
Faculty of Science
Department of Mathematics

Random-Turn and Richman Games

לחלוקת כמנגנונים ומכרזים אקראיות
קומבינטורים במשחקים תורות

by

Michael Simkin

under the supervision of

Professor Gil Kalai

Submitted in partial fulfillment of the
requirements for the degree of Master of Science

October 2014
תשרי תשע"ה

 באהבה, לאמא ואבא

תורות לחלוקת כמנגנונים ומכרזים אקראיות
(תקציר) קומבינטורים במשחקים

2014 באוקטובר 24

כחול שחקנים, שני בו משחק הוא שחקנים שני בין אפס סכום קומבינטורי משחק
מוגדרים הגרף מקודקודי חלק מכוון. גרף של קשתותיו על אסימון לסירוגין מזיזים ואדום,
המשחק אזי אלה, מקודקודים לאחד מגיע האסימון המשחק במהלך אם סופיים. כקודקודים

בקודקוד. שתלוי אפס) (סכום תשלום מקבלים והשחקנים מסתיים
פורמאלית:

(V,EB ∪ ER) ש כך G = (V,EB , ER, T, ν) חמישיה, הוא קומבינטורי משחק 0.1 הגדרה
פונקצית היא ν : T → Rו הסופיים, הקודקודים קבוצת הוא T ⊆ V סופי, מכוון גרף הוא
הצלעות קבוצת היא ERו הכחולות, הצלעות קבוצת נקראת EB הכחול. לשחקן התשלום
המותרים המהלכים כקבוצות אותן לפרש ויש זרות, בהכרח אינן אלה קבוצות האדומות.
v ∈ V \T ולכל יוצאות, צלעות תהינה לא v ∈ T שלכל דורשים אנו בהתאמה. ואדום, לכחול

.ERב והן EBב הן T ל מסלול יהיה
(V,EB ∪ ER) הגרף על הילוך הוא s ∈ V מקודקוד המתחיל קומבינטורי משחק של מהלך
לסירוגין. ואדומות, כחולות בו הצלעות ואשר אינסופי, שהוא או Tב מסתיים ,sב מתחיל אשר

מכסה המודל ראשית, מתמטיקאים. בפני מעניין אתגר מציבים קומבינטורים משחקים
מתמטית הבנה כן על באיקס־עיגול. וכלה משח החל "אמיתיים", משחקים של רבות דוגמאות
קיים שנית, בהחלט. ראויה מטרה ־ יריביו נגד יתרון לחוקר לתת עלולה אלה משחקים של
אחד, מצד ביעילות: לבצע שניתן מה ובין מתמטית, להוכיח שניתן מה בין עמוק פער
של קיום מבטיחות תורות, מבוססי שהם העובדה עם יחד אלה, משחקים של הסופי האופי
אין כללי באופן שני, מצד אינסופי. משחק של אפשרות או אופטימליות, טהורות אסטרטגיות
מאשר שחוץ מכיוון המשחק. גרף כל על לעבור מבלי אופטימליות אסטרטגיות למצוא דרך

מבטיחה. אינה זו גישה בגודלו, עצום המשחק גרף במיוחד פשוטים במקרים
קומבינטורי. במשחק התורות חלוקת במנגנון אפשריים שינויים בוחנים אנו זו בעבודה
את מבצע בהטלה הזוכה כאשר מטבע, מטילים תור כל לפני אקראיים תורות עם במשחקים
מכרז, מתבצע תור כל לפני ריצ'מן) דוד המתמטיקאי שם (על ריצ'מן במשחקי הבא. המהלך
מפעילים שוות ההצעות שתי (אם השני לשחקן הצעתו סכום את משלם במכרז המנצח כאשר
כחול שוות וההצעות שבמקרה להחליט אפשר העניין, לצורך שוויון. שבירת מנגנון איזשהו
למשחקים ביחס הבא. המהלך את יבצע מהשחקנים איזה ומחליט במכרז), כמנצח יוכרז
ודוד שפילד סקוט שרם, עודד פרס, יובל של עבודתם את סוקרים אנו אקראיים, תורות עם
לוב, דניאל לזרוס, אנדרו של עבודתם את סוקרים אנו ריצ'מן, למשחקי ביחס ב[4]. ווילסון
בין הקשר על עומדים אנו בנוסף ו[2]. ב[3] אולמן ודניאל סטרומקויסט, וולטר פרופ, ג'יימס

העבודה. בנושא הקשורות אלגוריתמיות בשאלות דנים אנו לבסוף המשחקים. סוגי שני

1

אנו המשחק. סוגי שני עבור אופטימליות אסטרטגיות באפיון עוסקת עבודתינו מירב
בחירה. משחקי אקראיים: תורות עם משחק של מסויים בסוג מתחילים

אקראיים תורות עם בחירה משחקי

לאוסף אותו ומוסיף Sמ איבר בוחר בתורו שחקן כל .S סופית קבוצה יש בחירה במשחק
שקולה דרך שנוצרה. בחלוקה תלויה התשלום פונקציית נבחרו, S איברי שכל לאחר שלו.
המשחק בתחילת .f : {−1, 1}n → R פונקציה קובעים זו: היא בחירה משחקי על לחשוב
שטרם ערך עם משתנה בוחר השחקן תור, בכל ידועים. אינם x1, . . . , xn המשתנים ערכי
כל של שערכם לאחר .(−1 ואדום ,1 יהיה שהערך לקבוע חייב (כחול ערכו את וקובע נקבע

.f (x1, . . . , xn) הוא לכחול התשלום נקבע, המשתנים
בנוסף, תורות. n לאחר יסתיים תמיד אקראיים תורות עם בחירה שמשחק לב נשים
והן המשחק, ערך את הן לחשב ניתן שנבחרו האיברים מספר על הפוכה אינדוקציה מביצוע
אופטימליים. משחקים בניתוח שונה בגישה נוקטים אנו זאת, עם אופטימליות. אסטרטגיות

הבאה: היא זאת לעשות לנו שמאפשרת התכונה

.f : {−1, 1}n → R התשלום פונקצית עם אקראיים תורות עם בחירה משחק יהי 0.2 משפט
שלו המשתנה כאשר f הפונקציה תוחלת דהיינו ,Ex∼{−1,1}n [f (x)] הוא המשחק ערך אזי
כחול עבור אופטימלית שהיא אסטרטגיה כל יע"כ, .{−1, 1}n מהקבוצה אחיד באופן מוגרל
xi המשתנה בחירת במשחק כלשהו בשלב שאם זה במובן אדום, עבור גם אופטימלית היא

אדום. בשביל גם אופטימלית xi בחירת אזי כחול, עבור אופטימלית היא

בניסיון יושקעו רבים שמאמצים שייתכן שבעוד אומר הוא ראשית, השלכות. כמה זה למשפט
תוצאת כזו, אסטרטגיה לפי משחקים אכן השחקנים שני אם אופטימלית, אסטרטגיה למצוא
כדלהלן: אופטימליות בחירות לאפיין מאפשר הוא שנית, אקראי. משחק כמו תיראה המשחק

ממקסם הוא אםם במשחק פתיחה כמהלך אופטימלי הוא xi המשתנה בחירת 0.3 משפט
הערך: את

f̂ (i) = 2 (E [f (x) |xi = 1]− E [f])

לאנליזת הקשר .xi למונום המתאים פורייה מקדם זהו מקרי: אינו f̂ (i) בנוטציה השימוש
התוחלת על חסמים כך לתת ניתן השאר ובין תחום, מאותו בתוצאות שימוש מאפשר פורייה

אופטימלי.1 במשחק המהלכים מספר של

אקראיים תורות עם כלליים משחקים

אליה לב לשים שעלינו הראשונה האבחנה קומבינטורי. משחק G = (V,EB , ER, T, ν) יהי
אנו זאת, עם אחד. בהסתברות להסתיים כזה למשחק תגרום אסטרטגיות זוג כל שלא היא
בהסתברות להסתיים למשחק לגרום יכול מהשחקנים אחד שכל כך v ערך שקיים מראים
אם לפחות −vו כחול הוא השחקן אם לפחות v היא אליו התשלום שתוחלת ולהבטיח 1

ריצ'מן: פונקציית הוא זו לתוצאה המפתח אדום. הוא השחקן

המשתנים כל אשר עד יימשך שהמשחק דורשים אנו שהרי ,n תמיד הוא המהלכים מספר שנתנו התיאור 1לפי

הסופי הערך יהיה מה לדעת מנת על המשתנים של חלקית השמה מספיקה רבות פונקציות עבור זאת, עם נקבעים.
המשתנים. של ההשמות בהמשך תלוי לא f של שהערך לאחר מסתיים שהמשחק לומר ניתן זה ובמצב הפונקציה, של

2

R : V → R פונקציה היא G עבור ריצ'מן פונקציית קומבינטורי. משחק G יהי 0.4 הגדרה
המקיימת:

.R (v) = ν (v) ,v ∈ T לכל •

.R (v) = 1
2 (R

+ (v) +R− (v)) ,v ∈ V \ T לכל •

.R− (v) = min {R (w) | (v, w) ∈ ER} ,R+ (v) = max {R (w) | (v, w) ∈ EB} כאשר

משחק מאפיינים שהם ומראים ריצ'מן, פונקציות עבור ויחידות קיום תוצאת מראים אנו
הבאה: בצורה אופטימלי

בהסתברות יסתיים שהמשחק המבטיחה טהורה אסטרטגיה יש (אדום) לכחול 0.5 משפט
.(−R (v)) R (v) לפחות הוא הרווח ושתוחלת אחד,

לעשות כחול ועל ,v בקודקוד כרגע נמצא האסימון שאם אומרת האסטרטגיה בפשטות,
החל נוסף כלל (ישנו R+ (v) = R (w) ש כך w לקודקוד האסימון את להזיז עליו מהלך,

בתקציר). בו נדון לא אך כזה, מהלך לבצע אחת מאפשרות יותר שיש במקרה

ריצ'מן משחקי

יש מהשחקנים אחד לכל המשחק בתחילת הבא: באופן מתנהלים ריצ'מן משחקי כאמור,
מכרז מתבצע תור כל לפני .1 הוא הכסף סכום כי נניח .r ולאדום ,b לכחול כסף, כמות
הצעתו סכום את משלם הגבוהה ההצעה את שמציע מי הבא. המהלך את לעשות הזכות על

לכחול). כניצחון נחשב הדבר שוות ההצעות שתי (אם מהלך ומבצע ליריב,
האנליזה ריצ'מן. משחקי של לאנליזה גם המפתח הם ריצ'מן פונקציות מהשם, שנרמז כפי
יש שבסופם משחקים ז"א בלבד, אפשריות תוצאות שתי בעלי במשחקים מתמקדת כאן
אלה, משחקים עבור .ν (T) ⊆ {0, 1} עבורם משחקים אלה פורמאלית, ומפסיד. מנצח

הבא: המשפט ע"י מאופינות האופטימליות האסטרטגיות

של ריצ'מן פונקצית R ותהי קומבינטורי, משחק G = (V,EB , ER, T, ν) יהי 0.6 משפט
אסטרטגיה יש לכחול אזי r < R (v) אם .v ∈ V בקודקוד מתחיל שהמשחק נניח .G

אופטימלית. אסטרטגיה יש לאדום אזי r > R (v) אם אופטימלית.

וכלל המכרז, בשלבי להציע כמה מחליטים לפיו כלל מרכיבים: שני כוללת עצמה האסטרטגיה
יהיה הכלל האסימון, הזזת לגבי במכרז. ניצחון של במקרה האסימון את להזיז כיצד הקובע
שניתן ממה מורכב יותר הכלל במכרז, ההצעות לגבי אקראיים. תורות עם במשחקים כמו
כאשר ,R+ (v)−R (v) + ε תהיה ההצעה ,v ∈ V ב נמצא האסימון אם אך בתקציר, לפרט

האחרונים. המהלכים בסדרת התלוי ביטחון" "מקדם הוא ε
הן האופטימלית האסטרטגיה את קובעת הריצ'מן שפונקציית לכך שמעבר לב נשים
בדיוק הוא R (v) יותר: פשוט קשר ישנו אקראיים, תורות עם במשחקים והן ריצ'מן במשחקי
החלק בדיוק והוא ,vב המתחיל אקראיים תורות עם במשחק לנצח כחול של ההסתברות

ריצ'מן. במשחק ניצחון להבטיח מנת על לעבור צריך שאדום הכסף של היחסי
יותר עם ריצ'מן משחקי עבור גם אופטימליות אסטרטגיות לתאר מאפשר האחרון המשפט
עבור שהגדרנו ריצ'מן בפונקציית תלוי אינו הניתוח זה במקרה אולם אפשריות, תוצאות משתי

אקראיים. תורות עם משחקים

3

אלגוריתמיות שאלות

של ריצ'מן פונקצית מציאת של בבעייה דנים אנו אלגוריתמיות. בשאלות דנה העבודה יתר
גרפים ועבור מכוון, בלתי הוא שהגרף במקרים פולינומיאלים אלגוריתמים ומראים נתון, גרף
אלגוריתם מראים אנו מכן לאחר משתיים. קטנה הקודקודים כל של היציאה דרגת בהם

במדויק. לחסום יודעים איננו ריצתו זמן את אשר כלליים, גרפים עבור
מראים אנו אקראיים, תורות עם בחירה במשחקי אופטימלית בחירה מציאת בשאלת
בחירה ,1−δ בהסתברות מוצא, ואשר O

(
1
ε2 ln

(
1
δ

))
בזמן פועל אשר הסתברותי אלגוריתם

אופטימלית. בחירה של מהערך היותר לכל ε במרחק הוא בה בוחרים אם המשחק שערך
פונקציה לחשב מנת על אופטימלי משחק "לנצל" ניתן הבאה: לשאלה נדרשים אנו לבסוף,
משחק עבור ואופטימלית טהורה אסטרטגיה S תהי הבאה: בצורה f : {−1, 1}n → R
שלב בכל .f (x) את לחשב רוצים שאנו נניח .fל המתאים אקראיים תורות עם הבחירה
נאמר xi = 1 אם אזי ,S (A,B) = i ואם ,(A,B) היא החלקית ההשמה אם במשחק,
עד המשחק את נמשיך בה. מנצח שאדום נאמר xi = −1 ואם הבאה, בהטלה מנצח שכחול
יעילה, זו שיטה כמה השאלה נשאלת .f (x)ל שווה תהיה זו תוצאה ידועה. המשחק שתוצאת

אחרות. לשיטות ביחס לקרוא, שעלינו xמ הביטים מספר של במונחים
זה עץ כיצד היא והשאלה ,f עבור החלטה עץ בונה לעיל שתוארה השיטה למעשה,
נוספת שאלה .f עבור אופטימלים דטרמיניסטים החלטה עצי של הזמן לסיבוכיות משתווה
עבור החלטה עצי של המקום לסיבוכיות ביחס משתווה זאת בצורה שנבנה העץ כיצד היא
מראים אנו לכך, בניגוד אופטימלית. היא זו שבנייה ב[1] שוער האחרונה, השאלה לגבי .f

זמן. במונחי ולא מקום במונחי לא אופטימלית, אינה זו בניה עבורה לפונקציה דוגמא

References

[1] Miao Chen. Toward optimal tree construction of monotone functions.
Master's thesis, Duquesne University, August 2005.

[2] Andrew J Lazarus, Daniel E Loeb, James G Propp, Walter R
Stromquist, and Daniel H Ullman. Combinatorial games under auction
play. Games and Economic Behavior, 27(2):229�264, 1999.

[3] Andrew J Lazarus, Daniel E Loeb, James G Propp, and Daniel Ullman.
Richman games. Games of no chance, 29:439�449, 1996.

[4] Yuval Peres, Oded Schramm, Scott She�eld, and David B Wilson.
Random-turn hex and other selection games. American Mathematical

Monthly, 114(5):373�387, 2007.

4

3

Abstract. A two player, zero-sum, combinatorial game is one in which two
players, Blue and Red, take turns moving a token along the edges of a finite
directed graph. Some nodes are designated terminal nodes. Should the token
reach one of these nodes play ends, and a zero-sum payoff associated with the
node is made. We do not allow any chance element (such as the rolling of dice)
in the formulation of these games.

These games are particularly enticing to mathematicians for a number of
reasons. First, the model covers many examples of “real” games, from Chess
to Tic-Tac-Toe. Thus, the study of these games may give one an edge against
one’s opponents - always a worthy goal. Second, there is a profound gap
between what is mathematically provable and what is practicably accomplish-
able: While the finitary, deterministic, nature of these games ensures the exis-
tence of deterministic optimal strategies (or else the possibility of a mutually
enforced draw, with the token never reaching a terminal node), in general
there is no way to discover an optimal strategy other than backwards induc-
tion over the game graph. As most games have unmanageably large graphs,
this approach is of little use.

We study variations on the turn-allocation mechanism of combinatorial
games. In random-turn games, each turn is allocated according to the result
of the toss of a coin. In Richman games, an auction is held before each turn,
with the higher bidder paying his bid to his opponent and earning the right to
decide which player makes the next move. Regarding the former, we review
the work of Peres, Schramm, Sheffield, and Wilson in [18]. Regarding the
latter, we review the work of Lazarus, Loeb, Propp, Stromquist and Ullman
in [10] and [9].

The bulk of our work deals with characterizing optimal play in each of
these game types. It turns out that even if the graph of the underlying com-
binatorial game contains cycles, at least one player (in Richman games) or
either player (in random-turn games) can force the game to end using an op-
timal strategy. This is shown by associating a real-valued “Richman function”
to the nodes of the graph. After giving a suitable definition, we show that the
Richman function of a graph exists and is unique, and maps each node to the
expected value of an optimally-played random-turn game beginning from that
node. We then demonstrate how the Richman function governs optimal play
of both random-turn and Richman games. Thus, there is a deep connection
between the two variants.

We next analyze a special instance of combinatorial games: Selection
games. In a selection game each player, in turn, selects an element from some
finite set S and adds it to his collection (Hex is a well-known example). Once all
elements of S have been selected, the payoff function depends on the partition
of S. An equivalent formulation is to set some f : {−1, 1}n → R. At the start
of the game, the variables x1, . . . , xn are undetermined. Each turn the player
selects one of the variables and assigns it a value (1 for Blue, −1 for Red). Once
all variables have been assigned, the payoff to Blue is f (x1, . . . , xn). We show
that selection games played under the random-turn rules have the property
that optimal play results in a random variable assignment. Thus the value of
the game is the expectation Ex∼{−1,1}n [f (x)]. From this fact it follows that
a variable is an optimal selection (for either player) iff it maximizes its related
degree one Fourier coefficient, f̂ (i). The connection to Fourier analysis of
Boolean functions allows us to to describe some properties of optimal random-
turn games, such as expected game length.

The remainder of our work considers algorithmic questions. We discuss
various ways to compute the Richman function of a graph, and show a polyno-
mial time probabilistic algorithm for finding a near-optimal move in a selection
game. We close by considering the feasibility of optimally-played random-turn
selection games as a computational model for the underlying Boolean function.
In particular we show that an optimal selection is not necessarily an optimal
root of a decision tree for the same function, thus disproving a conjecture by
Miao Chen in [3].

Contents

Chapter 1. Introduction 5

Chapter 2. Preliminaries 8
2.1. Combinatorial Games 8
2.2. Introduction to Boolean Analysis 11

Chapter 3. Random-Turn Games 14
3.1. Random-Turn Selection Games 14
3.2. General Random-Turn Games 21

Chapter 4. Richman Games 27
4.1. Win-or-Lose Richman Games 27
4.2. Multi-Valued Richman Games 29

Chapter 5. Algorithms and Complexity 31
5.1. Algorithms for Determining Optimal Moves 31
5.2. Optimal Play of Random-Turn Selection Games as Decision

Procedures 36

Chapter 6. Future Work 41

Appendix A. Influence-Based and Optimal Decision Trees for Level-2
Recursive Ternary Majority 42

Bibliography 45

4

CHAPTER 1

Introduction

A two player combinatorial game is one in which two players take turns moving
a token along the edges of a given directed graph. Some nodes are terminal nodes,
with an associated payoff to each player. Should the token be moved to one of
these nodes play will end and each player will be awarded the payoff associated
with the node. Many popular games can be modeled this way: Chess, Checkers,
and Go are some examples. Games where the available moves at each node depend
on the outcome of some chance event (such as the role of the dice in Monopoly
or backgammon) are not considered combinatorial games. The main pursuit of
combinatorial game theorists is determining which of the two players (if any) has a
winning strategy when play is started on a given vertex, and what that strategy is.

Perhaps the earliest result of modern game theory, Zermelo’s theorem1, implies
that when the underlying graph is acyclic there exist mutually optimal strategies
for the two players discoverable by backwards induction on the graph, using the
minimax algorithm. Moreover this algorithm is computationally efficient as a func-
tion of the size of the graph. When the underlying graph contains directed cycles
there may also be the possibility of a mutually forced draw (i.e. play the players
employ strategies that ensure the token never reaches a terminal node). This too is
discoverable by induction on the graph. In practice, however, this algorithm is of
little use as all but the most trivial games have graphs so large that any algorithm
taking the entire graph into account is infeasible.

This situation, in which a conceptually simple algorithm to determine the op-
timal move is known, but where the algorithm is practically useless is tantalizing.
It has invited the use of non-trivial mathematical techniques to aid in the analysis
both of specific combinatorial games as well as broad classes of such games. It has
also resulted in the invention (or discovery, depending on the reader’s philosophical
bent) of games solely for the purpose of analyzing their mathematical properties.
For the most part such games are uninspiring from a player’s point of view, but a
select few of them (most notably Hex, described as example 7) have become popular
among the general game playing public.

Example 1. Tic-Tac-Toe: The best-known combinatorial game is probably
the children’s game of Tic-Tac-Toe, or noughts and crosses. The game is played
on a three by three grid. Each turn, the player to move selects an empty cell and
colors it his color (or marks it with his shape, usually either ’x’ or ’o’). The first
player to color three cells of a row, column, or diagonal with his color wins. If the
grid is fully-colored without any of the above being monochromatic, the game is
declared a tie. For many of us, the first game-theoretic result we discovered was

1For an interesting discussion of the history of Zermelo’s theorem, as well as a translation of
the German article where the theorem first appeared, see [20].

5

1. INTRODUCTION 6

that optimal play of Tic-Tac-Toe always leads to a draw. Some of us may have
even developed perfect strategies, that never lose and are able to capitalize on an
opponent’s mistake and turn the game into a win.

kn Tic-Tac-Toe is played on the points [k]
n. Each player, in turn, selects one

of these points and colors it his own color. The winner is the first to color a
combinatorial line of length k his own color (a combinatorial line is a progression
of elements of [k]

n s.t. the difference between successive elements is non-zero and
is equal to 0, 1 or −1 in each coordinate). If the board is fully-colored with no
monochromatic combinatorial lines, the game is declared a tie. In this notation,
standard Tic-Tac-Toe is 32.

Not much is known about optimal strategies for Tic-Tac-Toe in dimensions
higher than 2. This is true even for small board sizes: While 33 is easily shown
to be a first player win, for 43 this is not so easy. For 53 it is not even known
whether the game is a first player win or a draw2. Since any game of 53 must be
at least 9 turns long (as the winner must claim 5 points), there is a trivial lower
bound of 53!

(53−9)! ≈ 262 on the size of the game tree (which in actuality is far larger).
This is enough to make backtracking impractical. Thus, even as simple and small
a game as 53 Tic-Tac-Toe requires either significant computational power or non-
trivial mathematics (and quite likely both) to analyze. For more on Tic-Tac-Toe,
and combinatorial game theory generally, the reader is referred to Jószef Beck’s
Combinatorial Games: Tic-Tac-Toe Theory ([1]).

An outgrowth of the study of combinatorial games is the study of games derived
from them by making small changes to the rules. One such possibility is to change
the way turns are allocated. In Richman games an auction is held before each
turn, with the winner paying his bid to the opponent and earning the right to
decide which player makes the next move. In random-turn games a coin is flipped
before each turn with the winner deciding on the next move. Both these models are
interesting in their own right as natural models for real-world conflicts where the
players don’t necessarily alternate their actions. Furthermore, both models offer
examples of graphs for which the combinatorial game seems difficult, whereas the
Richman or random-turn version is computationally tractable.

Selection games are a commonly played subset of combinatorial games. Here,
each player in turn selects a previously-unselected element from some fixed set, and
adds it to his own collection. Once all elements of the original set have been selected
the payoff to the players is a function of the partition of the original set between
the two players. Hex is an example of a selection game, with the elements being
the hexagonal tiles. Go and Tic-Tac-Toe are not, since in the former stones can be
removed over the course of play, thereby “unselecting” previously selected elements,
and in the latter the order in which elements are selected potentially influences the
outcome of the game.

This work surveys the main results for Richman games and random-turn games,
and demonstrates how techniques from the analysis of Boolean functions can be
used to study Richman and random-turn selection games. This includes a charac-
terization of the optimal move at each point of play, a study of algorithmic methods

2Interestingly, it’s known that for all board sizes, the game is not a second player win, and
therefore is either a first player win or a draw. This can be proved with the very elegant strategy-
stealing argument (see [8]). Unfortunately, strategy-stealing doesn’t help in constructing optimal
strategies.

1. INTRODUCTION 7

for finding such moves, as well as lower bounds on the expected length of optimally
played random-turn games.

CHAPTER 2

Preliminaries

2.1. Combinatorial Games

This section briefly defines combinatorial games and related concepts. Although
this work does not deal directly with combinatorial games, they give the basic
structure to both Richman and random-turn games.

As mentioned in the introduction, a (zero-sum) two player combinatorial game
is one in which two players, Blue and Red, take turns moving a token along the
edges of a given directed graph. At each vertex, the set of edges along which the
two players may move the token may not be the same (for example, if the game is
Chess, players may only move pieces of their own color). Some nodes are terminal
nodes, with an associated payoff to each player. Should the token be moved to one
of these nodes play will end and each player is awarded the payoff associated with
the node. Formally:

Definition 2. A two player, zero-sum, alternating-turn combinatorial
game is a tuple G = (V,EB , ER, T, ν), where (V,EB ∪ ER) is a finite directed
graph, T ⊆ V is the set of terminal nodes, and ν : T → R is the payoff function.
We assume that for each v ∈ V , there is a path from v to T in both EB and ER.
We also assume that there are no outgoing edges from T . The edges in EB are
called blue edges, and those in ER are red. For notational convenience, we set
E = EB ∪ ER.

Definition 3. Let G = (V,EB , ER, T, ν) be a combinatorial game. If ν (T) ⊆
{−1, 1} G is called a win-or-lose game.

Definition 4. A play of G starting at a node v ∈ V is a walk on the graph
(V,E), alternating between edges from EB and ER, that is either infinite or else
reaches a terminal node t ∈ T , in which case the payoff to Blue is ν (t) and to Red
is −ν (t) and the play is said to terminate. A pure strategy for Blue (Red) is
a function deciding which edge to follow given an odd-length (even-length) proper
prefix of a play of G. A player is limited to choosing edges of his own color. Given
strategies for Blue and Red as well as a starting vertex, a play of G is induced, and
if the play terminates so is a payoff to each player.

Remark. The distinction between blue and red edges is not always important.
First, alternating-turn games can always be set up in such a way that the vertices
are a disjoint union between vertices where it is always Blue’s turn anytime the
token reaches the vertex, and those where it is always Red’s turn. In this case
letting EB = ER has no effect on the game. Second, in some contexts (as in
[10, 9]), the games considered are only those for which EB = ER. Finally, in some
cases (for example monotone selection games, defined later) it would never be an
advantage for a player to take an edge of the opposing player’s color, hence allowing

8

2.1. COMBINATORIAL GAMES 9

a single edge set E = EB∪ER would have no effect on optimal play. In cases where
there is a single edge set, we’ll sometimes use the notation (V,E, T, ν).

Example 5. Tic-Tac-Toe: kn Tic-Tac-Toe was described as example 1. The
game graph for kn is defined recursively as follows:

• The completely uncolored board (represented by (∅, ∅)) is a node.
• For every node (A,B):

– If A (B) contains a combinatorial line of length k, then (A,B) ∈ T
and the payoff is 1 (−1).

– Otherwise, if A ∪B = [k]
n then (A,B) ∈ T and the payoff is 0.

– If neither of the above hold then for every x ∈ [k]
n\(A ∪B),(A ∪ {x} , B)

and (A,B ∪ {x})are nodes with a blue edge from (A,B) to (A ∪ {x} , B)
and a red edge from (A,B) to (A,B ∪ {x}).

2.1.1. Selection Games. Selection games are a special kind of combinatorial
game. These are played over a finite set S and Blue and Red take turns selecting
previously unselected elements of S until the set S is partitioned into the sets B,R
of elements selected by Blue and Red, respectively. Once S has been partitioned,
the payoff is decided according to some function f : 2S → R, f (B) being Blue’s
payoff and −f (B) being Red’s. These can be thought of as combinatorial games:

• The vertices are pairs of disjoint subsets of S.
• For any vertex (A,B) and x ∈ S \(A ∪B) there is a blue edge from (A,B)

to (A ∪ {x} , B) and a red one to(A,B ∪ {x}).
• The terminal nodes are partitions of S.
• For any partition (A,B) of S, the payoff function is ν (A,B) = f (A).

Note that the underlying game graph for selection games is acyclic; in particular,
plays of selection games always terminate.

An equivalent way of thinking about selection games is to set some function
f : {−1, 1}n → R. At the start of the game the values of the variables x1, . . . , xn
are unknown. During each turn, a player selects some hitherto unassigned variable
and assigns its value (with the limitation that Blue must set a variable’s value to
1 and Red to −1). Once all the variables have been set to x1, . . . , xn, the payoff to
Blue is f (x1, . . . , xn). Such a game is completely specified by the function f , and
every function f : {−1, 1}n → R specifies a selection game. In the following, we
will use these two specifications of selection games interchangeably.

Definition 6. Let S the underlying set of a selection game, and let f be the
payoff function. If for all A ⊆ B ⊆ S, f (A) ≤ f (B), (S, f) is called a monotone
selection game.

For monotone selection games, we may as well let EB = ER, since it’s never
advantageous for a player to select an element and “donate” it to his opponent.

Example 7. Hex: One well known selection game is Hex, where the players
alternate claiming tiles on a rhombus-shaped hexagonal grid (see figure 2.1.1). Tiles
are considered adjacent if they share a side. Each player is assigned a (different)
pair of opposing edges of the rhombus, and the winner is the player who, when all
tiles have been claimed, has a chain of adjacent tiles linking his two sides of the
board. Figure 2.1.1 shows a completed game of Hex.

Usually, play is stopped once such a chain has been created, even if the board
hasn’t been filled. Although our definition of selection games requires that play

2.1. COMBINATORIAL GAMES 10

Figure 2.1.1. A completed game of Hex, showing a winning chain
for Blue (image by Jean-Luc W (own work), licensed under CC-
BY-SA-3.0-2.5-2.0-1.0 (http://creativecommons.org/licenses/by-
sa/3.0), via Wikimedia Commons).

continue until all elements have been selected, Hex under the normal rules may
still be considered a selection game since once a player has managed to connect his
two sides his opponent is prevented from doing so, no matter how the remaining
tiles are colored. This is not difficult to prove, but requires some care: if the game
were played with a different definition of adjacency, for example sharing a point,
it wouldn’t be true. A less trivial fact is that there is always a winner: no matter
how the board is filled, one of the players will manage to connect his sides.1 Taken
together, these facts imply that Hex’s payoff function takes on only two values,
which may as well be 1 (Blue wins) and −1 (Red wins). Thus Hex is a monotone,
win-or-lose, selection game. Although any Boolean-valued function can be made
into a selection game (and we’ll see more examples later), Hex is probably the best
example of a “real” game in this category.

Example 8. Weak Tic-Tac-Toe: At first glance kn Tic-Tac-Toe might seem
to be a selection game: Blue and Red take turns selecting from a set until one of
them has a “winning” set. However, the winner of a game of Tic-Tac-Toe is the
first player to claim k spaces in a row. Unlike in Hex, the first player to select a
“winning” set isn’t necessarily the only one: If play continues until the board is full
a situation may arise where both players have claimed such sets. This scenario is
not covered under the “regular” rules of Tic-Tac-Toe.

Weak kn Tic-Tac-Toe is the same as kn Tic-Tac-Toe, except that Blue wins iff
he manages to claim a combinatorial line of length k (equivalently, Red wins iff he
prevents Blue from claiming such a line). This has the effect of transforming kn
Tic-Tac-Toe into a monotone, win-or-lose, selection game.

Example 9. Maker-Breaker Games: In a Maker-Breaker game over a set
S, there is a family A ⊆ 2S of winning sets. Let B ⊆ S be Blue’s set at the
end of the game. Then Blue wins if there is some A ∈ A s.t. A ⊆ B, and
otherwise Red wins. Thus Blue, as Maker, aims to select one of the winning sets,
and Red, as Breaker, aims to prevent him from doing so. All Maker-Breaker games

1For (two different) straightforward proofs, see [6, 5]. While this fact may be intuitive, it
is mathematically deep. In particular, in [5] Gale shows that it is equivalent to the Brouwer
fixed-point theorem (after suitably generalizing Hex, the equivalence is true in any dimension).

http://creativecommons.org/licenses/by-sa/3.0
http://creativecommons.org/licenses/by-sa/3.0

2.2. INTRODUCTION TO BOOLEAN ANALYSIS 11

are monotone, win-or-lose, selection games. Both Hex and Weak Tic-Tac-Toe are
examples of Maker-Breaker games.

The study of selection games occupies a significant portion of combinatorial
game theory. In general, there is no better way to discover optimal strategies than
induction on the game tree. Since the game tree is very large (having 3n nodes -
at each game position, each element may be either unselected, Blue, or Red), this
is impractical. As a result for many games, including Hex and Tic-Tac-Toe (for
dimensions higher than 2), not much is known, mathematically, regarding optimal
play. It is therefore surprising that in the random-turn and Richman versions of
these games, a great deal can be said about optimal play ([10, 9, 18]), including a
strong characterization of the optimal strategies for these games. We present these
results in the later chapters.

2.2. Introduction to Boolean Analysis

The main tool we use to analyze random-turn selection games is the Fourier
transform for Boolean functions. This chapter introduces the definitions and results
we will need. As Boolean analysis as such is not our main concern, most of the
propositions are given without proofs. For a more thorough text on the subject,
see [14]. For the most part we’ve followed the notations and definitions employed
therein.

Boolean analysis concerns itself with the space H of functions f : {−1, 1}n → C
(for some fixed n). Although most of the functions we encounter will have more
restricted ranges (usually R or even just {−1, 1}), it’s useful to carry out analysis
in the more general setting since the above functions form an inner product space
with the inner product: 〈f, g〉 = 2−n

∑
x∈{−1,1}n f (x) g (x). Note that another

way of looking at this is to consider {−1, 1}n as a sample space with the uniform
distribution. Then H is the set of complex random variables over this space, and
〈f, g〉 = Ex∼{−1,1}n

[
f (x) g (x)

]
. From probability theory we know the latter is an

inner product. Depending on the context, in the following we will use the inner
product and expectation notations interchangeably. We will sometimes omit the
subscript of the expectation, when the underlying probability space is clear from
the context.

2.2.1. The Fourier Transform. Fourier analysis introduces a specific or-
thonormal basis for H, and then attempts to deduce the properties of various func-
tions from their coefficients in this basis. The natural place to start, therefore, is
by defining the basis, which we do right after laying out the following notation:

Definition. Let x ∈ {−1, 1}n. For every 1 ≤ i ≤ n, let xi denote the pro-
jection of x to its ith coordinate. We will use the following compact notations to
signify a change to a single coordinate of x: x+i = (x1, . . . , xi−1, 1, xi+1, . . . , xn),
x−i = (x1, . . . , xi−1,−1, xi+1, . . . , xn), and x⊕i = (x1, . . . , xi−1,−xi, xi+1, . . . , xn).

Definition 10. For every S ⊆ [n], the parity function χS ∈ H is defined as:
χS (x) = (−1)

|S∩{i:xi=−1}| =
∏
i∈S xi. For a singleton S = {i} ⊆ [n], we will abuse

notation and write χi instead of χ{i}.

Proposition 11. The set of parity functions {χS : S ⊆ [n]} forms an orthonor-
mal basis for H.

2.2. INTRODUCTION TO BOOLEAN ANALYSIS 12

The Fourier transform of a function in H is simply its representation as a linear
combination of parity functions:

Definition 12. Let f ∈ H, and S ⊆ [n]. Then f̂ (S) = 〈f, χS〉. The values{
f̂ (S)

}
S⊆[n]

are called the Fourier coefficients of f , as explained in the next

proposition. For a singleton S = {i} , 1 ≤ i ≤ n, we will abuse notation and write
f̂ (i) in place of f̂ ({i}).

Proposition 13. f =
∑
S⊆[n] f̂ (S)χS

2.2.2. Monotone Functions and Influences. As our original motivation
for studying Boolean functions came from selection games, it is useful to think
what properties Boolean functions associated with such games might have. The
foremost one is monotonicity: In many selection games, it is never harmful to
add elements to one’s own set. That is, if A ⊆ B ⊆ S, then f (A) ≤ f (B) . In
particular, for win-or-lose games this property translates into the effect that once
Blue has selected a winning set, continued play of the game will not affect the
outcome (in fact, a win-or-lose selection game is monotone if and only if it is a
Maker-Breaker game). This property is translated to Boolean functions as follows:

Definition 14. For each n, define the partial order relation on {−1, 1}n as:
for x, y ∈ {−1, 1}n, x ≤ y if for every i, xi ≤ yi. Let f : {−1, 1}n → R is said to be
monotone if ∀x, y ∈ {−1, 1}n , x ≤ y =⇒ f (x) ≤ f (y).

A key notion in Boolean analysis, both generally and (as we will show) in
its application to random-turn selection games, is that of a variable’s influence.
Roughly, this is the expected change one is able to effect in the function’s value if
one has the ability to change the given variable once all the other variables have
been decided randomly.

Definition 15. Let f : {−1, 1}n → R. The influence of the ith coordinate is

defined as: Infi [f] = E

[(
f(x+i)−f(x−i)

2

)2
]
.

For functions with range {−1, 1}, this is related to the notion of a variable
being pivotal:

Definition 16. Let f : {−1, 1}n → {−1, 1}. For x ∈ {−1, 1}n, the ith coordi-
nate is pivotal if f (x) 6= f

(
x⊕i
)
.

This is related to influence in the following way:

Claim 17. Let f : {−1, 1}n → {−1, 1}. Then for every i, Infi [f] = Pr
[
f (x) 6= f

(
x⊕i
)]
.

That is, the influence of the ith variable is the probability that it is pivotal.

In the special case of a monotone function f : {−1, 1}n → {−1, 1}, a variable’s
influence is related nicely to its degree-one Fourier coefficients:

Proposition 18. Let f : {−1, 1}n → {−1, 1} be monotone. Then for every i,
Infi [f] = f̂ (i).

2.2. INTRODUCTION TO BOOLEAN ANALYSIS 13

Figure 2.2.1. A decision tree for the function f (x, y, z) =
(x̄ ∧ z̄) ∨ (x ∧ y ∧ z).

2.2.3. Decision Trees for Boolean Functions. Among the questions with
which we’ll concern ourselves is the expected length of play of a game. For a
selection game f : {−1, 1}n → R this is equivalent to the number of input bits read
before the value of the function is known. This in turn is closely related to the
notion of a decision tree for a Boolean function.

A decision tree is a binary tree that encodes an algorithm for computing a
Boolean function: One starts at the tree’s root, where the name of one of the
variables is written. One examines the value of the variable. If it is 1, one proceeds
to the right child, and if it is −1, one proceeds to the left. This is repeated,
with each internal node labeled with the name of one of the variables, until a leaf
is reached, where the value of the function is written. Thus, each x ∈ {−1, 1}n
induces a particular walk on the tree, starting at the root and ending at a leaf.
Given a distribution on {−1, 1}n, a distribution on the random walks on the tree
is induced, and the sequence of vertices visited is a Markov chain. We’ll use the
following notations:

Definition 19. Let T be a decision tree for a Boolean function f : {−1, 1}n → R,
and let D be a distribution on {−1, 1}n. Let ` (T (x)) be the length (i.e. the num-
ber of edges, or equivalently the number of times a variable is examined) of the
walk x ∈ {−1, 1}n induces on T . Then the expected number of variables read to
compute f is Ex←D [` (T (x))]. Let T be the set of all decision trees computing f .
The expected decision tree complexity of f with distribution D is defined as
∆D (f) = minT∈T Ex∼D [` (T (x))]. If D is clear from the context, we’ll omit the
subscripts.

Remark. Although this definition suits our purposes, it is somewhat unusual.
It’s more common to define the complexity of a decision tree as the maximum,
among all distributions on {−1, 1}n, of the expected length of a walk on the tree.
Note that this is equal to the height of the tree. The (deterministic) decision tree
complexity of a function is then the minimal complexity of a decision tree computing
it. The expected decision tree complexity is also distinct from the randomized de-
cision tree complexity, which is the minimum, amongst all probability distributions
of decision trees computing f , of the maximum among probability distributions on
{−1, 1}n of the expected length of a walk on the tree.

Example 20. Figure 2.2.1 shows a decision tree for the function f (x, y, z) =
(x̄ ∧ z̄)∨(x ∧ y ∧ z). When D is the uniform distribution on {−1, 1}n, the expected
number of variables read is 9

4 . This is also equal to ∆D (f).

CHAPTER 3

Random-Turn Games

Random-turn games are the main object of study in this work. A random-turn
game is derived from an alternating-turn game by changing the rules so that instead
of the two players alternating turns, each time a move is to be made a fair coin is
flipped, and whichever player wins the coin toss is allowed to make the next move.
Other than the change in the order of play, the rules remain the same: The players
may only move the token along edges of their own color, and the game ends with
the associated payoff if the token reaches a terminal node.

The random and alternating-turn versions of a game are very different. In
particular, while the alternating version has no probabilistic element, probability
plays a crucial role in both play and analysis of random-turn games. As will be
shown, it is precisely this that makes some random-turn selection games susceptible
to techniques from Boolean analysis. The highlight of this approach will be to give
a characterization of the optimal move for such games, first shown in [18]. We’ll
also discuss the expected length of optimally-played random-turn selection games,
and implications for the decision tree complexity of certain functions.

3.1. Random-Turn Selection Games

In the following we’ll consider selection games being played on the set [n], which
we’ll identify with the set of variables of the Boolean payoff function f : {−1, 1}n → R.
We’ll abuse notation somewhat: For A ⊆ [n], we’ll write f (A) to mean f (xA) where

(xA)i =

{
1 i ∈ A
−1 i /∈ A

.

A pure strategy for a random-turn selection game is a function S from disjoint
pairs (A,B) of subsets of [n] to elements of [n] s.t. S (A,B) ∈ [n] \ (A ∪B). Thus
if Blue is playing according to strategy S, whenever he wins the coin toss and the
previously-selected elements are the sets A and B for Blue and Red respectively,
Blue will select the element S (A,B). Note that we consider here only “memory-
free” strategies that take into account the current game configuration only, and not
the historical sequence of element selections. If we were to deal with strategies in
their full generality we would admit such strategies as well; however it’s clear that
no advantage can be gained by taking the history into account so we may as well
limit our analysis to the “memory-free” strategies.

If Blue and Red are playing according to pure strategies S and T respectively,
every sequence of n coin-flips induces a sequence of selections, culminating in a
partition of [n]. We’ll write fS,T (x) for the payoff to Blue when the game is played
with strategies S and T and the results of the coin-flips are x ∈ {−1, 1}n. fS,T (x)
is also called the value of the game.

14

3.1. RANDOM-TURN SELECTION GAMES 15

3.1.1. Optimal Play. As the result of the coin flips is not known ahead of
time, the outcome of a game f when the players use strategies S and T isn’t a
definite value (even if S and T are pure). Instead, we’ll consider the expected
value of the game, Ex∼{−1,1}n [fS,T (x)]. Just as with alternating-turn games, as
finite, turn-based, games of perfect information there exist mutually optimal pure
strategies for random-turn selection games. Such strategies, as well as the expected
values under optimal play from any position can be calculated as follows: For any
disjoint A,B ⊆ [n] s.t. A ∪ B = [n], the game is over and its value is f (A). Now,
if the expected value of a game is known for all disjoint A,B s.t. |A|+ |B| = k+ 1,
then for any A,B s.t. |A|+ |B| = k, if it is Blue’s turn he should choose an element
x ∈ [n]\(A ∪B) that maximizes the expected value of A∪{x} , B, and if it is Red’s
turn he should choose an element minimizing A,B ∪{x}. The expected value from
position A,B is then the average of these two values.

The preceding paragraph gives an algorithm computing the expected value and
optimal move from a given position; however it requires backtracking over the entire
game graph, which is of size 3n (since each element can be either unselected, selected
by Blue, or selected by Red) hence its running time is exponential in n. It turns
out that for random-turn selection games there is a fairly simple characterization
of both the expected value of a game from any point of play and the optimal moves
themselves. The key is the following theorem, given as theorem 2.1 in [18]:

Theorem 21. The value of a random-turn selection game is the expectation of
f (x) when x is chosen uniformly from {−1, 1}n. Moreover, any optimal strategy
for one player is also an optimal strategy for the other player.

Proof. Let S be an optimal strategy for Blue. Should Red play by the same
strategy, each element of [n] has an even probability of ending up in A or in B.
Thus E [fS,S (x)] = E [f (x)], so the game’s expected value under optimal play is no
more than E [f (x)]. By a symmetric argument, we can show that the value of the
game must also be at least E [f (x)], and so it is, in fact, equal to E [f (x)].

For the second part of the theorem, let S be an optimal strategy for Blue, and
let xi = S (∅, ∅). It’s enough to show that if Red wins the initial coin-flip, selecting
xi is an optimal opening move (and the claim will follow by induction). We know
that the expected value of the game is E [f] and that Red achieves this by playing S.
Thus it remains to show only that if Red plays S Blue can’t improve his position by
playing a different strategy. Assume, for a contradiction, that if Red plays S Blue
can improve his position by selecting xj in the opening move. We know that the
expected value of play is then 1

2

(
E
[
f |xj=1

]
+ E [f |xi=−1]

)
. Since this gives Blue

an advantage over playing S,
1

2

(
E
[
f |xj=1

]
+ E [f |xi=−1]

)
> E [f] =

1

2
(E [f |xi=1] + E [f |xi=−1])

Hence E
[
f |xj=1

]
> E [f |xi=1] =⇒ E

[
f |xj=−1

]
< E [f |xi=−1]. Now, since xi is an

optimal selection for Blue, we know that
1

2

(
E [f |xi=1] + E

[
f |xj=−1

])
≥ E [f]

But
1

2

(
E [f |xi=1] + E

[
f |xj=−1

])
<

1

2
(E [f |xi=1] + E [f |xi=−1]) = E [f]

which is a contradiction. So selecting xi is optimal for both Blue and Red. �

3.1. RANDOM-TURN SELECTION GAMES 16

Theorem 21 has several interesting consequences. The first is that although
a lot of thought and calculation might go into planning an optimal strategy for
a random-turn selection game, if play indeed proceeds optimally the outcome will
look no different than had both players played randomly. Second, if both Blue and
Red play according to some pure optimal strategy S, then at every point in the
game we know which element will be claimed next, regardless of the result of the
next coin toss. The only unknown is which of the players will claim it.

Theorem 21 also tells us that under certain circumstances a shortcut can be
taken in calculating the expected value of the game under optimal play. Whereas
backtracking requires considering a graph of size 3n, in order to know the value of
the game it’s enough to know E [f]. It’s often quite simple to calculate this, for
example by taking advantage of certain symmetries among the variables. Even if the
only way to calculate E [f] is by iterating through all possible variable assignments,
there is still some gain: there are only 2n variable assignments, whereas there are
3n nodes on the game graph. The drawback is that opposed to with backtracking,
the optimal strategy isn’t calculated as part of the algorithm. Despite this, we can
still give a nice characterization of the optimal move at any point in play:

Theorem 22. A variable xi, 1 ≤ i ≤ n, is an optimal choice for the opening
move of a selection game iff f̂ (i) is maximal.

Proof. By definition,

f̂ (i) = 〈f, χi〉 =
1

2
(E [f (x) |xi = 1]− E [f (x) |xi = −1])

We also know that

E [f (x)] =
1

2
(E [f (x) |xi = 1] + E [f (x) |xi = −1])

By adding the equations we get:

E [f (x) |xi = 1] = E [f (x)] + f̂ (i)

Since the game played on the function f |xi=1 is also a selection game, its value
under optimal play, according to theorem 21, is E [f |xi=1] = E [f (x) |xi = 1]. From
here it follows that a selection is optimal for f iff it maximizes E [f (x)] + f̂ (i), iff
it maximizes f̂ (i). �

This result was presented in a slightly weaker form, for monotone win-or-lose
games, as lemma 3.1 in [18], where it takes on the following interpretation: since
in these circumstances f̂ (i) = Infi [f] = Pr

[
f (x) 6= f

(
x⊕i
)]

(proposition 18), a
selection is optimal iff the corresponding variable has the highest probability of
being pivotal.

The statement of theorem 22 refers to optimal opening moves; however, since
assigning some values of variables as part of gameplay leaves us with a selection
game, theorem 22 characterizes the optimal move at any stage of gameplay. The
only caveat is that the Fourier coefficients must be calculated w.r.t. the variables
already assigned. We’ll use the following notation: Let J ⊆ [n]. xJ will denote an
assignment of variables in J , which is a partial assignment of variables in [n]. Then
f |xJ

: {−1, 1}n−|J| → R will denote the function f given the partial assignment.

3.1. RANDOM-TURN SELECTION GAMES 17

3.1.2. Expected Length of Optimal Play. For some random-turn selection
games, the payoffs may be known before all the variables have been assigned. This
is often the case in monotone, win-or-lose selection games. For example in Hex,
once one of the players has a chain of tiles connecting his two sides, he is the winner
no matter how play unfolds from that point. If we decide that play ends once the
outcome is known, it’s interesting to consider the expected length of an optimally
played random-turn selection game. Assuming both players play according to the
same optimal strategy, a random-turn selection game can be thought of as carrying
out the computation of the value of the underlying function according to some
decision tree, where at each node the variable being queried maximizes f̂ |xJ

(i)
(xJ being the assignment of variables up to that point). Accordingly, we can use
bounds on the expected decision tree complexity of f to bound the expected length
of play. To this end we present the following proposition, which is a strengthening
of inequality 2 in [18], where the result is stated only for monotone, win-or-lose
functions:

Proposition 23. Let S be an optimal strategy for a non-constant game f . Let
E [#turns] be the expected number of turns when both Blue and Red play according
to S. Then

E [#turns] ≥

(∑n
i=1 f̂ (i)

)2
V ar [f]

Proof. We’ll use the following notation: For c ∈ R, the function fc : {−1, 1}n →
R is defined as fc (x) = f (x) + c.

It’s clear that a strategy is optimal for fc iff it is optimal for f , and that for
any x, the number of steps taken to evaluate fc (x) is the same as the number of
steps taken to evaluate f (x). Further, due to the orthogonality of the Fourier basis
for any 1 ≤ i ≤ n, f̂c (i) = f̂ (i). We’ll prove the following family of inequalities:

∀c ∈ R,E [#turns] ≥

(∑n
i=1 f̂ (i)

)2
E
[
(f + c)

2
]

Let 1i (x) =

{
1 xi examined on input x

0 otherwise
. Then E [#turns] = E [

∑n
i=1 1i (x)].

Now, by definition:
n∑
i=1

f̂ (i) =

n∑
i=1

f̂c (i) =

n∑
i=1

E [fc (x)xi] = E

[
fc (x)

n∑
i=1

xi

]
For any x, if xi isn’t examined, it means that fc

(
x+i
)

= fc
(
x−i
)
. Hence the

contributions of x+i, x−i to fc (x)xi cancel each other out. So:

n∑
i=1

f̂ (i) = E

[
fc (x)

n∑
i=1

1ixi

]
≤

√√√√√E
[
fc (x)

2
]
E

(n∑
i=1

1ixi

)2


Where the inequality follows from Cauchy-Schwarz. For any j 6= i, E [1i1jxixj] = 0,
since conditioned on xi being examined before xj and xi = 1, xj is 1 or −1 with
equal probabilities. Similar distributions hold for other combinations of the order

3.1. RANDOM-TURN SELECTION GAMES 18

of examination of xi and xj and the value of the first query, so the expected value
is 0. This implies that E

[
(
∑n
i=1 1ixi)

2
]

= E
[∑n

i=1 12i
]

= E [#turns]. Hence (after
squaring the inequality):

E [#turns] ≥

(∑n
i=1 f̂ (i)

)2
E [f2c]

=

(∑n
i=1 f̂ (i)

)2
E
[
(f + c)

2
]

Setting c = −f̂ (∅) gives the desired inequality. Furthermore, since E
[
(f + c)

2
]

is minimal when c = −f̂ (∅), this is the tightest bound obtainable from the above
family of inequalities. �

Remark. Inequality 2 in [18] gives this inequality in the case that f is a win-
or-lose monotone function, and with c = 0 (where c is as in the proof). This gives
the following:

E [#turns] ≥

(
n∑
i=1

Ii [f]

)2

which uses the fact that f̂ (i) = Infi [f] when f is a monotone win-or-lose function.
This is based on the same inequality appearing in [17], with the Fourier coefficients
replacing the influences, as the monotonicity and Boolean range assumptions aren’t
made. The proof is almost identical to that of the more general formulation we’ve
presented; the only difference is the consideration of different values for c and finding
the value that gives the sharpest bound. The more general inequality seems to have
appeared for the first time in [16].

Another bound on the expected length of optimal play is shown in [18]. The
following inequality, for a monotone function f : {−1, 1}n → {−1, 1} is given in
[15] as theorem 3.1:

V ar [f] ≤
n∑
i=1

Pr [xi examined] Infi [f]

In the setting of random-turn games, this implies:

Proposition 24. Let f : {−1, 1}n → R be a random-turn monotone win-or-
lose selection game. Then, when played optimally:

E [#turns] ≥ V ar [f]

maxi Infi [f]

We’ll now demonstrate how these propositions can be used to analyze optimal
play of several specific random-turn games. In [18], the original motivation for
defining random-turn games was Hex. In particular, attempts were made to analyze
the geometry of optimal play as well as its expected length. While some insights
were gained, the tools available weren’t enough to provide proofs. In contrast,
several other games were introduced for which the above tools enabled proving
properties of optimal random-turn play. We’ll define And-Or functions, and state
the results regarding optimal play. One of these results shows that proposition
24 is tight for And-Or trees played with coins with a specific bias (though we
haven’t shown this, the results above carry over to the case of biased coins). We
then introduce the Tribes functions, which show that proposition 24 is tight for

3.1. RANDOM-TURN SELECTION GAMES 19

Figure 3.1.1. A level-2 And-Or tree.

balanced coins as well. We won’t go into the proofs for And-Or trees; they are
fairly straightforward, and are similar to the analogous proofs for Tribes functions,
which we do provide.

Example 25. And-Or Trees: The And-Or functions, fn : {−1, 1}4
n

→
{−1, 1} are defined recursively as follows:

f0 (x) = x

For n ≥ 1, and (x1, . . . , x4n+1) ∈ {−1, 1}4
n+1

let x̄i =
(
x(i−1)·4n+1, . . . , xi·4n

)
for

i = 1, 2, 3, 4. Then fn+1 is defined as:

fn+1 (x1, . . . , x4n+1) = (fn (x1) ∨ fn (x2)) ∧ (fn (x3) ∨ fn (x4))

fn can also be thought of as a complete binary tree of height n, where the
leaves are distinct variables and the internal nodes are labeled either “and” or “or”
according to the parity of their level (see figure 3.1.1).

[18], theorem 5.1 describes optimal play of And-Or functions as follows:

Theorem 26. Consider an optimally played game of level-h And-Or with coin-
toss probability p. If a move is played in some subtree T rooted at some vertex v,
then the succeeding moves are all played in T until the label of v is determined.
Moreover, the labels of the level h − 1 vertices are determined in an order that is
an optimally played game on the tree truncated at level h− 1.

Armed with this knowledge, explicit recursion formulas for the length of optimal
play as well as the probability of a Blue win on the level-h tree can be given. These
formulas depend on the coin bias, p. Setting p = 3−

√
5

2 gives, for the expected

length of play, precisely
(

1+
√
5

2

)2h
. If we allow fn to take on the values

√
1−p
p and

−
√

p
1−p instead of 1 and −1 respectively, proposition 24 is tight.

Example 27. Tribes: The tribes functions, first constructed in [2], are the
standard examples of nearly-balanced Boolean functions (i.e. the function is 1 with
probability close to 1

2) with influences as small as possible. The construction is as
follows: Let k,m ∈ N. Then Tmk : {−1, 1}km → {−1, 1} is defined as:

Tmk (x1,1, x1,2, . . . , x1,k, x2,1 . . . , x2,k, . . . , xm,1, . . . , xm,k) =

m∨
i=1

k∧
j=1

xi,j

3.1. RANDOM-TURN SELECTION GAMES 20

Informally, the variables are split into m tribes of k members each. The func-
tion is 1 iff at least one of the tribes unanimously votes 1, otherwise it is −1.
We’ll give a complete analysis of optimal play of random-turn tribes, but we’ll
first generalize the function somewhat: Let n1, . . . nk ∈ N, and N =

∑k
i=1 ni.

The generalized tribes function, Tn1,...,nk
: {−1, 1}N → {−1, 1} is defined as

Tn1,...,nk
(x1,1, . . . x1,n1

, . . . xn,1, . . . , xn,nk
) =

∨k
i=1

∧ni

j=1 xi,j . In other words, sim-
ilar to the tribes function, the generalized tribes function is 1 iff one the tribes
unanimously votes 1. The only difference is that in the generalized tribes function
the tribes are allowed to be of different sizes. Note that Tmk = Tn1,...,nm

, if ni = k
for all i. The following hold:

• Pr [Tn1,...,nk
= −1] =

∏k
i=1 (1− 2−ni). For the special case of Tmk , Pr [Tmk = −1] =

(
1− 2−k

)m
.

• Tn1,...,nk
is a monotone function, hence proposition 18 applies and ̂Tn1,...,nk

(i) =
Infi [Tn1,...,nk

] = Pr [xi is pivotal] for any i. A variable is pivotal iff the
other members of its tribe all vote 1 and none of the other tribes votes
1 unanimously. Hence ̂Tn1,...,nk

(xi,j) = 21−ni
∏
` 6=i (1− 2−n`) (note that

variables in the same tribe have the same influence). In the case of Tmk ,
T̂mk (i) = 21−k

(
1− 2−k

)m−1 for all i.
• Partially assigning variables to a generalized tribes function leaves us

with a generalized tribes function, or a constant function, as follows: Let
Tn1,...,nk

be a generalized tribes function. WLG let’s assume we’re assign-
ing a value to xk,nk

. If we assign it −1, then the kth tribe has not voted
1 unanimously and so Tn1,...,nk

|xk,nk=−1
= Tn1,...,nk−1

(if k = 1 we’re left
with the constant function −1). If we assign xk,nk

= 1, then if nk = 1, the
kth tribe has voted 1 unanimously so the function is the constant function
1. Otherwise, nk > 1 so we’re left with Tn1,...,nk−1.

Using these observations, we’ll prove the following claim:

Claim 28. Let Tn1,...,nk
be a generalized tribes function. A variable selection

is optimal for the random-turn selection game played on Tn1,...,nk
iff it is a member

of the smallest tribe.

Proof. Based on theorem 22, it’s enough to prove that the influence of a vari-
able is larger the smaller the tribe to which it belongs. Assume ni < nj . The in-
fluence of variables in the ith tribe is 21−ni

∏
` 6=i (1− 2−ni), and that of a variable in

the jth tribe is 21−nj
∏
` 6=j (1− 2−ni). We need to prove that 21−ni

∏
6̀=i (1− 2−ni) >

21−nj
∏
` 6=j (1− 2−ni). This is true iff 21−ni (1− 2−nj) > 21−nj (1− 2−ni), which

holds since ni < nj . �

Since, as already observed, assigning a variable in a generalized tribes function
leaves us with a generalized tribes function, optimal play of random-turn tribes
consists of iteratively selecting a member of the undetermined tribe with the fewest
undetermined variables (where by “determined tribe” we mean either all variables
set to 1 or at least one variable set to −1). We’ll now calculate the expected length
of optimally-played random-turn tribes:

Proposition 29. The expected length of optimally-played random-turn Tmk is
2
(
2k − 1

) (
1−

(
1− 2−k

)m).

3.2. GENERAL RANDOM-TURN GAMES 21

Proof. Let Em,k be the expected length of optimally-played Tmk . Then E1,k =∑k
i=1 i2

−i + k2−k (the first term is the contribution to the expected length when
the tribe doesn’t unanimously vote 1, and the second term the contribution when
it does). Thus E1,k = 2

(
1− 2−k

)
. Now, consider an optimally played game of

Tm+1
k . Based on theorem 28, we can describe play as follows: First, an optimal

game of Tmk is played on the first m tribes. If the result is 1, then this is the result
of the game on Tm+1

k as well, so play ends. If the result is −1, then a game of T 1
k

is played on the final tribe of Tm+1
k . Hence we get the recursion relation:

Em+1,k = Em,k + Pr [Tmk = −1]E1,k = Em,k + 2
(
1− 2−k

)m+1

To which the solution is:

Em,k = 2
(
2k − 1

) (
1−

(
1− 2−k

)m)
�

We can use the foregoing analysis to show that proposition 24 is tight: As with
any ±1-valued random variable

V ar [Tmk] = 4 Pr [Tmk = 1] (1− Pr [Tmk = 1]) = 4
(
1− 2−k

)m (
1−

(
1− 2−k

)m)
Further, all influences are the same, and are equal to 21−k

(
1− 2−k

)m−1
= maxi,j Infi,j [f].

Hence:

V ar [f]

maxi,j Infi,j [f]
=

4
(
1− 2−k

)m (
1−

(
1− 2−k

)m)
21−k (1− 2−k)

m−1 = 2
(
2k − 1

) (
1−

(
1− 2−k

)m)
The last term is exactly Em,k, so proposition 24 is tight. Further, since by setting
m =

⌊
2k ln 2

⌋
, Pr [Tmk = 1] can be made arbitrarily close to 1

2 , the bound is tight
for essentially unbiased functions.

3.2. General Random-Turn Games

In this section we consider random-turn variants of general combinatorial games
(as defined in definition 2). We characterize optimal strategies, and discuss the
connection between general random-turn games and random-turn selection games.

In the following, let G = (V,EB , ER, T, ν) be a combinatorial game. If the
underlying graph contains cycles then not all pairs of strategies result in the game
terminating. However, we’ll show that optimal strategies exist that result in the
game terminating with probability one. For a pair of strategies S, T that terminate
with probability one, we’ll write νS,T (v) for the expected payoff to Blue when the
game starts at v ∈ V and the strategies employed by Blue and Red are S and T
respectively.

3.2.1. Richman Functions. The key notion when analyzing general random-
turn games is the so-called Richman function, introduced in [10] for the purpose of
analyzing Richman games (discussed in chapter 4). Simply put, a Richman function
for a game G is a function from the set of nodes to the expected value of the game
under optimal play should play begin at the given node. Thus whenever Blue wins
the coin toss he should move the token to a vertex that maximizes the Richman
function, whereas Red should try to minimize it. In the following, we’ll formalize
and prove these assertions.

3.2. GENERAL RANDOM-TURN GAMES 22

We’ll need the following notation: Let (V,EB , ER) be a (finite) directed graph,
with the edges colored either blue or red, or both. For any f : V → R, for any
v ∈ V with outgoing edges of both colors, f+ (v) = max {f (w) : (v, w) ∈ EB} and
f− (v) = min {f (w) : (v, w) ∈ ER}.

Definition 30. Let G = (V,EB , ER, T, ν) be a game. A Richman function for
G is a function R : V → R s.t:

• ∀v ∈ T , R (v) = ν (v)
• ∀v ∈ V \ T, R (v) = 1

2 (R+ (v) +R− (v))

Recalling definition 2, in our setting, where V is finite and there is a colored path
from every node to a member of T , Richman functions exist and are unique. For
directed acyclic graphs the proof is straightforward (induction on the maximal
distance of a node to T). However for cyclic graphs the proof is more involved. The
proofs given here are similar to those given in [10] for win-or-lose games, with the
required adaptations for multi-valued games.

Proposition 31. Let G = (V,EB , ER, T, ν) be a game. There exists a Richman
function R : V → R.

Proof. We’ll use the following notation: Let rmin = min {ν (t) : t ∈ T} , rmax =
max {ν (t) : t ∈ T}.

We’ll show two existence proofs. The first is an application of the Brouwer
fixed-point theorem: Define the function f : [rmin, rmax]

V → [rmin, rmax]
V which

maps functions ϕ : V → [rmin, rmax] to:

f (ϕ) (v) =

{
ν (v) v ∈ T
1
2 (ϕ+ (v) + ϕ− (v)) v /∈ T

Then f is a continuous mapping of a compact, convex set into itself and so it
has a fixed point R : V → [rmin, rmax]. f (R) = R, which by definition means that
R is a Richman function.

The second proof is more involved, but is constructive and will be of use later
when we consider the game-theoretic interpretation of the Richman function.

We’ll inductively define a sequence of functions Rn : V → R by:

R0 (v) =

{
ν (v) v ∈ T
rmin v /∈ T

And for every n ∈ N:

Rn+1 (v) =

{
ν (v) v ∈ T
1
2 (R+

n (v) +R−n (v)) v /∈ T

(This is the same as letting Rn+1 = f (Rn) = fn+1 (R0)).
For every v, the sequence {Rn (v)}n∈N is bounded above by rmax. We’ll show

by induction that it is increasing: First, clearly R1 ≥ R0. Now, for n ≥ 1,
assume that Rn ≥ Rn−1. Let v ∈ V . If v ∈ T then Rn+1 (v) = ν (v) =
Rn (v) so Rn+1 (v) ≥ Rn (v) as desired. Otherwise, v ∈ V \ T , in which case
Rn+1 (v) = 1

2 (R+
n (v) +R−n (v)). Now, since Rn ≥ Rn−1, we know that R+

n (v) ≥
R+
n−1 (v) , R−n (v) ≥ R−n−1 (v). Hence 1

2 (R+
n (v) +R−n (v)) ≥ 1

2

(
R+
n−1 (v) +R−n−1 (v)

)
=

Rn (v). So Rn+1 (v) ≥ Rn (v), and the sequence is increasing.

3.2. GENERAL RANDOM-TURN GAMES 23

As the functions {Rn}n∈N are bounded above and increasing, they converge to
a limit R : V → R, for which the conditions defining Richman functions hold. �

In order to prove the uniqueness of Richman functions (and for the discussion
that follows) we’ll need the following definition and lemma:

Definition 32. Let G = (V,EB , ER, T, ν) be a game with Richman function
R, and let v ∈ V \ T . An edge of steepest ascent (descent) from v is an edge
(v, w) ∈ EB ((v, w) ∈ ER) s.t. R (w) = R+ (v) (R (w) = R− (w)).

Lemma 33. Let G+
v (G−v) be the transitive closure of v under the steepest ascent

(descent) relation. That is, w ∈ G+
v (w ∈ G−v) iff there exists some path v =

v0, v1, . . . , vn = w s.t. for all 0 ≤ i < n, (vi, vi+1) is an edge of steepest ascent
(descent). Then G+

v ∩ T 6= ∅ (G−v ∩ T 6= ∅).
In other words, for every v ∈ V there exists a path of steepest ascent (descent)

from v to T .

Proof. We’ll prove the lemma for the steepest ascent relation. The proof for
the steepest descent relation is similar.

Let w ∈ G+
v be s.t. R (w) is maximal. If w ∈ T we’re done. Otherwise w

has successors in G and so also in G+
v . Let u be a successor of w along an edge of

steepest ascent. Then R+ (w) = R (u) ≤ R (w), since R (w) is maximal in G+
v . It’s

always true that R (w) ≤ R+ (w), so in fact R (w) = R+ (w) = R (u). This implies
that R (w) = R− (w), so all of w’s successors in G have the same value, and so they
are all in G+

v . By induction it can be shown that all descendants of w (in G) are
in G+

v and they all have the same value, R (w). In particular, w has a descendant
u ∈ T , so u ∈ G+

v and G+
v ∩ T 6= ∅ as desired. �

Proposition 34. Let G = (V,EB , ER, T, ν) be a game. The Richman function
R : V → R is unique.

Proof. Let f1, f2 : V → R be Richman functions. Let v ∈ V be s.t. f1 (v)− f2 (v) = M

is maximal. Let u1, u2, w1, w2 be appropriately colored successors of v s.t. f+i (v) =
fi (ui) , f

−
i (v) = fi (wi). The following inequalities hold:

f1 (u1)− f2 (u2) ≤ f1 (u1)− f2 (u1) ≤M

f1 (w1)− f2 (w2) ≤ f1 (w2)− f2 (w2) ≤M
By adding the two inequalities we get on the left side f1 (u1)+f1 (w1)−(f2 (u2) + f2 (w2)) =
2 (f1 (v)− f2 (v)) = 2M . This implies that all the inequalities are actually equal-
ities, so f1 (u1) − f2 (u1) = M . Since (v, u1) is an edge of steepest ascent for f1,
we can thus proceed to show that for any w ∈ G+

v (with the ascents measured
w.r.t. f1), f1 (w) − f2 (w) = M . Since by lemma 33 there is some t ∈ G+

v ∩ T ,
it follows that M = f1 (t) − f2 (t). But by the definition of Richman functions
f1 (t) = f2 (t) = ν (t), so M = 0, hence f1 (v) − f2 (v) = 0. Since v maximizes
f1 − f2, we conclude that f1 ≤ f2. By switching the roles of f1 and f2 and repeat-
ing the argument we obtain the reverse inequality, and conclude that f1 = f2. �

Richman functions characterize optimal strategies for random-turn games in
the sense that whenever Blue wins the coin toss he should move the token along a
vertex of steepest ascent, and Red should move the token along a vertex of steepest
descent. This is embodied in the following theorem:

3.2. GENERAL RANDOM-TURN GAMES 24

Theorem 35. Let G = (V,EB , ER, T, ν) be a random-turn game with Richman
function R. Then the following strategy is optimal for Blue (Red), and ensures that
the game ends with probability one: Whenever the token is at a non-terminal vertex,
if Blue (Red) wins the coin toss, he should move the token along an edge of steepest
ascent (descent) that is part of a minimal-length path of steepest ascent (descent)
to T . Moreover, the value of the game when started at v ∈ V is R (v).

Proof. We’ll first note that the strategy is well-defined because by lemma 33
there is a path of steepest ascent (descent) from any vertex v ∈ V \ T to T , and
hence there is such a shortest such path. Let S : V \ T → V be the strategy.

It’s enough to prove that if Blue plays according to the given strategy, then
from any vertex v ∈ V reached during game play the game will end with probability
one and Blue’s expected payoff is at least R (v). The same proof with Red in place
of Blue will prove that if Red uses the above strategy his expected payoff is no more
than R (v). Thus R (v) is the value of the game, and the strategies are optimal.

We’ll first prove that the game ends with probability one: LetN = maxv∈V dG+
v

(v, T)

(where dG+
v

(v, T) is the length of the shortest path of steepest ascent from v to
T). If at any point of play Blue wins N consecutive coin tosses, his play will result
in the game terminating, as moving the token along a shortest path of steepest
ascent from any vertex (as Blue will do when playing S) will result in the token
reaching T in at most N turns. Since as play progresses Blue will almost surely
win N consecutive coin tosses, play will terminate with probability 1.

In order to prove that the expected payoff for Blue when playing according
to the above strategy from any v ∈ V is at least R (v), we’ll use the notion of a
truncated game: The n-truncated game for G is the random-turn game played on
the underlying graph of G, the only difference being that if T is not reached within
n turns, the game ends and the payoff to Blue is rmin. Any strategy for G induces
a strategy for the truncated game in the obvious way, and it’s clear that if the
strategy for G ensures the game ends with probability 1 then the expected payoff
for the truncated game is less than the expected payoff of the full game. We’ll
define a sequence of functions fn : V → R s.t. fn (v) is the expected payoff of the
n-truncated game starting at v if Blue plays S and Red plays optimally, as follows:

f0 (v) =

{
ν (v) v ∈ T
rmin v /∈ T

and for all n ≥ 0:

fn+1 (v) =

{
ν (v) v ∈ T
1
2 (fn (S (v)) + f−n (v)) v /∈ T

Since after a single move has been made in the n + 1-truncated game the
remaining play constitutes an n-truncated game, fn is indeed the expected payoff
for Blue playing S and Red playing optimally. fn is bounded and increasing and
therefore converges to a function f satisfying:

f (v) =

{
ν (v) v ∈ T
1
2 (f (S (v)) + f− (v)) v /∈ T

Clearly R satisfies these conditions, so if we can show that there is only one such
function, we may conclude that f = R. We won’t go into the details, but a technique
similar to that used in the proof of proposition 34 works here as well.

3.2. GENERAL RANDOM-TURN GAMES 25

Figure 3.2.1. A game of Tug of War with n = 3. The Richman
values are written inside the vertices. The terminal vertices are
marked with a double circle.

We’ve shown that ∀v ∈ V,R (v) = limn→∞ fn (v). Now assume that in the full
random-turn game, Blue is playing S and Red is playing some strategy T . Then for
every n νS,T (v) ≥ fn (v), and so νS,T (v) ≥ limn→∞ fn (v) = R (v), as desired. �

Remark. In [10], an alternate approach is provided to proving uniqueness
of the Richman function for win-or-lose games: First, the analog of theorem35
is established for any Richman function (similarly to theorem 38). Assuming,
for a contradiction, that two different Richman functions exist for a given game,
this would mean that there are two contradicting values to the game. Hence the
Richman function is unique.

It is not clear to us whether this approach can be adapted to work in the case
of multi-valued games as well. In order to prove the analog of theorem 35 without
using the uniqueness of Richman functions, the authors consider Richman games
rather than random-turn games. Richman games do not generalize as nicely to the
multi-valued case (see section 4.2), and we do not know whether the reliance on
Richman games can be replaced with random-turn games.

Corollary 36. If G is a win-or-lose game (ν (T) = {−1, 1}), then the proba-
bility that Blue wins an optimally-played game of random-turn G starting at v ∈ V
is R(v)+1

2 .

3.2.2. Optimal Play as a Random Walk. Theorem 35 describes a class
of optimal strategies for random-turn combinatorial games. If S and T are such
strategies for the two players, we can define the optimal-play graph (V,Eopt), where
Eopt is the set of all edges that may be taken during optimal play, i.e. for every
v ∈ V \ T , (v, S (v)) , (v, T (v)) ∈ Eopt. Gopt = (V,Eopt, T, ν) is a combinatorial
game, and S and T are optimal strategies for its random-turn variant. If we start
an optimally-played game of G at v ∈ V , the game is simply a random walk on Gopt
until T is reached. This observation enables us to describe some optimally-played
games.

Example 37. Tug of War: Tug of War is played on a graph with n+2 vertices,
arranged in a path (see figure 3.2.1). If the vertex set is {v0, v1, . . . , vn, vn+1} then
T = {v0, vn+1}, ν (v0) = −1, ν (vn+1) = 1, and for every 1 ≤ i ≤ n ,(vi, vi−1) , (vi, vi+1) ∈
E = EB = ER. The Richman values R (vi) form an arithmetic progression:
R (vi) = 2i

n+1 − 1. Blue’s optimal strategy is to move the token to the right when-
ever possible, and Red’s to move it to the left. Since this is a win-or-lose game, the
probability that Blue wins when play starts at vi is

R(vi)+1
2 = i

n+1 . An optimal
play of Tug of War looks like a random walk on the path of vertices.

3.2.3. Richman Functions for Selection Games. It’s interesting to con-
sider Richman functions for selection games played on a function f , and the re-
lationship of the Richman function to f itself. Here the nodes of the graph are

3.2. GENERAL RANDOM-TURN GAMES 26

the partial assignments of variables, with outgoing edges from each partial as-
signment xJ (which hasn’t determined f) to partial assignments that extend xJ
by one variable (a blue edge for an assignment of 1, and a Red edge for an as-
signment of −1). Since the Richman value of a node is the expected value of
the game under optimal play starting from the given node, and we know that for
selection games this is equal to the expected value of the function when the un-
determined variables are assigned uniformly and independently, we have, for any
partial assignment xJ , R (xJ) = f̂ |xJ

(∅). For any i ∈ [n] \ J , this implies that
f̂ |xJ

(i) = 1
2

(
R
(
x+iJ
)
−R

(
x−iJ
))
.

CHAPTER 4

Richman Games

Random-turn games are formed by taking some combinatorial game and chang-
ing the way turns are allocated. Richman games, named for their inventor David
Richman and first presented in [10], are another way of doing so. As with random-
turn games, there is some underlying combinatorial game. At the start of the game,
Blue and Red are allocated some amount of money (which may not be the same
for both of them). At each turn, the two players bid for the right to decide which
of them will take the turn. The higher bidder pays the amount of his bid to his
opponent, and the player designated to make the next move decides how the token
should be moved. If the bids are equal some tie-breaking mechanism is used to
decide who is considered the auction winner (the player awarded the win must still
pay his bid to his opponent). For simplicity’s sake we’ll assume for the time being
that all ties are awarded to Blue, although we’ll consider other mechanisms as well.
The game ends when the token is moved to a terminal node, with the associated
payoffs going to each of the players. At this point the balance of each player’s bank
account, used for “buying” turns, is discarded (i.e. this money has no value once
the game is over).

In this chapter we will present some results relating to Richman games, mainly
from [10] and [9], and discuss a surprising relationship between Richman games
and Random-turn games.

Remark. In [10] and [9] it is assumed that EB = ER. In keeping with this
work’s basic model, we do not require this. However, colored edges introduce the
possibility that neither player desires the next turn (consider the game where the
first person to move loses). Optimal play in this case (which dictates that both
players bid zero) depends heavily on the tie-breaking mechanism. In order to avoid
this complication, we allow the winner of the auction to force his opponent to take
the next turn, following the suggestion of [4]. Thus, it is never a disadvantage
to win the auction. This is in contrast to Richman games as presented in the
aforementioned papers, which require the winner of the auction to take the next
turn. With this modification to the rules, the results carry over to the colored-edge
case.

4.1. Win-or-Lose Richman Games

In [10] and [9] the discussion is limited to win-or-lose games. The following
summarizes the results therein.

In the following, let G = (V,EB , ER, T, ν) be a win-or-lose game. By this we
mean that ν is limited to two values, which WLG are assumed to be {0, 1} (in
this we break from our usual custom of allowing Boolean variables to take on the

27

4.1. WIN-OR-LOSE RICHMAN GAMES 28

values {−1, 1}. The reason for this will become apparent when we discuss winning
strategies). We also assume WLG that the total money supply is 1.

As might be expected from the name, the Richman function is key in Richman
games. Let R : V → R be the Richman function for G, and let {Rn}n∈N be the
functions from the proof of proposition 31. In this setting the Richman value of
a vertex v ∈ V represents the critical ratio of the money that Red must have in
order to force a win from v, as formalized in the following theorem (theorem 2.2
and corollary 2.5 in [10]):

Theorem 38. For any vertex v ∈ V Blue has a winning strategy for the Rich-
man game played from v if Red’s share of the money is strictly less than R (v).
Furthermore, if Red’s share is strictly less than Rn (v) Blue has a strategy that will
guarantee a win within n turns (and the strategy in this case is made explicit in the
proof).

Similarly, Red has a winning strategy if his share of the money strictly exceeds
R (v), and he can force a win within n moves if his share of the money strictly
exceeds 2R (v)−Rn (v).

Proof. We’ll prove the claim only for Blue. The claim for Red is deduced by
reversing the roles of Blue and Red, and considering the gameG′ = (V,ER, EB , T, 1− ν),
for which it can be verified that R′ = 1 − R is the unique Richman function and
the functions R′n = 1− 2R+Rn take the place of the functions Rn.

We’ll prove the second part of the claim by induction on n. If n = 0, then
Red’s share is strictly less than R0 (v) only if v ∈ T and ν (v) = 1. In this case
Blue has already won, and the claim holds.

Now assume the claim is true for n, and that with the token placed at v Red
has strictly less than Rn+1 (v). If v ∈ T this means ν (v) = 1 and Blue has already
won, so the claim holds. Otherwise Let R < Rn+1 (v) be Red’s share. Blue should
bid |R+

n (v)−Rn+1 (v)| (the assumption that R < Rn+1 (v) guarantees that this is
a valid bid). If Blue wins the auction and R+

n (v) ≥ R−n (v) he should move the
token to a blue successor u ∈ V of v s.t. Rn (u) = R+

n (v). If R+
n (v) < R−n (v)

he should force Red to make the next turn. Either way Red’s balance will have
increased by |R+

n (v)−Rn+1 (v)| , and the token will be on a vertex u s.t. Rn (u) ≥
Rn+1 + |R+

n (v)−Rn+1 (v)| > R + |R+
n (v)−Rn+1 (v)|. Hence, by the induction

hypothesis, Blue can win within n turns. If Red wins the auction, Red’s balance
decreases by at least |R+

n (v)−Rn+1 (v)|. If Red forces Blue to move, he should
move the token to a blue successor u ∈ V s.t. Rn (u) = R+

n (v). Then, similar to
the previous case, regardless of which player moves the token it will be at a vertex u
s.t. Rn (u) is greater than Red’s share of the money, and the induction hypothesis
applies. This completes the proof of the second part of the theorem.

Now, assume Red begins the game with a share strictly less than R (v). R (v) =
limn→∞Rn (v) hence there is some n s.t. Red’s share is strictly less than Rn (v),
so the second part of the theorem applies and Blue has a winning strategy. �

Remark 39. Note that theorem 38 holds regardless of the tie-breaking method
used when the bids are equal. This mechanism becomes relevant only in the critical
case, where Red’s share of the money is exactly R (v), and 0 < R (v) < 1. In this
case theorem 38 dictates that bidding more than R+ (v)−R (v) will result in one’s
opponent gaining a winning position, thus optimal play dictates that both sides

4.2. MULTI-VALUED RICHMAN GAMES 29

bid R+ (v)−R (v). The analysis of optimal play thus depends on the tie breaking
mechanism employed:

• If all ties are awarded to Blue (as in [7]), Blue has a winning strategy for
all v ∈ V s.t. R (v) > 0 (that is, iff there is a path from v to some t ∈ T
with ν (t) = 1).

• If ties are decided by the toss of a coin (as in [10]), the game reduces to
the random-turn game. If the players play according to theorem 35 then
the expected value of the game is R (v).

• If ties are decided by alternating turns between Blue and Red (as in [9]),
the game reduces to the alternating-turn game.

• With more exotic tie-breaking methods (such as arbitrary mappings from
the set of vertices to the winner in case of a tie bid), the game may not
have a value (see example in [7]).

The connection between random-turn and Richman games is especially strong
in the case of win-or-lose games. In this case the Richman function represents both
the critical ratio of the budget that Red must possess to force a win in the Richman
game (theorem 38), and the probability of a Blue win in the random-turn game
(because the payoffs are limited to {0, 1}, the value of the game is equal to the
probability of Blue winning under optimal play. Thus by theorem 35 the Richman
function is the probability of a Blue win).

4.2. Multi-Valued Richman Games

In this section we consider Richman games with more than two outcomes. Let
G = (V,EB , EB , T, ν), and let ν (T) = {rmin = r1 < . . . < rn = rmax}. In this
case the random-turn game is governed by the Richman function of section 3.2.1.
However, unlike with win-or-lose Richman games, multi-valued Richman games are
analyzed differently: Using the technique of theorem 38, Blue finds the largest i s.t.
he can ensure the payoff to be at least ri. He then plays according to a strategy
that ensures this. This takes the following formal form:

For each k = 1, . . . n, we’ll define the game Gk = (V,EB , ER, T, νk) where

νk (v) =

{
1 ν (v) ≥ rk
0 otherwise

. Let {Rk}nk=1 be the matching Richman functions. Clearly

1 ≡ R1 ≥ R2 ≥ . . . ≥ Rn. Assume, as before, that the total money supply is 1, and
assume that R is Red’s share of the money. Assume the game starts at v ∈ V , and
let k be the largest integer s.t. Rk (v) ≥ R. If Rk (v) > R, then by the discussion
in the previous section the value of the game is rk. If Rk (v) = R then the expected
outcome of the game played under the tie-breaking procedure must be weighed
against the fact that there may be some l < k s.t. Rl (v) > Rk (v) = R in which
case Blue can force the outcome to be at least rl.

The connection of this analysis to the Richman function of section 3.2.1 isn’t
as strong as in the win-or-lose case. It appears the Richman function of section
3.2.1 doesn’t contain all the information necessary to decide on optimal play of
G as a Richman game. The fundamental difference between Richman games and
random-turn games is that as deterministic games, optimal play of Richman games
depends only on the topology of the graph w.r.t. the terminal nodes, but does not
depend on the actual values of the terminal nodes. In random-turn games optimal

4.2. MULTI-VALUED RICHMAN GAMES 30

play takes into account the value of the payoffs as well. For win-or-lose games the
two coincide but for multi-valued games optimal play may be quite different.

CHAPTER 5

Algorithms and Complexity

The preceding chapters gave various characterizations and descriptions of opti-
mal play of random-turn and Richman games. If one desires to actually play a game
well, however, these characterizations are not enough. One must have an efficient
way to compute optimal strategies. This chapter considers algorithms achieving
this as well as their complexity.

In section 5.2 we consider a separate algorithmic question, that of whether
playing a random-turn game is an efficient way to compute a Boolean function.

5.1. Algorithms for Determining Optimal Moves

5.1.1. Selection Games. Theorem 22 tells us that finding the optimal move
in a random-turn selection game is equivalent to finding the variable that maxi-
mizes its degree-one Fourier coefficient. Thus, it’s sufficient to know the values of
the degree-one coefficients. This fact can be leveraged into various algorithms for
choosing optimal moves. In general, direct calculation of the values f̂ (i) for an n
variable selection game requires evaluating f on all 2n possible inputs. Thus the
naive approach of direct calculation is computationally quite infeasible. For some
games it’s possible to determine the variable with maximal influence in time poly-
nomial in n. For instance, this is the case for generalized tribes functions: Claim 28
shows that a variable is an optimal selection iff it’s a member of an undetermined
tribe with the smallest number of undetermined variables. This property can be
tested in time that is polynomial (in fact, linear) in n. While the ability to play
specific games optimally is nice, the ability to play any selection game well is nicer.
We’ll show that for all win-or-lose selection games a simple probabilistic algorithm
exists to find a near-optimal variable in polynomial time (as shown in [18]).

5.1.1.1. Probabilistic Algorithm for Finding Near-Optimal Selection. As ob-
served in [18], a simple and efficient way to evaluate the degree-one Fourier co-
efficients for win-or-lose games is to randomly sample elements of {−1, 1}n. This
is because, by definition, f̂ (i) = Ex∼{−1,1}n [f (x)xi]. f (x)xi can be regarded as
the result of a Bernoulli trial, so we can use a Hoeffding bound in order to re-
late the number of independent samples taken to the probability of deviation from
the expectation. Specifically, if we let Sim denote the average of m independent
samplings of f (x)xi, then Pr

[∣∣∣Sim − f̂ (i)
∣∣∣ > ε

]
≤ 2 exp

(
− 1

2ε
2m
)
. Thus, 2

ε2 ln
(
2
δ

)
independent samplings for each variable are sufficient to ensure that except with
probability δ, the i s.t. Sim is maximal is within ε of being optimal. Thus a near-
optimal selection can be found with n 2

ε2 ln
(
2
δ

)
steps. Replacing ε and δ with ε

n ,
we get that after 2n3

ε2 ln
(
2n
ε

)
samplings, except with probability ε

n the selection is
within ε

n of being optimal. Against an optimal opponent, playing this strategy wins
with probability at least p− ε, p being the probability of a win under random play.

31

5.1. ALGORITHMS FOR DETERMINING OPTIMAL MOVES 32

We generalize this to the multi-valued case: Let M = maxx∈{−1,1}n |f (x)|.
Then, again using the Hoeffding bound, Pr

[∣∣∣Sim − f̂ (i)
∣∣∣ > ε

]
≤ 2 exp

(
−mε

2

M

)
.

Thus, Mε2 ln
(
2
δ

)
samplings for each variable are sufficient to ensure that except with

probability δ, the i s.t. Sim is maximal is within ε of being optimal. Thus a near-
optimal selection can be found with nMε2 ln

(
2
δ

)
steps. Replacing ε and δ with ε

n ,
we get that after Mn3

ε2 ln
(
2n
ε

)
samplings, except with probability ε

n the selection is
within ε

n of being optimal. Against an optimal opponent, playing this strategy has
expected outcome of at least E [f]− ε.

5.1.2. Evaluating Richman Functions. We don’t know, in general, the
difficulty of finding the Richman function R of a game G = (V,EB , ER, T, ν). In
this section we’ll introduce and discuss several algorithms for this problem that
were first described in [9]. In [9] the algorithms were presented for win-or-lose
games. We generalize them to multi-valued games. We’ll begin with cases for which
efficient algorithms are known, and then introduce a general algorithm, whose exact
complexity we don’t know.

5.1.2.1. Directed Acyclic Graphs. If the graph (V,EB ∪ ER) is a DAG, the val-
ues R can be calculated by backwards induction on the graph: The leaves of the
graph are exactly the members of T , so their Richman values are known. At each
step find a vertex v ∈ V s.t. all its successors’ Richman values are known. Set
R (v) = 1

2 (R+ (v) +R− (v)).
The running time of this algorithm is polynomial in the size of G, so it may

be considered efficient. However, in many cases G itself is very large, and so in
practice the algorithm may not be helpful. For example, every selection game can
be represented as a DAG, yet there may be as many as 3n nodes. Most interesting
functions have a much more compact representation than an exponentially long list,
so this algorithm may not be of much use.

5.1.2.2. Graphs with Small Outdegree and Uncolored Edges. Another special
case is when every vertex has outdegree two or less, and EB = ER. In this case,
for every v ∈ V \ T , let v1, v2 be the (possibly non-distinct) successors of v. Then,
as we will show in claim 41, R is the unique solution of the linear equation

∀v ∈ V,R (v) =

{
1
2 (R (v1) +R (v2)) v /∈ T
ν (v) v ∈ T

Thus R may be found by solving the linear system, which may be done in time
polynomial in |V |.

Note, however, that unlike most of our results, which generalize to the biased-
coin case, this approach only works if the probability of each player winning the
next turn is 1

2 .
5.1.2.3. Undirected Graphs. One last case for which an efficient algorithm to

compute R is known is that of undirected graphs, that is where E = EB = ER,
and for every v, w ∈ V \ T , (v, w) ∈ E ⇐⇒ (w, v) ∈ E. This algorithm is
defined, and its correctness and runtime proved, in theorem 12 in [9]. Although it
is stated there for win-or-lose games only, the construction and proof carry over to
the general case without change. We’ll present here only the algorithm, and refer
the interested reader to the original paper for the proofs.

We’ll need the concept of a partial Richman function (PRF): A PRF R′ for G
is a subgraph (V ′, E′) ⊆ (V,E) s.t. T ⊆ V , E′ is a set of undirected edges, and

5.1. ALGORITHMS FOR DETERMINING OPTIMAL MOVES 33

R′ is a Richman function for (V ′, E′, T, ν). Our algorithm will build a sequence of
PRFs with increasing domain s.t. once a value is assigned to a vertex it does not
change in successive iterations. The final PRF in the sequence will be augmented
to a Richman function for G. The algorithm is as follows:

(1) Set (V ′, E′) = (T, ∅), and R′ = ν. (This constitutes a PRF).
(2) If possible, find a path v0, v1, . . . , vn in G with the following qualities:

• v0, vn ∈ V ′
• v1, . . . , vn−1 /∈ V ′
• v0 6= vn
• Among all paths satisfying the three preceding conditions, this path

has the highest average slope, i.e. R′(vn)−R′(v0)
n is maximal.

(3) If such a path is found, set V ′ = V ′∪{v1, . . . vn−1}, E′ = E′∪{v0v1, v1v2, . . . , vn−1vn},
and for every vi, 1 ≤ i ≤ n− 1 set R′ (vi) = R′(vn)−R′(v0)

n i+R′ (v0). Con-
tinue from step 2.

(4) If no such path is found this means (see proof in [9]) that every vertex in
v ∈ V \V ′ is connected by a path not in E′ to a single vertex w ∈ V ′. Set
R′ (v) = R′ (w).

R′ constructed as above is a Richman function for G.
5.1.2.4. Linear Programming Solution for General Games. In the following, for

every v ∈ V \ T , let v+ be a blue successor of v s.t. R (v+) = R+ (v), and let v−
be a red successor s.t. R (v−) = R− (v).

The uniqueness of the Richman function (proposition 34), together with the
fact that R is defined by means of a system of linear equations and inequalities
(definition 30), suggest finding Richman functions by means of solving the linear
program given by the equations and inequalities. The problem with this approach
is that the equations themselves, at the outset, may not be known: In general we
can’t know which children of a vertex v ∈ V \T maximize and minimize R. In some
cases it isn’t difficult to ascertain this. Notably, if the outdegree of all vertices is
less than or equal to two, v+ and v− are simply the two (not necessarily distinct)
successors of v. In this case there is a unique solution to the linear equations (see
section 5.1.2.2).

In the general case, we must first discover the identity of v+and v−. One simple,
if inefficient, way to do this is to guess: For each v ∈ V \T , we can arbitrarily choose
successors of each color and call them v+ and v−. Then attempt to solve the linear
program. If there is a solution, it is the unique Richman function. By iterating
through all possible choices, eventually a correct one will be found and the algorithm
will have discovered the Richman function.

A different approach is to use the functions Rn (from the proof of proposition
31), as follows: Iteratively calculate Rn, beginning with R0. For each vertex v ∈
V \T let v+n , v−n be appropriately colored successors of v that achieve R+

n (v) , R−n (v),
respectively. Attempt to solve the linear program:

R (v) =

{
1
2 (R (v+n) +R (v−n)) v ∈ V \ T
R (v) v ∈ T

With the constraints:

∀w : (v, w) ∈ EB , R (w) ≤ R
(
v+n
)

∀w : (v, w) ∈ ER, R (w) ≥ R
(
v−n
)

5.1. ALGORITHMS FOR DETERMINING OPTIMAL MOVES 34

If there is a solution, output it and halt. By uniqueness of the Richman function
it’s equal to R. If no solution is found, repeat the process.

We’ll first note that this algorithm does always find R: Since Rn converges
to R, at some point the ordering of the values {Rn (v)}v∈V will coincide with the
(weak) ordering of the values {R (v)}v∈V , at which point R will be found as the
unique solution to the linear program.

The efficiency of this algorithm depends on how quickly the values {Rn (v)}v∈V
achieve their final ordering. This depends on the speed of convergence of Rn to
R as well as the minimal difference between the values {R (v)}v∈V . In the general
case where there may be more than two possible payoffs, some of which may be
irrational, we do not know of a good bound for the differences between Richman
values. For the case where the payoffs are rational, we’ll bound these in the following
claims:

Claim 40. Let N = |V | − |T |. Then for every n ∈ N, v ∈ V , |R (v)−Rn (v)| ≤
(rmax − rmin)

(
1− 2−N

)b n
N c.

Proof. Recall S (defined in theorem 38), which is the optimal strategy for
Blue. S is a function from V \T to V . In order to ease notation, in the following we’ll
extend S’s domain to all of V by setting, for each v ∈ T , S (v) = v. Further, for any
f : V → R, recall that f+ (v) , f− (v) were defined only for v ∈ V \ T . We’ll extend
this notation to all of V as well, by setting, for any v ∈ T , f+ (v) = f− (v) = f (v).

Note that Rn is the expected value of the n-truncated game when both players
play optimally. fn (from the proof of theorem 35) is the value of the n-truncated
game when Blue is playing S and Red is playing optimally against S. Hence
R (v) ≥ Rn (v) ≥ fn (v). We’ll show by induction that R (v) − fn (v) satisfies the
above inequality, and so it holds for R (v)−Rn (v) as well:

First, for any n ≤ N , R (v) − fn (v) ≤ rmax − rmin, so the bound holds. Now
let n > N . Note that if Blue wins N coin tosses in a row, the game surely ends, i.e.
SN (v) ∈ T for any v ∈ V . Hence, no more than N coin tosses will occur without
either the game ending or Red winning one of the tosses. Using the law of complete
probability, we can rewrite the expected outcome of the game:

R (v) =

N∑
m=1

2−mR−
(
Sm−1 (v)

)
+ 2−NR

(
SN (v)

)
fn (v) =

N∑
m=1

2−mf−n−m+1

(
Sm−1 (v)

)
+ 2−Nfn−N

(
SN (v)

)
Since SN (v) ∈ T , we can rewrite the last equality as:

fn (v) =

N∑
m=1

2−mf−n−m+1

(
Sm−1 (v)

)
+ 2−NR

(
SN (v)

)
By using the induction hypothesis, we can write:

fn (v) ≥
N∑
m=1

2−m
(
R−

(
Sm−1 (v)

)
− (rmax − rmin)

(
1− 2−N

)bn−m
N c

)
+2−NR

(
SN (v)

)
Hence:

fn (v) ≥ R (v)−(rmax − rmin)
(
1− 2−N

)bn−N
N c (1− 2−N

)
= R (v)−(rmax − rmin)

(
1− 2−N

)b n
N c

5.1. ALGORITHMS FOR DETERMINING OPTIMAL MOVES 35

which gives the desired inequality. �

The next step is to bound the differences between the values {R (v)}v∈V . To
do this we’ll need the following notation and two claims:

Recall the graph of optimal play Gopt = (V,Eopt), where (v, w) ∈ Eopt iff
w = S (v) or w = T (v) (with S and T being the optimal strategies for Blue and
Red respectively, described in theorem 35). Let A be Gopt’s adjacency matrix.

Claim 41. R is the unique solution of the linear system:

∀v ∈ V,R (v) =

{
ν (v) v ∈ T
1
2 (R (v+) +R (v−)) v /∈ T

Note that proposition 34 shows that R is the unique Richman function. How-
ever, this does not preclude the possibility that the linear system has multiple solu-
tions, only one of which satisfies the definition of a Richman function (in particular,
perhaps R (v+) 6= R+ (v) for some solution to the linear system).

The fact that the linear system has a unique solution was used implicitly in [9],
but no proof was provided.

Proof. Since with optimal play G ends with probability one, Gopt has the
property that every random walk (with the uniform distribution on the (at most
two) outgoing edges of every node) almost surely reaches T . For every n ∈ N, v ∈ V ,
the sum of the entries in the row corresponding to v in An is the number of walks
of length n starting at v that do not reach T in n− 1 steps or less. Let n be large
enough such that with non-zero probability, a random walk on Gopt starting at any
vertex reaches T in n − 1 steps or less. Then the `1 norm of each row of An is
strictly less than 2n. Since the spectrum of a matrix is bounded by the maximal `1
norm of one of its rows, this implies that 2n isn’t an eigenvalue of An, and thus 2
isn’t an eigenvalue of A.

Now, note that the system of linear equations can be written as R = 1
2AR+ ν,

which is equivalent to (2I −A)R = 2ν. Since 2 isn’t an eigenvalue of A, 2I −A is
invertible and the system has a unique solution. �

Claim 42. If ν (T) ⊆ Z then for every u, v ∈ V , if R (u) 6= R (v) then

|R (u)−R (v)| ≥
(

2|T |6
N
2

)−1
.

Proof. First note that any vertex with exactly one successor may be elimi-
nated from the equation, as its value must equal its successor. Thus (once these
vertices have been eliminated, repeating the process if necessary) , every row in A
is either all 0s (if the row corresponds to a terminal node) or else all 0s except for
two 1s.

Since R is the unique solution to the system (2I −A)R = ν, the solution can
be found by Cramer’s rule. Hence:

|R (v)| = |det (Mv)|
|det (2I −A)|

Where Mv is 2I −A with ν having replaced v’s column. The absolute value of
the determinant of a matrix is bounded above by the product of the norms of its
rows. In this case, 2I−A has |T | rows of norm 2, and the remaining rows have norm
6

1
2 . Thus |det (2I −A)| ≤ 2|T |6

N
2 . Mv is an integer valued matrix. Hence det (Mv)

5.2. OPTIMAL PLAY OF RANDOM-TURN SELECTION GAMES AS DECISION PROCEDURES36

Figure 5.2.1. An influence-based construction of a decision tree
for a level-2 And-Or function.

is a whole number. Therefore R (v) − R (u) is a multiple of |det (2I −A)|−1, so if

R (u) 6= R (v), |R (v)−R (u)| ≥
(

2|T |6
N
2

)−1
. �

Corollary 43. If ν (T) ⊆ Q, let Q be the least positive integer s.t. Qν (T) ⊆
Z. Then for every u, v ∈ V , if R (u) 6= R (v), |R (u)−R (v)| ≥

(
Q2|T |6

N
2

)−1
.

Proof. The previous claim holds for the vector QR, and the bound follows.
�

Putting the above together, we can finally give a bound on the algorithm’s
runtime. If n = O

(
2NN (|V |+ log ((rmax − rmin)Q))

)
, the order of the values

{Rn (v)}v∈V will coincide with the order of the values {R (v)}v∈V . For the special

case of win-or-lose games, we get the bound O
(

2|V | |V |2
)
.

Unfortunately, this bound is exponential. However in [9] the authors report
that for win-or-lose games the algorithm does very well in practice. Note that the
problem of finding a Richman function for a win-or-lose game is in NP . Thus
it would be difficult to show that the bound of O

(
2|V | |V |2

)
is tight. On the

other hand we have not shown that the problem is NP -hard, and indeed it may be
possible to find a polynomial-time algorithm.

5.2. Optimal Play of Random-Turn Selection Games as Decision
Procedures

As laid out in section 3.1.1, for every selection game f : {−1, 1}n → R there
exists a pure strategy S that is optimal for both players. S induces a decision tree
for calculating f : At each stage, query S (xJ) where xJ is the partial assignment of
the variables queried so far. Repeat this until enough variables have been queried
to determine the value of f . We’ll call this the influence-based construction
of a decision tree for f . Figure 5.2.1 illustrates this for a level 2 And-Or tree (see
example 25 for the definition).

5.2. OPTIMAL PLAY OF RANDOM-TURN SELECTION GAMES AS DECISION PROCEDURES37

Figure 5.2.2. Two decision trees for the function

f (x, y, z) =

{
x z = −1

y z = 1
. f̂ (z) = 0, f̂ (x) = f̂ (y) = 1

2 . At

left is the influence-based construction of a decision tree for f
with expected complexity 5

2 . At right is a more efficient decision
tree, with expected complexity 2.

Let T be an influence-based construction of a decision tree for f . The question
arises of of how the expected complexity of T compares with the expected decision
tree complexity ∆ (f) (see definition 19). Propositions 23 and 24 are, in effect, lower
bounds on ∆ (f). Example 27 demonstrates that for generalized tribes functions, T
achieves ∆ (f), and is therefore the most efficient decision tree (in terms of expected
running time) calculating f .

A far-reaching conjecture would be that for any Boolean f , T is the most effi-
cient decision tree computing f . This is certainly false for non-monotone functions:

Consider the function f (x, y, z) =

{
x z = −1

y z = 1
. Figure 5.2.2 illustrates how the

conjecture fails for f . This leaves open the possibility that for monotone functions,
the decision tree induced by optimal play indeed achieves ∆ (f). This is related to
the question of whether the influence-based construction is the smallest (in terms
of the number of leaves) decision tree for a monotone function. The latter was
conjectured for win-or-lose functions in [3], where it was also reported, based on
computer experiments, that this is indeed the case for all monotone functions of
six variables or less. In [18], the question of whether the influence-based construc-
tion achieves the expected decision tree complexity for Hex and Recursive Ternary
Majority (example 44) was left open.

Of these questions, we do not know the answer to the one regarding Hex.
However it turns out that for level-2 Recursive Ternary Majority there is a more
efficient decision tree than the influence-based construction, both in terms of ex-
pected number of input bits read as well as the number of leaves. This disproves the
conjecture in [3], and answers the more general conjecture regarding the relation
between influence-based constructions of decision trees for monotone functions and
their expected decision tree complexity.

5.2. OPTIMAL PLAY OF RANDOM-TURN SELECTION GAMES AS DECISION PROCEDURES38

Figure 5.2.3. A level-2 Recursive Ternary Majority tree.

Example 44. Recursive Ternary Majority: Let maj : {−1, 1}3 → {−1, 1}
be the function returning the value of the majority of its input bits. The level-n Re-
cursive Ternary Majority function, fn : {−1, 1}3

n

→ {−1, 1}, is defined recursively
as follows:

f0 (x) = x

fn+1 (x) = maj (fn (x1, . . . , x3n) , f (x3n+1, . . . , x2·3n) , f (x2·3n+1, . . . , x3n+1))

fn+1 can be thought of as a ternary tree, with the root labeled by the majority
function, and each of the three children the root of an fn tree. f0 is a leaf labeled
by a single variable (see figure 5.2.3).

These functions were given in [19] (where they were attributed to Ravi Bop-
pana) as examples of functions for which the deterministic decision tree complexity
is provably less than the randomized decision tree complexity. The exact random-
ized complexity is an open problem: the best known bounds are O (2.64946n) ([12])
and Ω (2.55n) ([11]) for the level-n Recursive Ternary Majority function.

We’ll use the bounds of propositions 23 and 24 to lower-bound ∆ (fn): The
symmetries between input variables allow us to conclude that all variables have
the same influence. We also observe that x1 is pivotal in fn+1 iff it’s pivotal in
fn (x1, . . . , x3n) and fn (x3n+1, . . . , x2·3n) 6= fn (x2·3n+1, . . . , x3n+1) (i.e. iff it’s piv-
otal in the leftmost fn child of the root and the other two children evaluate to differ-
ent values). These events are independent, and the second occurs with probability
1
2 . As this is a monotone win-or-lose function proposition 18 applies, and f̂n (1) is
equal to the probability of x1 being pivotal. This yields the following recursion for-
mula: f̂n+1 (1) = 1

2 f̂n (1). Since f̂0 (1) = 1, f̂n (1) = 2−n. The function is balanced,
hence V ar [fn] = 1. There are 3n variables, hence the lower bound on the expected

number of input bits read from proposition 23 is
(

3n∑
i=1

f̂n (i)

)2

=

(
3

2

)2n

=
(
9
4

)n
and the bound from proposition 24 is 2n.

Theorem 26 describes the recursive nature of optimal play of And-Or trees.
If optimal play of Recursive Majority followed a pattern similar to optimal play
on And-Or trees, in the sense that once a variable had been played in a subtree
optimal play would remain in the subtree until it was determined, the expected
number of turns in optimal play would be

(
5
2

)n: First the two leftmost trees would
be evaluated, and if they disagree (an event that occurs with probability 1

2) the
third tree would be evaluated as well (this algorithm also demonstrates that

(
5
2

)n

5.2. OPTIMAL PLAY OF RANDOM-TURN SELECTION GAMES AS DECISION PROCEDURES39

Figure 5.2.4. A partially played game of level-2 recursive ternary
majority, with both players playing optimally. Blue won the first
two coin tosses, and selected x1 and x2. This determined the left-
most subtree. Red won the third toss and selected x4. Let xJ
be this partial assignment. The influences are now: f̂ |xJ

(5) =

f̂ |xJ
(6) = 1

4 and f̂ |xJ
(7) = f̂ |xJ

(8) = f̂ |xJ
(9) = 3

8 . Hence the
optimal next selection is one of x7, x8, x9, none of which are in the
second, partially determined, subtree. Thus optimal play doesn’t
necessarily follow a recursive pattern similar to And-Or trees.

is an upper bound on the expected decision complexity of fn). However, this is not
the case, as figure 5.2.4 illustrates.

Regarding the efficiency of the influence based construction, it’s clear that the
expected deterministic complexity of f1 = maj is 2.5, which is also the complexity
of the influence-based construction. We used a computer to construct both the
influence based construction and the optimal decision tree for f2 (these are given
in appendix A). The influence-based construction reads 396

64 input bits on average
whereas the optimal construction reads only 393

64 . Furthermore, the influence-based
construction has 120 leaves in the decision tree, whereas the optimal construction
(in terms of expected bits read) has only 116. This shows that the influence-based
construction of a decision tree need not be optimal, either in expected number of
bits read or in the size of the tree.

We can’t say much about the expected complexity of the influence-based con-
struction for fn. We note, however, that the fact that the optimal construction for
f2 is expected to read 393

64 bits on average gives an upper bound of O
((

393
64

)n
2

)
(
√

393
64 ≈ 2.47 < 5

2 so this is an improvement on the “simple” recursion described
above), with the following algorithm: If n is even recursively evaluate the subtrees
of depth two in the order dictated by the optimal tree for f2. The expected number
of subtrees evaluated is 393

64 , and each one requires reading O
((

393
64

)n−2
2

)
bits on

average. Thus the expected number of bits read is O
((

393
64

)n
2

)
. If n is odd the

bound may be achieved by evaluating all three subtrees (noting that the depth one
subtrees are of even height), which achieves the same asymptotic bound.

To summarize, we’ve shown a lower bound of 2.25n and an upper bound of
≈ 2.47n on the expected number of queries required to evaluate fn, n even, with
the uniform distribution on inputs. For n odd, the upper bound should be replaced

5.2. OPTIMAL PLAY OF RANDOM-TURN SELECTION GAMES AS DECISION PROCEDURES40

with ≈ 3 ·2.47n−1. It would be interesting to know what the expected deterministic
complexity of fn is exactly.

CHAPTER 6

Future Work

The foregoing work opens several doors for consideration in the future. One
avenue is to consider other variations on the turn-allocation mechanism. For exam-
ple one may consider the Poorman variant of Richman games, where the highest
bidder pays his bid to the bank. Many such variants, including Poorman games,
have already been discussed in [9]. For many of these the analysis is quite similar to
Richman games, although some variants (for instance, allowing the players to place
negative bids) may result in drastically different game play. It would be interesting
to know if new variants exist, that are either interesting in their own right as games
or else whose analysis proves interesting.

Another possibility is to relax the definition of a combinatorial game: In partic-
ular, we did not allow probability to play a part in the definition of a combinatorial
game. We may generalize the definition of a combinatorial game and associate
with each non-terminal vertex a probability distribution on the subsets of outgoing
edges. Thus, once a player has won the right to move, the moves available to him
are chosen according to the probability distribution on the current vertex. In this
way, we may analyze (for example) random-turn Backgammon.

We may also consider different notions of winning. For example, in [13] the
author considers infinite turn-based games played on Büchi automata (which are,
in particular, finite graphs). Blue wins iff the infinite play is accepted by the
automaton. It would be interesting to analyze random-turn and Richman variations
on such games.

Can we say more about the expected length of random-turn selection games?
This can be asked both about specific games such as Hex and Recursive Ternary
Majority, and as a general question: We’ve shown that the influence based con-
struction of a decision tree is not necessarily optimal, either in expected number of
queries or in space. What more can be said about such constructions?

Finally, and perhaps most interestingly, there are the algorithmic questions
associated with optimal play: We have not been able to show an efficient algorithm
for finding the Richman function of a general graph. On the other hand, this
problem is in NP . Is it in fact NP -complete?

41

APPENDIX A

Influence-Based and Optimal Decision Trees for
Level-2 Recursive Ternary Majority

This appendix supplements example 44 and demonstrates that the influence-
based decision tree for level-2 recursive ternary majority is less efficient, both in
terms of space and in terms of expected number of bits read, than the optimal de-
cision tree. To this end, we display two diagrams: figure A.0.1 shows the influence-
based decision tree, while figure A.0.2 shows a decision tree that is more efficient
both in both of the above senses (it is, in fact, optimal in terms of expected number
of bits read, but we will not prove this).

The level-2 recursive ternary majority function has nine input bits, resulting in
a fairly large tree. To reduce the size of the diagrams, we take advantage of the sym-
metries between Blue and Red, as well as those between the input bits, and assume
WLG that Red has won the first coin toss and selected x1. Thus, the diagrams
actually show decision trees for the function f (x2, . . . , xn) = f2 (−1, x2, . . . , x9).
In effect, we are showing non-optimality of the influence based construction for a
function of eight variables. Internal nodes in the decision tree are marked with a
single circle, with the variable to be queried written inside. Leaves are marked with
a double circle, with the identity of the winner (1 for Blue, −1 for Red) written
inside.

As may be verified directly, the expected number of input bits read in the
influence-based construction is 396

64 , whereas in the second construction it is 393
64 ,

showing non-optimality in terms of expected number of bits read. With regard to
number of leaves, the influence-based tree has 120 leaves, whereas the second tree
has 116 leaves.

42

A. INFLUENCE-BASED AND OPTIMAL DECISION TREES FOR LEVEL-2 RECURSIVE TERNARY MAJORITY43

Figure A.0.1. Influence based construction of a decision tree for
the function f (x2, . . . , xn) = f2 (−1, x2, . . . , x9). The expected
number of bits read is 332

64 , and the number of leaves is 60.

A. INFLUENCE-BASED AND OPTIMAL DECISION TREES FOR LEVEL-2 RECURSIVE TERNARY MAJORITY44

Figure A.0.2. A decision tree for f (x2, . . . , xn) =
f2 (−1, x2, . . . , x9). The expected number of bits read is 329

64 , and
the number of vertices is leaves is 58.

Bibliography

[1] József Beck. Combinatorial games: tic-tac-toe theory. Number 114. Cambridge University
Press, 2008.

[2] Michael Ben-Or and Nathan Linial. Collective coin flipping. Randomness and Computation,
5:91–115, 1990.

[3] Miao Chen. Toward optimal tree construction of monotone functions. Master’s thesis,
Duquesne University, August 2005.

[4] Mike Develin and Sam Payne. Discrete bidding games. the electronic journal of combinatorics,
17(1):R85, 2010.

[5] David Gale. The game of hex and the brouwer fixed-point theorem. American Mathematical
Monthly, pages 818–827, 1979.

[6] Ryan B Hayward and Jack van Rijswijck. Hex and combinatorics. Discrete Mathematics,
306(19):2515–2528, 2006.

[7] Gil Kalai, Reshef Meir, and Moshe Tennenholtz. General-sum bidding games. arXiv preprint
arXiv:1311.0913, 2013.

[8] Michael Krivelevich. Positional games. arXiv preprint arXiv:1404.2731, 2014.
[9] Andrew J. Lazarus, Daniel E. Loeb, James G. Propp, Walter R. Stromquist, and Daniel H.

Ullman. Combinatorial games under auction play. Games and Economic Behavior, 27(2):229–
264, 1999.

[10] Andrew J. Lazarus, Daniel E. Loeb, James G. Propp, and Daniel H. Ullman. Richman games.
Games OF No Chance, 1994.

[11] Nikos Leonardos. An improved lower bound for the randomized decision tree complexity of
recursive majority. In Automata, Languages, and Programming, pages 696–708. Springer,
2013.

[12] Frédéric Magniez, Ashwin Nayak, Miklos Santha, and David Xiao. Improved bounds for
the randomized decision tree complexity of recursive majority. In Automata, Languages and
Programming, pages 317–329. Springer, 2011.

[13] Robert McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied
Logic, 65(2):149–184, 1993.

[14] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.
[15] Ryan O’Donnell, Michael Saks, Oded Schramm, and Rocco A Servedio. Every decision tree

has an influential variable. In Foundations of Computer Science, 2005. FOCS 2005. 46th
Annual IEEE Symposium on, pages 31–39. IEEE, 2005.

[16] Ryan O’Donnell and Rocco A Servedio. Learning monotone decision trees in polynomial time.
SIAM Journal on Computing, 37(3):827–844, 2007.

[17] Ryan O’Donnell and Rocco Anthony Servedio. On decision trees, influences, and learning
monotone decision trees. 2004.

[18] Yuval Peres, Oded Schramm, Scott Sheffield, and David B Wilson. Random-turn hex and
other selection games. American Mathematical Monthly, 114(5):373–387, 2007.

[19] Michael Saks and Avi Wigderson. Probabilistic boolean decision trees and the complexity of
evaluating game trees. In Foundations of Computer Science, 1986., 27th Annual Symposium
on, pages 29–38. IEEE, 1986.

[20] Ulrich Schwalbe and Paul Walker. Zermelo and the early history of game theory. Games and
economic behavior, 34(1):123–137, 2001.

45

