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0.1 p-adic Hodge Theory
Notations(0.1.0.1).

• Let K be a p-adic field with residue field k,
• K0 = W (k)[1

p ] its maximal unramified subextension.

References are [Theory of p-adic Representations, J. M. Fontaine and Yi Ouyang]. [Cmi Summer
School Notes On p-adic Hodge Theory, O. Brinon and B. Conrad]. [Notes on p-adic Hodge The-
ory, S. Hong], [An Excursion Into p-adic Hodge Theory: From Foundations To Recent Trends, F.
Andreatta, R. Brasca, O. Brinon, X. Caruso, B. Chiarellotto, G. Freixas i Montplet, S. Hattori, N.
Mazzari, S. Panozzo, M. Seveso, G. Yamashita]. [p-adic Hodge Theory For Rigid-Analytic Varieties,
Scholze]

1 CdR-Theorem
Thm.(0.1.1.1)[CdR-Theorem, Faltings/Tsuji]. If X ∈ Schsm,proper /K, then for any r ∈ N, there

exists a canonical isomorphism

γdR(X) : BdR ⊗K Hr
dR(X/K) ∼= BdR ⊗Qp Hr

ét(XK ,Qp).

which identifies filtrations and GalK-actions on both sides. Moreover γdR is functorial in X.

Proof: Cf.[Faltings, p-adic Hodge Theory]. or [p-adic Hodge for Rigid Analytic Varieties, Scholze],
[BMS18]P104. □

Prop.(0.1.1.2)[deRham Comparison for Étale Cohomologies]. By taking the gradation of(0.1.1.1),
by(0.1.7.4), there is a Hodge-like decomposition

CK ⊗Qp Hr
ét(XK ,Qp) ∼=

⊕
a+b=r

CK(−a)⊗K Hb(X,Ωa
X).

Example(0.1.1.3) [Elliptic Curve Case, Tensoring CK Lost Informations]. For E ∈ Ell /K
with multiplicative reduction and j(E) > 1, by?? and??,

E(K) ∼= K
×
/qZ

as GalK-representations for some q ∈ K×. Thus Tp(E) ∼= qQp/Zp and there exists an exact sequence

0→ Zp(1)→ Tp(E)→ Zp → 0.

Then this sequence doesn’t split when tensoring K, but split when tensoring CK , by(0.1.1.2).

Proof: Suppose it splits ofter tensoring K, then it splits after tensoring some finite extension K ′.
Then by projection of K ′ onto Q, we see

0→ Qp(1)→ Vp(E)→ Qp → 0

is splitting as a GalK′-representations. But this is not true, as any system of roots of p □
The Hodge-Tate representation comes from Falting’s theorem on the Hodge-Tate decomposition

on the etale cohomology of smooth proper varieties over a p-adic field K.
But the Hodge-Tate decomposition is too weak, to strengthen it, we want to add a filtration.

The idea is to prolong Hq(X,Ωp
X) to the filtration on the H∗

dR(X/K), which has a filtration with
grj = Hn−j(X,Ωj

X). And we simulate this information on the ring-theoretic level.
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2 Fontaine-Wintenberger Theory of Norm Fields
Cf.[notes on p-adic Hodge, Conrad]intro.

Remark(0.1.2.1). Delete this subsection. Cf.[Conrad].
There exists a E = EK∞/K ∈ p− FField with a canonical isomorphism

GalK∞
∼= GalE .

Thus
RepZp

(GalK∞) ∼= RepZp
(GalE) ∼= φ-ModAE

.

Then because a representation of GalK can be viewed as a representation of GalK∞ with certain
descent datum, and this induces an equivalence of categories

RepZp
(GalK) ∼= (φ,Γ)-ModAE

.

3 Admissible Representations

Def.(0.1.3.1) [Admissible Representations]. Let G ∈ Grptop and E a topological field that G
acts trivially and B a topological E-algebra s.t. B ∈ RepE(G). Then V ∈ Repfd

E (G) is called a
B-admissible representation if B ⊗E V ∈ RepB(G) is trivial.

The category RepB-adm
E (G) is the full subcategory of RepE(G) consisting of f.d. B-admissible

E-representations of G.

Prop.(0.1.3.2)[Inclusions and Admissibility]. Let G ∈ Grptop and E a topological field that G
acts trivially and B1, B2, B a topological E-algebra s.t. B1, B2, B ∈ RepE(G), and B1 ⊂ B,B2 ⊂ B,
B1 ∩B2 = B0, and BG ⊂ B0, then

RepB1-adm
E (G) ∩ RepB2-adm

E (G) = RepB0-adm
E (G).

Proof: The RHS is contained in LHS trivially. For the converse inclusion, if V ∈ RepB1-adm
E (G)∩

RepB2-adm
E (G), there exists elements {ui} ⊂ (B1 ⊗E V )G and {vi} ⊂ (B2 ⊗E V )G s.t.

B ⊗E V = Bu1 ⊕ . . . Bun = Bv1 ⊕ . . . Bvn.

Then the transformation matrix from {ui} to {vi} is an element in GL(n;B) that is invariant under
G, so contained in GL(n;BG). Thus it is clear that

{vi} ⊂ (B2 ⊗E V )G ∩ (B1 ⊗E V )G = (B0 ⊗E V )G,

and then B0 ⊗E V = B0v1 ⊕ . . . B0vn, and V is B0-admissible. □

GalK-Regularity

Def.(0.1.3.3)[G-Regularity]. Situation as in(0.1.3.1), we want to establish a numerical criterion for
recognizing B-admissible representations. B is called G-regular if it satisfies the following three
conditions:

H1 : B is a domain.
H2 :(Frac(B))G = BG, in particular, BG is a field.
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H3 : if b ̸= 0 ∈ B and Eb is stable under G-action, then b ∈ B∗.
Notice a field is clearly G-regular.

Cor.(0.1.3.4). Notice that (H3) implies BG ∈ Field, because for b ∈ BGalK , Eb is clearly stable
under G-action, thus b is invertible.

Also the morphism
αB(W ) : B ⊗BG WG →W

is injective for all finite free W ∈ RepB(G). In particular, this is true for W = B⊗EV, V ∈ Repfd
E (G),

and we get a functor
DB : VectE → VectBG

such that
dimBG DB(V ) ≤ dimE V.

Proof: To show αW is injective, it suffices to show a linear basis {ei} of WG over BG is linearly
independent over B: Suppose ∑

aiei = 0, where ai ∈ B, with the number of nonzero coefficients
minimal, and a1 ̸= 0, then dividing a1 ∈ Frac(B), we assume a1 = 1, and then acting by g − id, we
get ∑

(g(ai)− ai)ei = 0

and this has smaller non-zero elements, unless ai is fixed by g for any g ∈ G, so ai ∈ Frac(B)G = BG

by (H2), contradiction. □

Prop.(0.1.3.5). For any topological G a topological ring B with a G-action, d ∈ N, there is a
bijection between the set of equivalence classes of free B-representations V of G of rank d and the
category of H1(G,GL(d,B)). Moreover, V is trivial iff it is mapped to the distinguished point of
H1(G,GL(d,B)).

Proof: This follows by taking the matrix of g ∈ G w.r.t. a B-basis of V . □

Cor.(0.1.3.6). Let L/K be a Galois extension of fields, then any f.d. L-representation of Gal(L/K)
is trivial.

Proof: This follows from Hilbert’s theorem90??. □

Prop.(0.1.3.7) [B-Admissible Representations]. If B is G-regular(0.1.3.3), V ∈ Repfd
E (G) and

W = B ⊗E V , then the following are equivalent:
• W is trivial, i.e. V is B-admissible.
• αB(W )(0.1.3.4) is an isomorphism.
• dimBG DB(V ) = dimE V .

Proof: 1, 2 are equivalent by(0.1.3.4), as BGalK is a field. Also 2→ 3 is clear.
3 → 2: αW : B ⊗BG WG → B ⊗E V is a B-linear morphism of two finite free B-modules, then

it suffices to show the determinant map is an isomorphism. Let v1, . . . , vd be a E-basis of V and
w1, . . . , wd a BG-basis of WG. Let b be the unique element of B that

αW (v1) ∧ . . . ∧ αW (vd) = bw1 ∧ . . . ∧ wd

then gb = ηb for g ∈ G where η is determined by the identity αW (gv1)∧ . . .∧αW (gvd) = ηαW (v1)∧
. . . ∧ αW (vd). Now the E-space of v1, . . . , vd is V , which is stable under G action, thus η ∈ E, and
then by (H3) b ∈ B∗, so we are done. □
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Cor.(0.1.3.8)[RepB−adm
E (G)]. If B is GalK-regular, then

• RepB−adm
E (G) ⊂ RepE(G) is stable under subobjects and quotients.

• DB : RepB
E(G)→ VectBG is exact and faithful.

• RepB−adm
E (G) ⊂ RepE(G) is stable under taking dual and tensor products. And if V, V1, V2 ∈

RepB−adm
E (G), then there is a natural isomorphism

DB(V1)⊗DB(V2) ∼= DB(V1 ⊗ V2)

and
DB(V )⊗DB(V ∨) ∼= DB(V ⊗ V ∨)→ DB(E) = BG

is a perfect pairing between DB(V ) and DB(V ∨).

Proof: 1: Given an exact sequence 0 → V1 → V → V2 → 0 ∈ RepE(G), tensoring B and taking
G-fixed points, we get an exact sequence

0→ DB(V1)→ DB(V )→ DB(V2)

from which we derive the inequality dimBG DB(V ) ≤ dimBG DB(V1)+dimBG DB(V2). Now we have
dimBG DB(Vi) ≤ dimE Vi by(0.1.3.4), so

dimBG DB(V ) ≤ dimBG DB(V1) + dimBG DB(V2) ≤ dimE V1 + dimE V2 = dimE V.

But this is an equality because V is B-admissible, thus V1, V2 are all B-admissible, and the exact
sequence is in fact an isomorphism by dimension reason.

2: DB is faithful because B ⊗BG DB(V ) ∼= B ⊗E V .
3: There is a natural map

DB(V1)⊗BG DB(V2) = (B ⊗E V1)G ⊗ (B ⊗E V2)G → (B ⊗E (V1 ⊗E V2))G = DB(V1 ⊗E V2),

and dimBG DB(V1 ⊗E V2) ≤ dimE(V1) · dimE(V2), so it suffices to show that this map is injective.
For this, notice that DB(V1 ⊗E V2) ⊂ B ⊗E (V1 ⊗E V2), and after tensoring B,

DB(V1)⊗BG DB(V2) ⊂ B⊗BG (DB(V1)⊗BG DB(V2)) ∼= (B⊗E V1)⊗B (B⊗E V2)→ B⊗E (V1⊗E V2)

is an isomorphism.
To show for the dual preserves B-admissibility, notice that RepB−adm

E (G) is also stable under
exterior products, as exterior products are quotient of tensor products. Notice there is an isomor-
phism

∧(V ∨)⊗ ∧dim V −1V ∼= V ∨,

so it suffices to show for dimV = 1. Let v0 be an E-basis of V , g(v0) = η(g)v0, thenDB(V ) = BG(b⊗
v0) for some b ̸= 0 ∈ B. Thus b/g(b) = η(g). And it is easy to show that DB(V ∨) = BG(b−1 ⊗ v0),
and the natural pairing is perfect. In general, the pairing is also perfect because perfectness of a
pairing can be checked after passing to the determinant space.

□
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4 CK-Admissibility

p-adic Fields

Def.(0.1.4.1) [p-adic Fields]. For p ∈ P, a p-adic field is a field K of characteristic 0 that is
complete w.r.t. a discrete valuation s.t. the residue field is perfect of characteristic p.

Def.(0.1.4.2) [Topological Completion]. If p ∈ P and K is a p-adic field, then we can define
CK = K̂, which is an alg.closed complete valued field. Also denote Cp = CQp .

Prop.(0.1.4.3) [Ax-Sen-Tate]. If F is a p-adic field and if K ⊂ F , then F̂
GalK

= K̂. Thus
L̂Gal(L/K) = K̂ for any alg.ext L/K.

CK-Admissibility

Prop.(0.1.4.4)[Variant of Hilbert’s Theorem90]. Any V ∈ Repfd
K̂ur(Gal(Kur/K)) is trivial. In

particular, any unramified f.d. representation of GalK is K̂ur-admissible thus Cp-admissible, which
is a special case of(0.1.4.5).

Proof: Denote byO the ring of integers of K̂ur and m the maximal ideal, Let W be a f.d. K̂ur-semi-
linear representation, (v1,0, . . . , vd,0) a basis of W over K̂ur and OW the O-span of (v1,0, . . . , vd,0),
then we are going to construct a sequence of tuples (v1,n, . . . , vd,n) that vi,n+1 ≡ vi,n mod mn and
Frobq(vi,n) ≡ vi,n mod mn for all i and n.

Use induction on n: the case n = 1 follows from the fact OW /mOW is trivial as a k-semi-linear
representation of Galk. To prove this, notice there is a finite extension l of k and an l-semi-linear
representation WL of Gl/k that k ⊗l Wl

∼= OW /mOW , then the assertion follows from Hilbert’s
theorem90??.

For general n, we are looking for vectors w1, . . . , wd ∈ OW that Frobq(vi,n + πnwi) ≡ vi,n +
πnwi mod mn+1, which is equivalent to Frobqwi −wi = Frobqvi,n−vi,n

πn in OW /mOW . To prove this,
notice Frobq − id is surjective on OW /mOW , which follows from the fact OW /mOW is trivial as
proved above and Frobq − id is surjective on k.

Now vi,n are Cauchy sequences and they converges to a tuple vi that GKur/K acts trivially and
it is an O-basis of OW , as its reduction modulo m is a basis of OW /mOW , so it is a K̂ur-basis of
W . □

Prop.(0.1.4.5)[Cp-Admissibility]. For (ρ, V ) ∈ Repfd
Qp

(GalK), the following are equivalent:
• V is Cp-admissible.
• #ρ(IK) <∞.
• V is LK̂ur-admissible for some finite extension L/K.

Proof: Cf.[p-adic Period Rings Intro, P18].?
2→ 3: This follows from(0.1.4.4). □

Cor.(0.1.4.6)[H0
conts(GalK ,Cp(ψ)), Sen-Tate].H0

conts(GalK ,Cp(ψ)) =
{
K ,#ψ(IK) <∞
0 ,#ψ(IK) =∞

. In par-

ticular,

H0
conts(GalK ,Cp(m)) =

{
K ,m = 0
0 ,m ̸= 0

.
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Proof: This follows from(0.1.3.7) and(0.1.4.5). For the last assertion, the cyclotomic extension
of K thus also the cyclotomic character of GK is infinitely unramified, thus χs

cycl factors through a
finite quotient iff s = 0. And H0(GalK ,Cp) = K by Ax-Sen-Tate(0.1.4.3). □

Cor.(0.1.4.7). For any n,m ∈ Z,

HomRepCK
(GalK)(CK(n),CK(m))

is of one-dimensional over K if n = m, and vanishes otherwise.

Proof: Let W = HomCp(CK(n),CK(m)) = CK(m−n), then the desired space is WGalK , and the
assertion follows from(0.1.4.6). □

Prop.(0.1.4.8)[H1
conts(GalK ,Cp(ψ)), Sen-Tate]. There is an inf-res exact sequence

0→ H1
conts(ΓK , K̂∞(ψ))→ H1

conts(GalK ,Cp(ψ))→ H1
conts(HK ,Cp(ψ)),

and

H1
conts(HK ,Cp(ψ)) = 0, H1

conts(GalK ,Cp(ψ)) =
{

0 ,#ψ(IK) =∞
a K-vector space of dimension 1 ,#ψ(IK) <∞

.

5 Hodge-Tate Representations

Hodge-Tate Representations

Def.(0.1.5.1) [BH-T]. Let BH-T = CK [t, t−1], B′
H-T = CK((t)), and let GK acts on it by g(ati) =

g(a)χcycl(g)iti. In addition, there is a filtration on B′
H-T given by FilmB′

H-T = tmCp[[t]], then the
graded ring of B′

H-T is isomorphic to BH-T. (0.1.4.6) shows that BGalK
H-T = (B′

H-T)GalK = K.
BH-T and B′

H-T are GalK-regular(0.1.3.3).

Proof: B′
H-T is GalK-regular because it is a field. For BH-T, BH-T ⊂ Frac(BH-T) ⊂ B′

H-T, taking
GalK-fixed points shows (H2). For (H3), if Qpx is stable under GalK and x is not of the form ati,
then we can get a non-trivial GalK-fixed point of CK(j − i), which is impossible by(0.1.4.6). □

Cor.(0.1.5.2)[Hodge-Tate Representations]. Let W ∈ RepCK
(GalK). For k ∈ Z, let

W{k} = {x ∈W |g(x) = χk
cycl(g)x} ⊂W (k)

then ⊕
k∈Z

(CK(k)⊗K W{k})→W

is injective. W is called a Hodge-Tate representation if this is an isomorphism.

Proof: Notice BH-T ∼=
⊕

m∈ZCK(m) ∈ RepCK
(GalK), so

BH-T⊗K(BH-T⊗CK
W )GalK ∼= BH-T⊗K

⊕
m∈Z

(CK(−m)⊗KW{m}) ↪→ BH-T⊗K

⊕
m∈Z

(CK(m)⊗KW{m}).

is injective by(0.1.3.4). □
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Cor.(0.1.5.3) [Hodge-Tate Representations]. Let K be a p-adic field, then V ∈ Repfd
Qp

(GalK)
is called a Hodge-Tate representation if it is BH-T-admissible. The category of Hodge-Tate
representations are denoted by RepH-T

Qp
(GalK).

Then V ∈ Repfd
Qp

(GalK) is Hodge-Tate iff it is B′
H-T-admissible iff CK ⊗Qp V is Hodge-Tate thus

decomposes as
CK ⊗Qp V

∼= CK(n1)⊕ . . .⊕ CK(nd) ∈ RepCK
(GalK).

Proof: If CK ⊗Qp V is Hodge-Tate, then clearly dimK(BH-T ⊗Qp V )GalK = dimQp V , thus V is
BH-T-admissible(0.1.3.7). Conversely, dimK(BH-T ⊗Qp V )GalK = dimQp V = d implies V is Hodge-
Tate by(0.1.5.2). The equivalence with B′

H-T-admissibility is similar. □

Prop.(0.1.5.4). If K ′ ∈ Field,K ′ ⊂ K, then for W ∈ Repfd
CK

(GalK), the natural maps

K ′ ⊗K DK(W )→ DK′(W ), K̂ur ⊗K DK(W )→ D
K̂ur(W )

are isomorphisms. In particular,

Repfd
Qp

(GalK) ∩ RepH-T
Qp

(GalK′) = Repfd
Qp

(GalK) ∩ RepH-T
Qp

(IK) = RepH-T
Qp

(GalK)

Proof: For K ′ ⊂ K, DK(W ) = DK′(W )Gal(K′/K), thus the isomorphism follows from Galois
descent??. For K̂ur, Cf.[Conrad, P20] □

6 Period Rings
Prop.(0.1.6.1). If R ∈ CRing is a p-adically complete, π ∈ R×, p ∈ (π), then the map R → R/p

induces an homeomorphism of monoids:

lim←−
x→xp

R ∼= lim←−
φ

R/p = R♭

Proof: Injectivity: if (an), (bn) ∈ limx→xp R satisfies an ≡ bn mod π for all n, then applying
power lifting??, an

∼= bn mod πn+k for all k, so an = bn.
Surjectivity: for (an) ∈ R♭, choose arbitrary lifting an, then ap

n+k+1 ≡ an+k mod π for all n+k,
so k 7→ apk

n+k is a Cauchy sequence by power lifting?? again, thus converging to some point bn. then
it’s easily checked that bp

n+1 = (lim apk

n+1+k)p = lim apk+1

n+1+k = bn. so (bn) maps to (an).
For the topology: it is clearly continuous, and for the reverse, if (ai), (bi) satisfies that ai ≡

bi mod π for i < k, then the image in lim←−x→xp R satisfies xi ≡ yi mod pk−i for i < k, thus it is
open. □

Cor.(0.1.6.2)[Sharp Map]. From this proposition, we get a multiplicative sharp map:

♯ : R♭ → R : (an) 7→ lim
k→∞

apk

k ,

and its image is just the elements that has a compatible system of pk-th roots x
1

pk . These elements
are also called perfect.

Cor.(0.1.6.3)[Addition in R♭]. From the isomorphism(0.1.6.1) above, we can read what the addition
looks like in the presentation lim←−φ

R: if (fn), (gn) are two elements, then their addition is given by
(hn), where hn = limk(fn+k + gn+k)pk .
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Cor.(0.1.6.4)[Fontaine’s Functor]. By??, the natural map R♭ → R/p induces a map θR : W (R♭)→
R of rings, called the Fontaine’s functor, which writes as ∑

[ai]pi 7→
∑
a♯

ip
i. And we denote

Ainf(R) = W (R♭) the infinitesimal Fontaine’s ring of R.

Prop.(0.1.6.5). If R is p-complete, the Fontaine’s functor θR is surjective iff R/p is semiperfect.

Proof: As R is p-complete, θ is surjective iff it is surjective modulo p. Because its reduction
modulo p is R♭ → R/p is surjective as φ : R/p→ R/p does. □

Prop.(0.1.6.6). By??, if K ∈ Perfd, charK = 0, with tilt C♭, then there is a diagram

Ainf OK

OC♭ OK/(p)

θ

♯

.

Then θ is surjective, and ker θ is generated by some distinguished element ξ = [t] − pu where
u ∈ Ainf is invertible and [t] is the Teichmuller lift.

Proof: θ is surjective by(0.1.6.5). By??, there exists t ∈ Ainf s.t. t♯ = pu′ for some u′ invertible in
OK . Thus u′ = θ(u) for some invertible u ∈ Ainf , then θ([t]− pu) = 0. And ξ generates the kernel
because it generates after modulo ϖ, and and use the fact OK is p-complete. □

Def.(0.1.6.7)[B+
dR]. p is not a zero-divisor in Ainf/(ξn), as in the proof of??, so we can define

B+
dR = lim←−

n

Ainf/(ξn)[1
p

]

Prop.(0.1.6.8)[Fontaine’s Ring BdR].B+
dR is a complete discrete valuation ring with ξ a uniformizer

and the residue field K. Hence we can define BdR = Frac(B+
dR).

Proof: Firstly ξ is not a zero divisor in B+
dR, because if ξx = 0, x = (xn), then for any n > 0,

and some k that pkxn ∈ Ainf/(ξn), so pkxn is annihilated by ξ in Ainf/(ξn), thus pkxn = ξn−1yn for
some yn, because ξ is a non-zero-divisor in Ainf??. So pn−1xn−1 = 0 ∈ Ainf/(ξn), thus xn−1 = 0,
because p is non-zero-divisor in Ainf/(ξn)??.

Next there is a map B+
dR/(ξm) → Ainf/(ξm)[p−1]. This is an isomorphism: it is clearly a

surjection, and if x = (xn) is mapped to 0, then for each n ≥ m, we choose pk(n)xn = 0 ∈ Ainf/(ξn),
then pk(n)xn = ξmyn for a unique yn ∈ Ainf/(ξn−m). So x = ξm · ( yn

pk(n) ) ∈ ξmBdR.(Notice the
uniqueness of yn shows ( yn

pk(n) ) is an element in B+
dR).

Then it follows B+
dR
∼= lim←−m

B+
dR/(ξm), which shows that B+

dR is ξ-adically complete, and m = 1
shows the residue field is equal to K. □

Prop.(0.1.6.9)[Topology on BdR]. The Gauss norms give Ainf a topology, giving BdR a topology.
Then BdR is complete in this topology, and BdR → K is continuous.

With this topology, BdR is abstractly isomorphic to Cp((T )), but not topological isomorphic to
it.

Proof: Cf.[Conrad, P65] or [p-adic Period Rings]P42.?
BdR is abstractly isomorphic to Cp((T )) by Cohn structure theorem, but [Colmez, Une construc-

tion de BdR] proved that K is dense in BdR, so it cannot by topological isomorphic to Cp((T )).
□
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Lemma(0.1.6.10). Let ε = (. . . , ε1, ε0) ∈ O♭
CK

s.t. ε0 = 1 and ε1 ̸= 1, then |ε− 1| = p
p−1 .

Proof:

|ε− 1| = |(ε− 1)♯|CK
= | lim

n→∞
(εn − 1)pn |CK

= lim
n→∞

pn|εn − 1| = lim
n→∞

pn

pn−1(p− 1)
= p

p− 1

□

Prop.(0.1.6.11)[Qp-Line in BdR]. θ([ε]− 1) = ε0 − 1 = 0, so [ε]− 1 ∈ ker θ, and we can define

tε = log([ε]) =
∑
n≥1

(−1)n−1 ([ε]− 1)n

n
∈ B+

dR.

Then this is a uniformizer in the CDVR B+
dR. Moreover, any other choice of ε is of the form ε′ = εa

for a ∈ Zp, then tε′ = atε, and γ(tε) = χcycl(γ)t for any γ ∈ GalK .

Proof: tε is a uniformizer because [ε]− 1 is: [ε1/p]− 1 is a unit in BdR, and

η = [ε]− 1
[ε1/p]− 1

= 1 + [ε1/p] + . . .+ [ε(p−1)/p]

is distinguished, because if η =
∑

[cn]pn, consider reducing to the residue field: W (OC♭
K

) →
W (OC♭

K
/t), then ε = 1 by(0.1.6.10), and η = p, thus |c0| < 1, |c1 − 1| < 1, so it is distinguished??,

thus a uniformizer by(0.1.6.6).
For the last assertion, by the formal property of log, it suffices to show that if ai → a ∈ Zp, then

[εai ]→ [εa] ∈ BdR. Then it suffices to show that for a ∈ Zp, |a| small,

|[εa]− 1| → 0.

And this can be done with the topology given in(0.1.6.9)? □

Cor.(0.1.6.12). gr(BdR) ∼= BH-T.

Cor.(0.1.6.13).BdR is GalK-regular, but B+
dR is not GalK-regular.

Proof: BdR is GalK-regular because it is a field. B+
dR is not GalK-regular because Qptε is stable

under GalK-action but tε is not invertible in B+
dR. □

Prop.(0.1.6.14) [Galois Actions]. GalK acts on OCK
/(p) thus acts on OC♭

K
and on Ainf . Then

Fontaine’s functor θ : Ainf → OCK
is GalK-equivariant, thus ker θ is GalK-stable, so GalK-acts on

B+
dR and BdR, and BdR → CK is GalK-equivariant.

Prop.(0.1.6.15). There is a canonical lifting of K → CK along B+
dR → CK , and it is GalK-

equivariant.
However, this embedding is not continuous, thus there is no embedding CK ⊂ B+

dR.

Proof: K0 = W (k)[1
p ] ⊂ W (O♭

CK
)[1

p ] = Binf ⊂ BdR, and it follows from Hensel’s lemma that any
element in K lifts uniquely to an element of B+

dR, so K ⊂ B+
dR, and is GalK-invariant, by uniqueness

and the fact BdR → CK is GalK-equivariant(0.1.6.14).
For the last assertion, if the embedding is continuous, the B+

dR → CK has a section, and the
filtration splits so BdR ∼= BH-T. □
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Prop.(0.1.6.16). K = BGalK
dR = (B+

dR)GalK

Proof: Firstly K ⊂ BdR and is invariant under GalK by(0.1.6.15). On the other hand, the exact
sequence

0→ Film+1BdR → FilmBdR → Cp(m)→ 0??.

induces an injection

BGalK
dR ∩ FilmBdR/B

GalK
dR ∩ Film+1BdR ↪→ Cp(m)GalK .

Thus BGalK
dR = BGalK

dR = K. □

Def.(0.1.6.17)[deRham Representations]. Situation as in(0.1.6.16), for V ∈ Repfd
Qp

(GalK), V is
called a deRham representation iff V is BdR-admissible, or equivalently

dimK(BdR ⊗Qp V )GalK = dimQp V.

The category of deRham representations of GalK are denoted by RepdR
Qp

(GalK).

7 deRham Representations

Prop.(0.1.7.1)[CK-admissible Representations are deRham]. RepCK -adm
Qp

(GalK) ⊂ RepdR
Qp

(GalK).

Proof: For V ∈ RepCK
Qp

, by(0.1.4.5), there exists a finite extension L/K s.t. V is LK̂ur-admissible.
Thus V is deRham as LK̂ur ⊂ BdR??. □

Prop.(0.1.7.2)[Potentially deRham are deRham]. Let K ′ ⊂ CK be another p-adic field, then

RepQp
(GalK) ∩ RepdR

Qp
(GalK′) = RepdR

Qp
(GalK).

In particular, being deRham is not sensible to ramifications, which is a bad feature compared to
being crystalline or semistable.

Proof: Because K̂ur ⊂ (̂K ′)ur is of finite degree, it suffices to prove for two cases: K ′/K is finite
or K ′ = K̂ur. But the finite case follows from Galois descent the same as(0.1.5.4). The second case
follows from [Conrad, P80]? □

Prop.(0.1.7.3)[Filtered DdR]. For V ∈ Repfd
Qp

(GalK), there is a finite filtration Fil on DdR(V ) s.t.

FilmDdR(V ) = (tmBdR ⊗E V )GalK ⊂ DdR(V ).

Prop.(0.1.7.4)[deRham Representations are Hodge-Tate]. For V ∈ Repfd
Qp

(GalK),
• there is an injection of graded vector spaces

gr(DdR(V )) ↪→ DH-T(V ),

• If V ∈ RepdR
Qp

(GalK), the map in item1 is an isomorphism, and V is Hodge-Tate.

• If V ∈ RepdR
Qp

(GalK),
BdR ⊗K DdR(V ) ∼= BdR ⊗Qp V

identifies filtrations.
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Proof: 1: Consider the exact sequences

0→ Film+1BdR → FilmBdR → Cp(m)→ 0.

Tensoring V and taking GalK-invariants give injections

h : grm(DdR(V )) ↪→ V (m)GalK ,

giving the injection gr(DdR(V )) ↪→ DH-T(V ).
2: If V ∈ RepdR

Qp
(GalK), this is an isomorphism by dimension reason, and V is Hodge-Tate by

dimension reason.
3: Firstly notice Film(BdR ⊗K DdR(V )) ⊂ Film(BdR ⊗Qp V ) is trivial, thus it suffices to show

that the induced map

f : gr(BdR ⊗K DdR(V ))→ gr(BdR ⊗Qp V ) = BH-T ⊗Qp V

is an isomorphism. But notice

BH-T ⊗ gr(DdR(V )) g−→ gr(BdR ⊗K DdR(V )) f−→ BH-T ⊗Qp V

equals BH-T⊗h, so g is an isomorphism because it is surjective, and thus f is also an isomorphism.
□

Cor.(0.1.7.5). 1-dimensional Hodge-Tate representations are deRham.

Proof: This is because if V ∼= Qp(ψ) where ψ is a character of GalK , and Cp ⊗E V ∼= Cp(m),
then by Sen-Tate(0.1.4.6), ψ(−m) is potentially unramified, thus Cp-admissible by(0.1.4.5), and
thus deRham(0.1.7.1). □

Remark(0.1.7.6)[DdR Insensitive to Ramifications].DdR is far from fully faithful. In fact, any
unramified representation V is deRham by(0.1.7.2), and DdR(V ) is a simple filtration with graded
ring Kd[0], but V can be different from trivial representation.

Prop.(0.1.7.7). The functor DdR : RepdR
Qp

(GalK) → FilVectK is exact, and commutes with taking
tensor products and duals.

Proof: For an exact sequence 0→ V1 → V → V2 → 0 ∈ RepdR
Qp

(GalK), there are exact sequences

0→ FilmDdR(V1)→ FilmDdR(V )→ FilmDdR(V2),

Then we can use the fact Vi are Hodge-Tate(0.1.7.4) to show that these sequences are also exact on
the right.

For tensor products, notice it suffices to prove for the graded ring, but then it reduces to show
that the graded structure on DH-T(V ) is compatible with tensor products. And this is clear.

Taking dual follows from the fact the perfect pairingDdR(V )⊗DdR(V )→ K preserves filtrations.
□

Prop.(0.1.7.8)[Extensions of deRham Representations]. If 0→ V1 → V → V2 → 0 is an exact
sequence in Repfd

Qp
(GalK) s.t. V1, V2 are deRham, and the Hodge-Tate weights of V1 are strictly

larger than that of V2, then V is deRham.
In particular, any upper-triangular representation with diagonal (Qp(a1),Qp(a2), . . . ,Qp(an))

with a1 > a2 . . . > an is deRham.
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Proof: By twisting, we may assume that all Hodge-Tate weights of V1 are positive and Hodge-Tate
weights of V2 are non-positive. There is an exact sequence

0→ DdR(V1)→ DdR(V )→ DdR(V2) = Fil0DdR(V2)

so it suffices to show that Fil0DdR(V ) → Fil0DdR(V2) is surjective. But it follows from?? that
there is an exact sequence

Fil0DdR(V )→ Fil0DdR(V2)→ H1
conts(GalK , B+

dR ⊗Qp V1).

So it suffices to show that H1(GalK , BdR ⊗Qp V1) = 0. The exact sequence

0→ tm+1
ε BdR ⊗Qp V1 → tmε BdR ⊗Qp V1 → Cp(m)⊗Qp V1 → 0

induces a surjection H1
conts(GalK , tm+1

ε BdR ⊗Qp V1) ↠ H1
conts(GalK , tmε BdR ⊗Qp V1) by hypothe-

sis. Notice B+
dR is tε-complete, so we can use approximation technique similar to?? to show that

H1
conts(GalK , tmε BdR ⊗Qp V1) = 0. □

Remark(0.1.7.9). For an example of V ∈ RepH-T
Qp

(GalK) that is not deRham, Cf.[Conrad, P78].

Def.(0.1.7.10)[Hodge-Tate Weights]. For V ∈ RepdR
Qp

(GalK), V is said to have Hodge-Tate weights
−i with multiplicity di if dim gr−i(DdR(V )) = di.

Then Qp(n) has a single Hodge-Tate weight n.

Geometric Interpretations

Prop.(0.1.7.11)[deRham Comparison for Étale Cohomologies]. If X ∈ Schsm,proper /K, then
for any r ∈ N, Hr

ét(XK ,Qp) ∈ RepdR
Qp

(GalK), and

Hr
dR(X) ∼= DBdR(Hr

ét(XK ;Qp)), Hn−p(X; Ωp
X) ∼= grpHr

dR(X).

This shows we can recover the de Rham cohomology of X from the étale cohomology, and the
Hodge-Tate weights of Hr

ét(XK ,Qp) lies in in [−r, 0].

Conj.(0.1.7.12)[Fontaine-Mazur]. Let F ∈ NField and (ρ, V ) ∈ RepQp
(GalF ) that satisfies:

• For a.e. v ∈ Σfin
F , ρv is unramified.

• For any v ∈ S(p), the representation ρv is deRham.
Then V appears as a subquotient of some Hr

ét(XF ,Qp)(m) where X ∈ Varsm,proper /F and m ∈ Z.

Proof: Emerton and Kisin proved some of the two-dimensional cases, Cf.[The Fontaine-Mazur
conjecture for GL(2), Kisin], [Emerton, Local-Global Compatibility in the p-adic Langlands Pro-
gramme for GL(2)Q]?. □

Remark(0.1.7.13). It follows from proper base change?? and(0.1.1.1) that any such cohomology
group satisfies the requirement.

This conjecture is very strong, for example, the étale cohomology of smooth proper varieties
are known to satisfy many good properties, like Weil conjecture, and Fontaine-Mazur conjecture
implies that those properties can be derived via linear algebra data.

The local version of this conjecture is known to be false.
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8 (φ, Γ)-Modules
Main References are [Fontaine90: Représentations p-adiques des corps locaux],[Fontaine94a: Le

corps des périodes p-adiques] and [Fonatine94b: Repésentations p-adiques semi-stables]. [Foun-
dations of Theory of (φ,Γ)-modules over the Robba Ring], [Berger, Galois representations and
(φ,Γ)-modules], [Fontain-OuYang, p-adic Galois Representations].

Def.(0.1.8.1)[φ-module]. Let M be a A-module and σ : A → A is a ring map. Then an additive
map φ : M → M is called σ-semi-linear iff φ(am) = σ(a)φ(m) for a ∈ A. A φ-module over
(A, σ) is an A-module M with a σ-semi-linear φ. The category of φ-modules over A is denoted by
φ-ModA.

Giving a A-module M and a φ : M →M , there is a map Φ : A⊗σ,A M = σ∗M →M : λ⊗m→
λφ(m), which is a A-module map iff φ is σ-semi-linear.

If we define a ring Aσ[φ] as the free group A[X] modulo the relation Xa = σ(a)X and ring
relations in A, then it is a ring. Then a φ-module over (A, σ) is equivalent to a left Aσ[φ]-module.

Thus φ-ModA is a Grothendieck Abelian category with tensor products, and moreover, the
kernel as Aσ[φ]-module is the same as the kernel as a A-module.

Def.(0.1.8.2). If there is a map α : (A1, σ1) → (A2, σ2) that commutes with σi, then we have a
pullback from ΦM1 to ΦM2: α∗(M) = (A2)σ2 [φ]⊗(A1)σ1 [φ] M(0.1.8.1).

Def.(0.1.8.3)[Étale φ-Modules]. If A is Noetherian, then a φ-module M is called étale iff it is f.g
and the corresponding Φ : σ∗M →M in(0.1.8.1) is a bijection. The subcategory of étale φ-modules
is denoted by φ-Modét.

In case when σ is a bijection, Φ is a bijection iff φ is a bijection.

Proof: Note that in this case σ∗M →M is a bijection by λ⊗m→ σ−1(λ)m, so the rest is easy.
□

Def.(0.1.8.4)[Dual étale φ-Modules]. Cf.[Fontaine-Ouyang, P26].?
Prop.(0.1.8.5). If A is Noetherian and Aσ is flat, then φ-Modét is Abelian category with tensor

products.

Proof: 0 is the zero object, the canonical sum&product are clearly étale . And we need to check
the kernel and cokernel are étale . But we have an exact sequence 0→ ker→M → N → Coker→ 0
so we tensor with Aσ to get a morphism of sequences that σ∗M →M,σ∗N → N are both bijective,
so by 5-lemma, it is bijection at kernel and cokernel, so they are étale . □

Prop.(0.1.8.6)[Fp-Representations are étale φ-Modules]. Let E ∈ Field, charE = p, then for
any V ∈ Repfd

Fp
(GalE), V is Esep-admissible, and

DEsep(V ) = (Esep ⊗ V )GalE

has a φ-action, and it is an étale φ-module.

Proof: V is Esep-admissible by??. To show it is étale , it suffices to show that φ : DEsep(V ) →
DEsep(V ) is bijective. Let e1, . . . , en be a basis of DEsep(V ), and v1, . . . , vn be a basis of V , then
e = vB for some matrixB ∈ GL(n;Esep). Then if [φ]e = Ae for A ∈ Mat(n;E), then A = B−1φ(B),
and det(A) = det(B)p−1 ̸= 0, so φ is bijective. □
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Galois Representations and Étale φ-Modules

Notations(0.1.8.7). Let E ∈ Fieldp, denoted OE = Coh(E)??, and E = Frac(OE) = OE [1
p ]. E has

a natural Frobenius.

Prop.(0.1.8.8). By the functoriality of Cohen rings?, if OEur = Coh(E)Eur = OEur [1
p ], then there

is a bijection Gal(Eur/E) ∼= GalE . Thus there are GalK-action and φ-action on OEur , Eur and by
continuity extends to actions on OÊur , Êur, and

(OÊur)GalE = E , (Eur)GalE = OE , (OÊur)φ=id = Qp, (Eur)φ=id = Zp.

Proof: ? □

Prop.(0.1.8.9). For M ∈ φModft(OE), M is étale over OE iff M/(p) is étale over E.

Proof: □

Def.(0.1.8.10) [Effective φ-Modules]. An effective φ-module over E is a φ-module (D,φ) ∈
φ-ModE s.t. there is a complete OE-lattice M of D that φ(M) ⊂M .

Def.(0.1.8.11)[Stably-Étale φ-Modules]. A stably-étale φ-module over E is a φ-module over
E s.t. there exists a φ-stable OE -lattice in E that is an étale φ-module over OE . Then the category
of stably-étale φ-modules is a Tannakian category, denoted by φ-Modst . ét(OE).

Proof: ? □

Prop.(0.1.8.12). Any V ∈ RepO
Êur

(GalE) is trivial.

Proof: Cf.[Fontaine-Ouyang]P34.? □

Thm.(0.1.8.13)[Classification of RepZp
(GalE)]. For V ∈ RepZp

(GalE),

M(V ) = (OÊur ⊗Zp V )GalE

is an étale φ-module over OE , and for any M ∈ φ-Modét(OE),

V(M) = (OÊur ⊗OE M)φ=id

is a Zp-representation of GalE . And these two functors define an equivalence of categories:

M : RepZp
(GalE) ∼= φ-Modét(OE) : V.

Proof: To show M(V ) is étale , Cf.[Fontaine]P35.
By(0.1.8.14), we have an isomorphism

OÊur ⊗Zp V(M) ∼= OÊur ⊗OE M,

and by(0.1.8.12),
OÊur ⊗OE M(V ) ∼= OÊur ⊗Zp V.

Thus
V(M(V )) = (OÊur ⊗OE M(V ))φ=id ∼= (OÊur ⊗Zp V )φ=id = V (0.1.8.8),

M(V(M)) = (OÊur ⊗Zp V(M))GalE ∼= (OÊur ⊗OE M)GalE = M(0.1.8.8).
□
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Lemma(0.1.8.14). Situation as in(0.1.8.13),

OÊur ⊗Zp V (M) ∼= OÊur ⊗OE M.

Proof: Cf.[Fontaine-Ouyang]P36.? □

Thm.(0.1.8.15)[Classification of RepQp
(GalE)].

• For V ∈ RepQp
(GalE),

D(V ) = (Êur ⊗Qp V )GalE

is an stably-étale φ-module over E , and there is a natural isomorphism

Êur ⊗E D(V ) ∼= Êur ⊗Qp V.

• for any D ∈ φ-Modsst. ét(E),
V(D) = (Êur ⊗E D)φ=id

is a Qp-representation of GalE , and there is a natural isomorphism

Êur ⊗Qp V(D) ∼= Eur ⊗E D,

• These two functors define an equivalence of Tannakian categories:

M : RepQp
(GalE) ∼= φ-Modsst. ét(E) : D.

Proof: Cf.[Fontaine-Ouyang]P37.? □

Cor.(0.1.8.16). Isomorphism classes of d-dimensional Qp-representations of GalE are in bijection
with the isomorphism classes of matrixes GL(d;OE) where

A ∼ B ⇐⇒ ∃P ∈ GL(d; E), B = P−1Aφ(P ).

(φ,Γ)-Modules

Def.(0.1.8.17)[(φ,Γ)-modules]. If A is a topological ring with a Frobenius φ, and A has an action
of a topological group Γ that commutes with σ, then a (φ,Γ)-module M is a φ-module M over A
with a semi-linear action of Γ that commutes with φ.

If A is complete and φ is flat, then an étale (φ,Γ)-module M is a (φ,Γ)-module that the
φ-module structure is étale (0.1.8.3).

Similar to φ-modules, (φ,Γ)-modules forms a Grothendieck Abelian category with tensor prod-
ucts.?

Thm.(0.1.8.18)[Classification of RepQp
(GalK)].
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