoretic Selmer groups where the local

condition at v is given by ?1, and at v by ?2. Here ∅ means no condition, and 0 means the strict condition. We also consider

S0
?1,?2

(K∞, E) having strict local condition for w ∤ p.

Then we expect

7[Kri21] also has a construction of a p-adic L-function in the non-split case, but it lacks an interpolation formula as above, so at the moment we
cannot compare them.
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Conjecture 2.14 (BDP anticyclotomic main conjecture). X0
∅,0(K

anti
∞ , E) is Λ−

K-torsion, and its characteristic ideal is given

by (LBDP )
2 in (Λ−

K)ur ⊗Zp
Qp.

It is also worth pointing out that there is a two-variable version of this. Such p-adic L-function LK∞,BDP ∈ (ΛK)ur

interpolates special values for χ : ΓK → Qp
×

associated to unramified Hecke characters of infinity type (n,m) where n ≥

1,m ≤ −1, and n,m ≡ 0 mod (p− 1). We expect

Conjecture 2.15 (BDP two-variable main conjecture). X∅,0(K∞, E) is ΛK-torsion, and its characteristic ideal is given by

LK∞,BDP in (ΛK)ur ⊗Zp
Qp.

Similarly as before, a control theorem assuming the BDP anticyclotomic main conjecture would give the order of H1
∅,0(K,W ),

in terms of log yK . With some work, this gives E(K)/Z · yn
+,N−

K , in terms of X(E/K)[p∞], which by Gross–Zagier or Yuan–

Zhang–Zhang gives the p part of the BSD formula in rank 1. See [JSW17] for precise results on this.

3. Relation with Euler systems

3.1. Perrin–Riou regulator maps. From the exact sequence 0→ Qp → Bϕ=1
crys → BdR/B

+
dR → 0, we get for a de Rham

V and a padic field F that

0→ V GF → Dϕ=1
crys(V )→ DdR(V )/D+

dR(V )
expV−−−→ H1

e (F, V )→ 0.

Now assume that Dϕ=1
crys(V ) = 0. This also implies that H1

e (F, V ) = H1
f (F, V ). Then the inverse of the above map is the

Bloch–Kato logarithm

logV : H1
f (F, V )

∼−→ DdR(V )

D+
dR(V )

.

Moreover, if also Dϕ=1
crys(V

∗(1)) = 0, then by dualizing the map expV ∗(1) we obtain

exp∗V : H1
/f (F, V )

∼−→ D+
dR(V ).

If F∞/F is a Lubin–Tate extension, V is crystalline and has non-negative Hodge–Tate weights, then Perrin–Riou and

others8 proved that H1
Iw(F, T )/V

GF∞ is a torsion-free Λ-module of rank dimQp V, and constructed a regulator map

LV : H1
Iw(F, T )→H (Γ)⊗Dcris(V )

where H (Γ) is a certain algebra of distributions, with Λ ⊆H (Γ). This regulator map was defined to interpolate Bloch–Kato

logarithms when specializing to V (k) for k ≫ 0 as in [PR94, Théorème], but it also interpolates Bloch–Kato dual exponentials

when specializing to V (k) for k ≪ 0, as proven by Colmez.9

Often, one can choose suitable η ∈ Dcris(V
∗(1)) so that the composition of the above with α ⊗ β 7→ α · ⟨β, η⟩ lies in Λ.

In the case of an ordinary elliptic curve V = VpE over Qp, V
+ and V/V + are of dimension 1, and in in many cases we can

normalize the regulator map to obtain injections with finite cokernel

Log : H1
f (Qp,TT )⊗Λ Λur ↪→ Λur, Col : H1

/f (Qp,TT ) ↪→ Λ.

8See for example [LLZ11].
9See for example [Ber03].
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In settings where we have Euler systems, they often afford global cohomology classes in Sel?(F∞,TT ), whose localizations

are related to p-adic L-functions via these regulator maps. See also [BCD+14] for a good discussion about some cases of this.

We will see some examples in what follows.

3.2. Euler systems. We will denote by Sel(F∞, E) = H1
f (F,TT ), with the modifications similarly to S(F∞, E). In all this

discussion, we assume that p splits in K and that p has ordinary good reduction.10

3.2.1. Cyclotomic main conjecture. In the case of Q∞/Q, Kato [Kat04] produced an Euler system which affords us a

free rank 1 Λ-module

ZKato ⊆ Sel∅(Q∞, E).

Moreover, a deep explicit reciprocity law proven by Kato says that

Theorem 3.1 (Reciprocity law). Under the Coleman map Col : H1
/f (Qp,TT ) ↪→ Λ, locp(ZKato) is sent to LQ∞,E · Λ.

It is known that LQ∞,E is non-zero. This is how we know that ZKato is non zero. It also implies that Sel(Q∞, E)∩ZKato = 0.

By global duality,

0→ Sel(Q∞, E)→ Sel∅(Q∞, E)→ H1
/f (Qp, T )→ X(Q∞, E)→ X0(Q∞, E)→ 0,

and we can divide by ZKato

0→ Sel(Q∞, E)→ Sel∅(Q∞, E)

ZKato
→

H1
/f (Qp, T )

locp(ZKato)
→ X(Q∞, E)→ X0(Q∞, E)→ 0.

Using this, one can prove that the cyclotomic main conjecture is equivalent to:

Conjecture 3.2 (Cyclotomic main conjecture without L-functions). Sel∅(Q∞, E) is a rank 1 torsion-free Λ-module, and

Ch
(

Sel∅(Q∞,E)
ZKato

)
= Ch(X0(Q∞, E)).

Kato proved that X0(Q∞, E) is Λ-torsion, Sel∅(Q∞, E) is rank 1 torsion-free and the “Euler system divisibility”

Ch(X0(Q∞, E)) divides Ch

(
Sel∅(Q∞, E)

ZKato

)
using his Euler system.

Proof of equivalence. Using that Sel∅(Q∞, E) is a rank 1 torsion-free Λ-module, we have that Sel∅(Q∞,E)
ZKato

, and hence Sel(Q∞, E),

are Λ-torsion. But Sel(Q∞, E) ⊆ Sel∅(Q∞, E) and the latter is torsion-free, so this means that Sel(Q∞, E) is zero. From the

exact sequence above, we would thus conclude that X(Q∞, E) is Λ-torsion.

Hence from Kato’s result we obtain the exact sequence of torsion Λ-modules

0→ Sel∅(Q∞, E)

ZKato
→

H1
/f (Qp, T )

locp(ZKato)
→ X(Q∞, E)→ X0(Q∞, E)→ 0.

Now the equivalence of equalities of characteristic ideals follows from the reciprocity law. □

More precisely, the above proof shows that Kato’s divisibility translate to the divisibility

(LQ∞,E) divides Ch(X(Q∞, E)).

10There has been a lot of progress on extending these to non-split p or supersingular reduction.



FALL 2022 LEARNING SEMINAR: IWASAWA THEORY OF ELLIPTIC CURVES 11

Remark 3.3. Skinner–Urban [SU14] adapted the techniques of Ribet and Mazur–Wiles in the context of GU(2, 2) to prove

the opposite divisibility in the two-variable main conjecture under some technical assumptions (crucially, one of them is that

ϵ = 1)

Ch(X(K∞, E)) divides (LK∞,E).

By specializing to the cyclotomic variable, this amounts to

Ch(X(Q∞, E)) · Ch(X(Q∞, EK)) divides (LQ∞,E) · (LQ∞,EK ).

So in combination with Kato’s result, this proves the full cyclotomic main conjecture in some cases.

3.2.2. Anticyclotomic main conjecture. Let’s assume that N− = 1 for simplicity. Then we have the Euler system of

Heegner points. They are (essentially) norm compatible in the anticyclotomic tower. So we get a free rank 1 Λ-module

ZHeeg ⊆ Sel(Kanti
∞ , E).

Even before the work of BDP, Perrin–Riou made the following conjecture

Conjecture 3.4 (Perrin–Riou’s main conjecture). X(Kanti
∞ , E) is a rank 1 Λ-module. There is a pseudo-isomorphism

X(Kanti
∞ , E) ∼ Λ⊕N ⊕N with Ch(N) = Ch

(
Sel(Kanti

∞ ,E)
ZHeeg

)
.

There are analogues of this conjecture in the case N− ̸= 1 by using generalized Heegner points.

This conjecture can be show to be equivalent to the BDP main conjecture by a similar (in principle) but more complicated

analysis as above. See [Cas17, Appendix A] for details. The crucial point is that

Theorem 3.5 (Reciprocity law, [Cas17, Theorem A.1]). Under the big logarithm map Log : H1
f (Qp,TT ) ⊗Λ−

K
(Λ−

K)ur ↪→

(Λ−
K)ur, we have Log(locp(ZHeeg)) = LBDP · (Λ−

K)ur.

As before, the Euler system nature of Heegner points allows one to prove the rank part and the “Euler system divisibility”

(see [How04])

Ch(N) divides Ch

(
Sel(Kanti

∞ , E)

ZHeeg

)
.

Remark 3.6. Xin Wan [Wan20] adapted the argument of Skinner–Urban to GU(3, 1) to prove the opposite divisibility in the

two-variable main conjecture under some technical assumptions for the case ϵ = −1. As before, this affords a proof of the full

anticyclotomic main conjecture in some cases.

3.2.3. Two variable main conjectures. Lei–Loeffler–Zerbes [LLZ14] have constructed a free submodule

ZLLZ ⊆ SelGr,∅(K∞, E)

with two reciprocity laws, which have (essentially) been proven in [LLZ14] and [KLZ17]: under the maps Col : H1
/f (Kv,TT )

∼−→

ΛK and Log : H1
f (Kv,TT )⊗ΛK

Λur
K

∼−→ Λur
K , we have

Col(locv(ZLLZ)) = LK∞,E · ΛK , Log(locv(ZLLZ)) = LK∞,BDP · Λur
K .

Conjecture 3.7 (Two variable main conjecture without L-functions). SelGr,∅(K∞, E) is a torsion free rank 1 ΛK-modules,

ZLLZ is nonzero and Ch(XGr,0(K∞, E)) = Ch
(

SelGr,∅(K∞,E)

ZLLZ

)
.
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By arguments similar as above, given the reciprocity laws, this main conjecture is related to both of the two variable main

conjectures: that Ch(X(K∞, E)) = (LK∞,E) and that Ch(X∅,0(K∞, E)) = (LK∞,BDP ).
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