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1 Manifolds: definitions and examples

Loosely manifolds are topological spaces that look locally like Euclidean space.
A little more precisely it is a spad®gether witha way of identifying it locally

with a Euclidean space which is compatible on overlaps. To formalize this we
need the following notions. LeX be a Hausdorff, second countable, topological
space.

Definition 1.1. A chart is a paifU, ¢) whereU is an open set iiX and¢ : U —
R" is homeomorphism onto it image. The components et (x1, x2, ..., x")
are called coordinates.

Given two chartgU1, ¢1) and(U2, ¢2) then we gebverlap or transitiormaps
$20d7 "t $1(U1NU2) — (U1 NU2)

and
P10 dy: p2(U1NU2) — ¢1(UrNUY)

Definition 1.2. Two chartgU1, ¢1) and(Us, ¢») are called compatible if the over-
lap maps are smooth.

In practice it is useful to consider manifolds with other kinds of regularity. One
many conside€k-manifoldswhere the overlaps a@*-maps withCK inverses. If
we only require the overlap maps to be homeomorphisms we arrive at the notion
of a topological manifold. In some very important work of Sullivan one consider
Lipschitz, or Quasi-conformal manifolds.

An atlasfor X is a (non-redundant) collectioA = {(U,, ¢,)|a € A} of pair
wise compatible charts . Two atlases ageiivalentf there their union is an atlas.
An atlas A is calledmaximalif any other atlas compatible with it is contained in
it.



Exercisel. Using Zorn’s lemma, show that any atlas is contained in a unique
maximal atlas.



Definition 1.3. A smoothn-dimensional manifold is a Hausdorff, second count-
able, topological spac¥ together with an atlas4.

1.1 examples

R" or any open subset @" is a smooth manifold with an atlas consisting of one
chart. The unit sphere

S = {0 xh MY (=1
i=0

has an atlas consisting of two chats., ¢+) whereU,. = S"\{(£1,0,0, ..., 0)}
and
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T +1—xg
Real projective spac&®P", is space of all lines through the origin B!

which we can identify with nonzero vectors up to the action of non-zero scalars

soRP" = (R"*1\ {0})/R*. The equivalence class @Ko, ..., X) is denoted
[Xo: X1 :...:Xy]. RP" has an atlas consisting of+ 1 charts. The open sets are

P (x°, x, .. x") xb . x™

Ui ={[Xo:X1:...:X]IXj € R, and x # O}
and the corresponding coordinates are
di([Xo:X1:...:%Xp]) = (xl/xi,...,m,...,xn/xi).

Similarly we have complex projective spa¢&p", the space of a line through
the origin inC"**. So just as above we ha@P" = (C™1\ {0})/C*. A typical
point of CP" is written [zg : z1 : ... : zz]. CP" has a atlas consisting af+ 1
charts. The open sets are

U ={[zo0:z1:...:z)]|z #0}
and the corresponding coordinates are

di(z0:21:... 2]) = @Z1/%, ..., Z /%, 20/ 7).



Exercise2. Show that in fact the above construction yield charts.

Notice that in the case @P" the coordinates have valuesifi and so the overlap
maps map an open subset@f to C". We can ask that they are holomorphic. We
make the following definition.

Definition 1.4. A complex manifold is a Hausdorff second countable topological
spaceX, with an atlas4d = {(U,, ¢,)|a € A the coordinate functiong, take
values inC" and so all the overlap maps are holomorphic.

Let Gik(R") be the space d{-planes through the origin iR".

Exercise3. Show that G¢(R") has an atlas witmﬂ) charts each homeomorphic
with Rk(=K),

Similarly we have Gy(C") the space of all complékplane through the origin
in C".
Exercise4. Show that G¢(C") has an atlas witlfy) charts each homeomorphic
with Ck("=K) Show that we can give G(C") the structure of a complex manifold.

2 Smooth maps and the notion of equivalence

Let X andY be smooth manifolds. A continuous mép X — Y is called smooth
if for all charts(U, ¢) for andX and(V, v) for Y we have that the composition

yofop tipUn V) — y(V)

is smooth.
Two manifoldsX andY are calleddiffeomorphiaf there is a homeomorphism
h: X — Y so thath andh~! are smooth.

3 Standard pathologies.

The condition thaiX be Hausdorff and second countable does not follow from the
existence of an atlas.

The line with two origins Let X be the quotient space & x {0, 1} by the
equivalence relatiolt, 1) = (t, 0) unlesst = 0. ThenX is not Hausdorff, how-
everX admits an atlas with two charts. Lt be the image oR x {i} in X. These
maps invert to give coordinates.



Remarkl. Actually non-Hausdorff spaces which satisfy all the other properties
arise in real life for example in the theory of foliations or when taking quotients
by non- compact group actions. More work is required to come up with a useful
notions to replace that of manifolds in this context.

The long line Let &, denote the smallest uncountable totally ordered set.
Consider the produck = & x (0, 1] with dictionary order topology. Then
give X charts as follows. Fofw,t) € X if t # 1letUyt) = {w} x (0,1)
and¢,.t): U — R be given byp, t)(w,t) = t. If t = 1 let S(w) denote the
successor ab. SetU,. 1) = {w} x (0, 1] supS(w)} x (0, 1) and

]t ifn=w

Exerciseb. Check that overlaps are smooth.

The collectionfU,, 1/2)}wes, IS uncountable and consists of disjoint open sets,
so X is not second countable.

Different charts

ConsiderR; denoteR with the following chartqR, x) andR» with the chart
(R, x3). Identity mapR; — Rz is smooth but noR, — R;. R; andR; are
diffeomorphic by the map — x2 thought of as a map froR; — Ro.

These pathologies are simple problems to keep in mind when thinking about
the definitions. There are far more subtle issues that arise. Given a topological
manifold we can ask can carry an atlas, and if it carries an atlas how many non-
diffeomorphic atlases does it carry. The first observation of this phenomenon is
due to John Milnor who showed that the seven-sphere admits an atlas (with two
charts!) which is not diffeomorphic to the standard differentiable structure. We’ll
examine this example later in the course.

4 The derivative of a map between vector spaces

Let f : V — W be a smooth map between real vector spaces.

Definition 4.1. Givenx € V we say thatf is differentiable ak if there is a linear
mapLy: V — W so that for allv € V we have:

1) — F(X) = Lx(x = x")II = o(lIx = x')).



Here we using the Landau symhmto mean a functiow: R, — R continu-
ous at zero and(0) = 0.

Really this is an improper definition. We really neédandW to be normed
vector spaces and it is natural to require thas a continuous linear map. One
can try to develop differential calculus on manifolds modelled on general topolog-
ical vector spaces. A sufficiently general context to work in is that of manifolds
modelled on Banach spaces, that is complete normed linear spaces. Essentially of
the basic results in differential topology work in this context with the same proofs
(as long as proof don't use coordinates)

Notice that mag. in the above definition is unique. If’ is another such map
then

o(fx =x'IN) = 1 f(x) = F(X) = L(x =x) = (f(x) = F(X) = L'(x = x)]
= (L = LHx =x)]

So(L —L"H(x—x") =0.
The mapL is called thedifferentialof f atx and is denoted

dy f or Dy f.

We sayf is differentiableif f is differentiable at eack € U and iscontinuously
differentiableif
df : U — hom(V, W).

is continuous. The second derivative is the derivative of the first derivative and
thus is a map
d’f : U — hom(V, hom(V, W)).

In the finite dimensional case hgm, hom(V, W)) with a subspace of hofi ®
V, W) . In the infinite dimensional case we need to be more careful but we can
identify hom(V, hom(V, W)) with bilinear maps from

V - W.

You can read all about this in gory detail i#] [

Definition 4.2. A smooth mapf : X — Y is called an immersion its differential
is everywhere injective. It is called a submersion if it differential is everywhere
surjective.



There obvious examples of such maps. Supmpose n are positive integers

i i RM > R"
given by
ioxh . Xm) = X Xm, O, ..., 0)
is an immersion while
s:R"— RM
given by
S(Xl,---,xm,xm—i—ly---,xn) - (X1,7Xm)

is a submersion. We will see in the next section that locally these simple examples
are completely general.

5 Inverse, and implicit function theorems.

Among the basic tools of the trade are the inverse and implicit function theorems.
We will first state them in a coordinate dependent fashion. When we develop some
of the basic terminology we will have available a coordinate free version.

Theorem 5.1. Let U be a neighborhood let f U ¢ V — W be a smooth
map. Supposexd : R" — R"is invertible for some xc U. Then there is a
neighborhood U c U of x so that

flU — fU)
is a diffeomorphism. Furthermore
do(f~) = (dof)~".
Proof. We will construct an inverse fof using the contraction mapping theorem.
Itis enough to prove the resultin the case that 0 andf (0) = 0OandDof = Id.

(For the last condition replacé by (Dgf)~1o f.. Setg(x) = f(x) — x (so g is
the “nonlinear” part off .) The equationf (x) = y can be rewritten as

X+g(x) =y

or as the fixed point equation
y—9(x) =X

7



We claim that if f is C* then fory in a small enough neighborhood ofx0—
y — 9(x) = hy(x) is a contraction mapping on a small enough ball.

Since Dohy(x) = 0 andhy is C! there is a neighborhoo8, (0) so that
| Dohyl| < % By the mean value theorem far x’ € B, (0) we have

1
Ilhy(x) — hy(X)|| < EIIX —x'|I.
Furthermore ix € B, (0) andy € Br,2(0) we have

Ithy OO 1I <llhy(X) — hy(0)[| + [Ihy(O)]]
1

=

X1+ Nyl

LT
2

[A

NI =N

<T.

Thus fory € By,» we havehy(B;) C B andhy is a contraction there. The

contraction mapping theorem implies for eaglthe existence of a unique fixed
point¢ (y) which is a least a set wise inverse fbr

We check that (y) is continuous.

lo(y) — (YD) = Ilhy(@(y)) — hy (@Y
< 9@ (y) — gy DI+ 1y =yl
1
< 5|I¢(Y) —o(Y)II+ 1Y =Vl
SO

le(y) =) <21y -Vl (1)
Now we check thap is differentiable. Lek = ¢ (y) andx’ = ¢ (y')

lp(y) — d(Y) — (W )y = Y = X = X' = (@ ) THF 00 — FON)

< ok F 1Ak (X = X) — (F(x) — (X))
< o(||x = x|

<o(ly —y'ID.

where we use the differentiability of to go from the second to third lines and
and inequality 1 to go from the third to the fourth.

Notice that if f is continuously differentiable then sods O
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An important corollary of the inverse function theorem is the implicit function
theorem. The implicit function theorem can be stated in various, each useful in
some situation. We will use repeatedly tBpen Mapping Theoremwhich say
that a surjective bounded linear map between Banach spaces is an open mapping
in particular an bounded linear map which is an algebraic isomorphism is an iso-
morphism.

Theorem 5.2.Let f: U ¢ V — W be a smooth map with(®) = 0. Suppose
that for some x in U we have thatD is surjective andker(Dy f) admits a closed
complement C. Then there are neighborhoo@®tD € ker(Dy f), U2 of 0 € W
and diffeomorphism¢ : U; x U — U andvy : U, — W so that the following
diagram commutes:

u -5 w
Té Ty
Ui x Us E> Us
where p denotes the projection on the second factor.

Proof. Write a typical element oJ as a pair(k, c) with k € ker(Dxf) and

c € C. The fact thatC is closed means in implies th@tis aC a Banach space

in its own right. Then the maK x C — V given by (k,c) — k + cis an
isomorphism by the Open Mapping Theorem. The Open Mapping Theorem also
implies thatdg o f |c : C — W is an isomorphism. Let : W — C denote its
inverse. Consider the map

Fk,c) = (k, LTk, C)).

Id *

and again by the Open Mapping Theorem the differentiaFoét (0, 0) is an
isomorphism. The inverse function theorem implieshas an inversep, in a
neighborhood of0, 0). Settingyr = dp o f |c we have

f(o(k, ©) = ¥ (p2(k, ©))
on a sufficiently small neighborhood @, 0) since

Lf(gp(k,c) =c

We have that

on such a neighborhood. H



We call a pointx whereDy f is not a surjective a critical point. A point in the
range off which is not the image of a critical point is called a regular value.

Definition 5.3. A subsety of a manifoldX is called submanifold if for aly € Y
there is a neighborhodd of Y and a chartp : V — B so thatp(Y NU) is an
open subset of a closed linear subspace admitting a complement.

Having made these definition we have a corollary of the implicit function the-
orem.

Corollary 5.4. The preimage of a regular value is a submanifold.

6 More examples.

The orthogonal group. Let
O(n) = {A € Mnun(R)|AAT = 1}.

be the group of orthogonal transformationsf¥. We claim that the orthogonal
group is a smooth manifold. To see this consider the map

f 1 Mnxn(R) — Sym,(R)

given by

f(A) = AAT
where §m,(R) denotes the space of symmetnicx n matrices. TherO(n)
f~1(1) so it suffices to show thdtis a regular value. The differential dfis

Daf(B) = ABT + BAT,

and we must show that it is surjective. Fixe O(n) and choos€ € Syn(R).
If we take B = 3C Athen

1
[Mf@ﬁ:?ANCT+CAN)=C

as required.

Let prove existence and uniqueness theorem for ODESs using the inverse func-
tion theorem. LeiX : B — B be a smooth map of Banach spaces. We would like
so see that the differential equation

d
d—f[( = X(X)X(0) = Xg

10



has a unique solution for ath € B. Define a map
F:CY([0,¢], B) » C°(0,¢], B) x B

by g
F(x) = (d—)t( — X(%), X(0))

Lemma 6.1. If X is K-Lipschitz sois F: C% — C9. If X is C with uniformly
bounded

Proof. | X(x) — X(X")|co < K|x — X'|co if X is K-Lipschitz. We also have that

X (X) = X(X") = Dy X(x — X)| < ox(x —X')

7 Vector bundles and the differential
Consider the Grassman manifold sa;g(H;&“) of two planes imk%. Let
y = {(T1, X) € Gro(R%) x R*x e I}.

Let p: y — Gr(R* be the natural projection. The fibers pf p~1(I1) are
vector spaces (in this case over the reals).

This is an example of a vector bundle. We’ll give the definition appropriate
for the world of smooth manifolds. There is an obvious version of the definition
for more general topological spaces.

Definition 7.1. Let V be a vector space (over the reals, complexes or quaternions.)
A vector bundle with fibeV is a triple (E, B, p) where E and B are smooth
manifolds andr : E — B is a smooth map. For eathe B, p~1(b) has the
structure of a vector space over the same fieltf and for eaclb € B there is

an open set) and a smooth mag: p~1(U) — V which is linear isomorphism

on each fiber. In addition the magp : p~l(U) - U x V given byts(e) =
(p(e), ¢ (e)) is a diffeomorphism.

The mapry is called aocal trivialization.

11



Example 7.2. Let
y = {(I1,v) C Gr(R") x R"|v € }.

We claim as the natural projectign: y — Grk(R") has the structure of a vector
bundle with fiberRX. Let¢ : Uy — hom(I1, I11) be one of our charts. Then
¢~ 1is given byA — I'a ¢ R" = I1 @ IT+ wherel' o denotes the graph ok,
The mapyp : p~1(Up) — I is simply the orthogonal projection.

A very important notion is the transition function. Suppose we are given two
trivializationst,: p~1(Uy) — U, x V andtg: p~1(Ug) — Ug x V. Then get
amap

Jop - U, N Ulg — GI(V).
defined as follows. If

7o (V) = (P(V), Po(v)) @Ndrg(v) = (P(v), Pp(v))

then

G (P(0))Pp (V) = Pa (V).
The transition function satisfy theocycle conditionIf we have three trivializa-
tionst,, 74, T, Over open setdly, Ug, U, then forallx e U, NUg NU,,

gaﬂgﬁygya =1
A vector bundle is determined its transition functions and give an open cover

{U,} and a collection of functions

Oup: Uy NUg — GI(V).
satisfying the cocycle condition we can construct a vector bundle.

7.1 New vector bundles from old

We can get new vector bundles from old bundles in a number of ways. Given
p1: V1 — Xandpz: Vo — X we can take direct (or Whitney) sum to get a
bundleVi @ Vo — X whose fiber abovg is pl‘l(x) &) pz_l(x). Another important
operation is the pullback. Suppose we hgvev — X andf : Y — X asmooth
map. Then we can form a vector bundle oVeas follows. The total space denoted
f*(V)is:

f5(V) = {(y. v f(y) = p(v)}
and projection

f*(p)(y,v) =Y.

12



7.2 The tangent bundle

Let M be a smooth manifold. We will associateba bundleT M. We will do
this concretely but there are many ways of doing this. You should read about them
alll!!

We know what a tangent vector RI".

Definition 7.3. A tangent vector tdVl at x is the equivalence class of all pairs
v, (U, ¢) where(U, ¢) is a chart aboux andv is a tangent vector t&" at ¢ (x).
We say thav’, (U’, ¢') is equivalent ta, (U, ¢) if

v = dyx) (@ 0 ¢~ H ().
The tangent bundleEM to M is the set of all tangent vectors.

In other words the tangent bundle tb is bundle determined by choosing an
atlas{(U,, ¢»)|a € X} and taking as transition functions

Gup (X) = Qs ) (P © D5 (V).

Given a chartU, ¢) we get coordinateg?, x2, ..., x" onU. A typical tan-
gentX vector is written as

L0 d d
X=a a®— n___
a ad T e TR

reminding us that we can differentiate function using tangent vectors. Given
f: M — R and a tangent vector atinM we define

1 1
X100 =" 2% p0) + @200 () + ‘f,’ B(X)).

2)
in other word the usual directional derivative bb ¢ 1.
Given a smooth magp : M — N we can define the differential df as a map
Df: TM— TN.

Givenx in M andX = (v, (U, ¢)) a tangent vector and a ch&xt, v) aboutf (x)
setDy f (X) to be the equivalence class of the vector

Do (¥ o fog™H)(v)

13



and the chart(V, ) or in terms of coordinates if we write
vofogp t(xt, X% ..., xM = (froxt, .. x™), ., M L X))
then the matrix oDf is

gl

8 Connections

We motivate the introduction of connections in a vector bundle as a generalization
of the usual directional derivative of functions on a manifold. Given a vector field
X and a functionf on a manifoldM, its directional derivative is a new function

as in equation (2). Thus we have a map

C®(M; TM) x C®(M) — C®(M).

This map has the following properties.

X(fg) = f Xg+ gXf (3)
(@X 4+ BY)f =aXf+BYf (4)
whereX andY are smooth vector fields ard 8, f andg are smooth functions.

If we try to generalize this to a directional derivative on sections of a vector
bundle we would like a map

C®(M;: TM) x C®(M; E) — C®(M; E).

This map is using denoted
(X,S) — Vxs

We can no longer multiply sections of a vector bundle but we can multiply sections
of a vector bundle by functions. The appropriate generalization of the two rules
about are

Vx fs= fVxs+ (Xf)s (5)
Vax+8YS = aVxs+ BVy f (6)

14



9 Partitions of unity

Given an open covefU, | € A} of atopological spacX we say that a collection
of function g, : X — Rxg is apartition of unityif

1. For alle € A Supports,) C U,

2. The collection{Supports,)|a € A} is locally finite, that is to say for all
x € X there is a neighborhood afmeeting only finitely many of members
of the collection.

3. For allx € X we have

Y B =1.

aeA

Smooth manifolds have smooth partitions of unity.

10 The Grassmanian is universal

We say that bundle is diite typeif there is a finite set of trivializations whose
open sets cover. In this section we will prove the following theorem.

Theorem 10.1.Let E — M be a vector bundle of finite type. Then for some N
large enough there is a map

f:M— Gr(RN).

Proof. Let {(Uj, 7j)|i = 1,...m} be a collection of trivializations so that thé
cover. Write the trivializations asi(e) = (p(e), ¢i(e)) as before. Choose a
partition of unity{g;|i = 1, ..., m} subordinate to th&);. Then define

®: E - RM
by the formula

P (e) = (B1(P(€))9P1(€), f2(P(€))92(€). ..., Bm(P(E))Pm(E)).

@ is well defined by the support condition on the partition of undbis linear on
each fiber ofE as theg; are. ® is injective on each fiber since for eabhe B

15



there is g8; with gj (b) # 0. Thus for each poirth € B we have thato~1(p~1(b))
is ak-plane inR™K. So we can now define

f 1B — Gr(®R™

by
f (o) = @(p~(b)).

Exercise6. Check that this map is smooth. In other words write the map down in
charts on the domain and range.

We claim thatf *(yx) is isomorphic toE. Consider the map
®:E— Bx w

given by

®(e) = (p(e). (P(p~'(p(e)), D(€))).
From the definition off this mapsE to f* ().
Exercise’. Check that this is an isomorphism.

11 The embedding manifolds inRN

Theorem 11.1.(The Whitney Embedding Theorem, Easiest Version). Let X be a
compact n-manifold. Then X admits a embeddingth

Proof. First we construct an embedding : X — RN for some largeN. Let

{ fi }}‘zl be a partition of unity so that the support of eafghs contained in some
coordinate chartU;, ¢;) so thatg; (Uj) is bounded. Then we can construction
smooth functiong; : X — R" by

oo ) fixoeix) if xeU;
¢'(X)_{0 it xeU

Then we can defin® by the equation

D(X) = ($1(X), p2(X), . . ., Pk(X), F1(X), F2(x), ..., f(X)).

16



Then®(x) = ®(x) implies that for some, fj(x) = f;j(X’) # 0 so that
X, X € Uj. Then for the samewe have

¢ (X) = ¢i (X)

and hencex = X’ sinceg; is a diffeomorphism otJ; and sod is injective.
Next we need to check that the differential®dfis injective. The differential
of ® atx sendv € Ty X to

(Dx f1(0)¢100+ f1(X) Dx¢1(v), . . ., Dx fc(@)pk (X)+ fi(X) Dxk (v), Dx f1(v), ..., Dx fk(v))

and the result follows. O]

12 Sard’s Theorem

An extremely important notion in differential topology is that that of general posi-
tion or genercity. A particular map may have some horrible pathologies but often
a near by map has much nicer properties.

For example the map

f(0) = ((cog20) cog0), cog20) sin(®), 0).

maps the unit circle in the plain to the a figure 8 lying in a plan&%rwhile the
near by map

fc(0) = (cog29) cog6), cog20) sin(0), € cogh)).

is an embedding. We will develop a general setting in which we can decide when
a nearby map will have some nice property. These ideas have been central in
topology since early days of Lagrange, Poiicand where put into a modern
efficient setting by Thom and Smale.

The most basic result we will need is Sard’s Theorem. A subset of a manifold
is said to have measure zero if its intersection with every chart has measure zero
with respect to the Lebesque measurelfdh We will need an easy version of
Fubini’s theorem.

Theorem 12.1. Suppose a measureable € R" has the property that for all
t € R CN {t} x R" 1 has measure zero. Then C has measure zero.

17



We will also use the following lemma.

Lemma 12.2.1f C ¢ R™Mis measureable and f R™ — R" is continuous then
f (C) is measureable.

Theorem 12.3.Let f : M — N be a smooth map of finite dimensional manifolds.
Then the set of critical values has measure zero in N.

Proof. (Copied from Milnor’s little blue booKTopology from the differentiable
viewpoint this proof does not give the sharp result tha€'amap withk >
max{1, m — n + 1} also satisifies the conclusion.) The definition of measure zero
is local so it suffices to prove the result in cddec R™ andN c R" are open
subsets.

The proof is by induction om the dimension of the domain. The case= 0
is trivial. LetC = Crit (f) denote the critical set of. It suffices to prove that for
every pointy € f(C) there is neighborhood of whose intersection witt (C)
has measure zero. Now set

Cs={xeM|d)f =0,foralll < <kj

ThenC > C; D C; D ... Is a desceding sequence of closed sets and hence
measureable sets. Futhermore the $€Gs \ Cs,1) are all measureable.

The proof has three steps.nf < n then you can skip directly to step 3.

Step 1. f (C \ Cy) has measure zero. ¥ € C c Cy then there is some first
partial which doesn’t vanish so assume that

afl
8_)(1(X) # 0.

Then we consider the map R™ — R™.
gxt, o x™ = (Foxt L x™), X2 L x™)

Notice that from our assumption

— 1 1 1 =
ngl(x) ngZ(x) %(x)

0 1 0 ... 0

dg=| 0 0 1 ... 0

0 0 0 1

18



which is clearly invertible. The inverse function theorem then provides an inverse,
h: V — R™ on small neighborhood of Then consider the map o h we have

fohxt, ..., x™M =L f2ohxt, ..., xM, ..., fPohxd, ..., x™).

So f(CNh(V)) = f oh(h™(C) N V). The inverse image of the set critical
h=1(C) NV are simply the critical points of o h. If we set

kX2, %3, ..., xM = (f?oh(t,...,x™, ..., f"oh(,...,x™)

then
h=(C) NV = Ui{t} x Crit (ko).

By the induction hypothesis we have
ki(Crit (ky))
has measure zero ™! and hence by Fubini
f(CNhV)) = U {t} x k(Crit (ko))

has measure zero ™.
Step 2. Suppose € Cs\ Cs;1. Then without loss of generality we can assume
that there is soms-th order mixed partial derivative so that if we set
ail+--~+im f
w = - -
a(xDyiz, .. 9(xm)im

so that
ow
m(x) # 0.
Define
g(x, . x™ = (wxt, .. x™), X2 x™).

Again this map is a diffeomorphism with inverse V — R™ for some neighbor-
hoodV of g(x). Let
k=foh

and let

|

= Kljoyxrm-1v -
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Clearlyg(Cx nh(V)) c {0} x R™ 1NV and the critical set dk containsg(Cyx N
h(V)) since it containg(C N h(V)). Thus

f (Ck N h(V)) c k(Crit (k))

which has measure zero by the induction hypothesis.

Step 3. Suppose thate Cx wherek + 1 > &', Choose a little cubé of side
lengths. We have from Taylors theorem and the compactnegdstéat there is a
constantM > O sothatforally e | and allx e Cxy N |

1) = f(y)ll < M|Ix — y|*+?

Subdividel into|™ subcubes of side lengtti|. By the above estimate If is
such a subcube containing a point@f then f (1”) is contained in a cube of side
length at most

2M/m(s/ K+t
Thus thef (Cx N |) is contained in set of total volume bounded above

(ZM \/m(a/l)k+1)n|m — Clm—n(k—i—l)'

By our assumption this goes to zerol apes to infinity. O
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13 Stratified Spaces

Definition 13.1. A stratification of a topological spacX is a filtraion is a de-
compositionX = [J'_, § where each of th& are smooth manifolds (possibily
empty) of dimensiom and so that

k—1

S\sclJs.

i=0
The closureS; is called the stratum of dimensidn

Note that any stratum of a strafied space is a stratified space in its own right.

Stratified spaces are useful because many results about smooth manifolds can
be extended to stratified spaces. A good example is the space of madiicgls
The strata are the matrices of rank bounded above by a fixed number. (assume
thatk < n)

As an application of this result we will compute the low homotopy groups for
the Stiefel manifolds, $tR"). Recall that the Stiefel manifold is the space of
k-frames inR". Given ak-frame(vy, vy, ..., vk) we get an injective linear map
A:RK - RN by sending the standard basis vectgrs> v;. In other words we
can identify the Stiefel manifoldyx(R"), with the open subset of hafik, R")
consisting of injective maps. The compliment \§f(R") has a decomposition
according to the dimension of the kernel of the map. To codify this set

R = {A € homR¥, R")|Rank A)) = I}.
We claim that in fact thes® are submanifolds.

Proposition 13.2. R ¢ hom(RK, R") is a smooth submanifold of codimension

k=D —=1).

Proof. Fix A € §. Write R¥ = ker(A) @ Ran A*) andR" = ker(A*) + Ran(A).
Then with respect to this decomposition we can write

~=[o 9
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and a nearby matrix as

_ o B
e—na+|% 4]

Lemma 13.3.If A_—|— « is invertible then a vectofv, w) is in the kernel of B if
andonly ifv = —(A+ o) 1pwand (8 — y(A+a) 1fv=0

Proof. If (v, w) is the the kernel oB then
(A+a)v+ Bw=0
so the first equation is clear. The second equation follows by substituting the first

into
yv+dw =0

The lemma implies that the kernel Bfis |-dimensional if and only if
s—y(A+a) =0
The map
|:)Oj ’g] = 6 — )/(A—l—oz)_lﬁ

is clearly a submersion so the preimage of 0, our local mod&| & a submani-
fold of codimension

dim(ker(A)) dim(Coker(A)) = (k —1)(n —1).

We'll use this to do a simple calculation of homotopy groups.
7i (Sk(R™) = 0

fori < n — k. From its definition S¢(R") can be identified with the space of
matrices of maximal rank iMgxn and so

SK(R") = Mxn \ (UF2R

22



so the problem is to show that a map
f:S - St®R"
from a sphere of dimensidn< n — k is null homotopic. We know that there is a
null-homotopy in the larger contractible space of matrices that is to say there is a
map
h: D' — Myxn.

so that .
his= f.

If we can find a homotopk : | x D'*1 — My, so that during the homotopy
the following two conditions hold.

1. k|l x S c SK(@®RM
2. k({1} x D't1) ¢ Sy (@R").

To see that we can do this we will appeal to Sard’s theorem. Lets consider the
larger family of maps

H : Mixn x D' — Mixn

given by
H(A, x) = A+ h(x).

If Ais small enough then
k(t,X) = HtA, x) =tA+ f(X)

satisfies the first condition. To see that we can arrange that the second condition
is satisfied we note tha is a submersion. Thus the preimages of e are all
submanifolds. Set

R=H"YR)
these are submanifolds of codimensién- 1)(n — 1). so they have dimension
i+14+nk—(k-Hhn-=1

Consider the projectioﬁq — Myxn. Provided thatforall <k —1

i+1+nk—(k-DHn-1)<nk
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then image of the projection has measure zero. The worst chse ks— 1 when
the right hand side is
i +nk+k—n

so that the inequality holds if < n — k. If (A, x) > R that forallx f(x) > R
completing the proof.

14 Fiber bundles

The notion of a vector bundle has a natural and useful generalization, that of a
fiber bundle. Here is a basic example.

Example 14.1.A k-frame forR" is ak-tuple(ey, .. ., &) of linearly independent
vectors.

Let Sk (R") be the space of ak-frames forR". This the Stiefel manifold.
There is a natural map
p: SkR") — Gr(RM)

given by sending thk-tuple to(v1, vo, ..., vk) to its span. This map is a submer-
sion and the preimage of small open sets can be given a product structure.

Definition 14.2. A (locally trivial) fiber bundle with fiberF is triple (E, B, p)
wherep: E — B is a smooth map so that for d&le B in B there is a neighbor-
hoodU of b and a diffeomorphism:

T p_l(U)—> UxF
so thatp; o T = pwherep:: U x F — U is the projection.

In our example leUr; be one of our standard charts andfet= Inj(R¥, R™)
be the space of injective linear maps. This an open subset offfof") so it is
a manifold. We’'ll define the inverse of the trivialization

t™1:Up x F > p~t(Up).
To do this we need to fix an identification af [T — RK. Then
™I TA j) = (Aotojer),Aoioj(e),...,Aoio j(&)).

where as usuah: IT — It is a linear transformation aridy is its graph.

For another example consider a real vector burpdlee — B. The projec-
tivization of E, denotedP(E) is space of lines irE and has natural projection
p’: P(E) — B which is a fiber bundle with fibeRP" 1,
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15 Whitney’s embedding theorem, medium version.

Theorem 15.1. (Whitney). Let X be a compact n-manifold. Then M admits a
embedding iR+,

Proof. From Theorem?] we can assume thall is embedded ilRN for someN.

To state the next result for a hyperplafiec RN let p: RN — T denote the
orthogonal projection. Note that the set of hyperplané&Nris a copy ofRPN—1

by associating to each hyperplane the orthogonal line. The desired result follows
from:

Lemma 15.2.1f N > 2n + 1 then for a full measure set of hyperplariésc RN
the composition p o @ is a differentiable embedding of M inid.

Proof. Let A ¢ M x M be the diagonalA = {(x, x)|x € M}. Define the map
a:MxM\A— RPN

which sends distinct points andx’ to the line through the origin parallel to the
line passing througk andx’ or equivalently the line through 0 arxd- x’. Notice
that p; o @ is injective if and only ifa misses the line orthogonal 1@. If 2n <
N — 1 then any point in the image @f is a critical value and hence by Sard’s
theorem the image of has measure zero. Thus the set of then the imadgaof
measure zero and so the set of hyperplane for which the composition is injective
is a Baire set.

Next consider the projectivization of the tangent bundI®&of®(T M). This is
a fiber bundle oveM with fiber RP"~1. The total space of the bundle is a smooth
manifold of dimension & — 1. Define the map

b:P(TM) > RPN

which sends a liné € T,M to the lineDy® (¢) in RN. Notice that the differential
of pr o @ is injective precisely when the line orthogonalliois not in the image
of b. If 2n — 1 < N — 1 then as above the imagelohas full measure.
Thus the set of good planes is the intersection of two sets of full measure and
hence had full measure itself. O

]
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Notice that the condition on the m&ypwas weaker then the condition on the
mapa so the proof also proves:

Proposition 15.3.1f M is a closed smooth n-manifold then M immerses Rf®.

Proof. ]

We’'ll use this theorem to prove the hard version of Whitney’s theorem.
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16 A brief introduction to linear analysis

In a number of place we've talked about the so called infinite dimensional context.
In this section we’ll introduce briefly the basic notions necessary to discuss this
story rigorously. The main application we have in mind is to the

16.1 Basic definitions

Definition 16.1. A normed vector space is a vector spaXgover the real or
complex numbers) with a functign- || : X — R satisfying the usual properties

of anorm. A Banach space is a complete normed vector space that is all sequences
which are Cauchy with respect to the converge.

Examples. €(X), the space of continuous functions on a compact metric space
is a Banach space with its natural norm. Completeness is the statement that a
uniform limit of continuous functions is continuous.

CKk(X), the space of k-times continuously differentiable functions on a compact
manifold when given the norm

Il sup ”a' f I
ck = — 1l
xeX. Iwithe(ly<k  0X!

wherel = (i1, i2,...,in) is @ multi-index and’(I) = Y-7_,ij. Completeness
follows form the same theorem applied to the derivative$ .of

L P-spaces.

Spaces of idlder continuous functions.

Next we wish to consider functions on normed vector spaces. It turns out that
continuity of maps on a normed vector space is equivalent to boundedness. More
precisely we have:

Definition 16.2. A linear mapT : X — Y is called bounded if there is a constant
C > 0 so that for alx € X we have

ITXlly = Clix|Ix.

Furthermore the smallest such const@ris called the operator norm d@f and is
denoted|T ||
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Exercise: T : X — Y is continuous if and onlyl is bounded.
A basic fact of life is that every normed vector space sits in canonical fashion
in a Banach space.

Theorem 16.3.To each normed vector space X there corresponds a unique Ba-
nach spaceX called the completion of X and a unique injective map continuous
linear map X— X satisfying the following universal property. If TX — Y is a
continuous linear map then there is a unique continuous linear MapX — Y

so that the operator norm of T arid agree.

For proof see for example Royden’s text. In practice the significance of this
theorem is that we will consider various norms@gr (R") and take the comple-
tions with respect to these norms. To check if maps between these completions
are continuous it suffices to check that the map is boundezZfomvith respect to
the norms in question.

Definition 16.4. Let B(X, Y) denote the space of bounded linear operators from
XtoY.

B(X,Y) is Banach space in its own right. In fact it is a Banach algebra (i.e.
a Banach space with the structure of an algebra so that,fipre X we have

Xyl < [IXIHyIl-

16.1.1 The three pillar’s of linear analysis

You can look in any book on Functional analysis for this material. Its also in
Abraham-Marsden and Ratiu.

Theorem 16.5. The Hahn-Banach theorem Let X be a linear space d@vet
RorC and p: X — R be a map satisfying

1. Forallx,y € X p(x+Y) < p(x) + p(y)
2. Forall A € Fand all x e X we have pix) = |A| p(X).

Let Z C X be alinear subspace and: Z — F be a linear functional. If for all
z € Z we havdp(z)| < p(2) then there is a linear functiona : X — F which
extendse and satisfie$p(x)| < p(x) for all x € X.

The proof goes by a Zorn’s lemma argument considering all possible exten-
sions with the given property. One shows that this is a partially ordered set and
any extension which is not defined on the whole space has a nontrivial extension.

This has one corollary that we will need later.
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Corollary 16.6. Let X be a Banach space and & B a finite dimensional sub-
space. Then F has closed complementary subspace. (i.e., there is a closed sub-
space Cc B sothat FNC = {0} and F+ C = B.

Proof. Take a basisfy, ..., f)n} for F. Let¢q, ..., ¢, be the correspond-
ing dual basis of*. Clearly theg; satisfy the hypothesis of the Hahn-Banach
theorem withp being a multiple of the norm. So there are linear functionals
@1, ..., n extending these. S& = NI, ker(¢).

Theorem 16.7. The Open mapping theorenAny surjective bounded linear map-
ping T: X — Y is an open mapping, that is it takes open sets to open sets.

The proof of this theorem is an application of the Baire category theorem.
An important corollary is the Banach isomorphism theorem.

Theorem 16.8. The Banach isomorphism theorerA bounded linearmap TX —
Y which is an isomorphism of vector spaces is a topological isomorphism.

Proof. At issue is show thal ~! which exists as a map of sets is continuous.
So we must show for all ¢ X open that(T—1)~1(U) = T(U) is open. T is
surjective so this following from the open mapping theorem. O

Theorem 16.9. The closed graph theorerd linear operator T: X — Y is
bounded if and only if its grapht = {(X, TX)|x € X]|| € X x Y is closed.

16.2 Compact operators

In this subsubsectioX andY will denote Banach spaces.

Definition 16.10. A linear operatofT : X — Y is called a compact operator the
image undef of the unit ball inX has compact closure M.
Remark2. Compact operators are sometime called completely continuous.

The prototypical compact operator is the following ReéandY be the space
¢2 of all sequencea = (ay, ay, .. .) so that) >, (a;)? < oo and define

T(ag,a,...) =(a1,a2/2,a3/3,...,ay/n,...)

To see thafl is compact choose a sequergtan B; the ball of radius one. By
a diagonal argument we can pass to a subsequence where comporsrisrof
verge to som@™. Then we claim thaf (a') converges /2. Chooses > 0.
Then chooséy > 0 so that the following hold.
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1

2. (Xl l e, —ar1d)? < e/2

The last follows from the component-wise convergence. Then we havefog

ip—1 00
: 1 . 1 . 1
IW@%W@%V§§hﬂ%—$¥+Q:@%—mﬁ%?
n=1 n=ig

1S
IO n=ig
< €?/4+€?/4 = €?)2.
The basic result that we will need is Arzela-Ascoli theorem. Bdte a ball in

R". Recall we call a subsé € CO(B) equicontinuous if for ale > 0 there is a
8 > 0sothatiflx —y| < dthen|f(x) — f(y)| <eforall f € A

Theorem 16.11.(Arzela-Ascoli). A subset & C°%(B) has compact closure in
C9(B) if and only if A is bounded and equicontinuous.

This has an immediate corollary:
Corollary 16.12. The embedding &B) — C9(B) is compact.

Proof. The unit ball inC%*(B) is certainly bounded i€°(B). If || f|lco« < 1
then| f(x) — f(y)| < |x — y| we can take = ¢. O

16.3 Fredholm Operators

A nice way to think about compact operators is to show that set of compact op-
erators is the closure of the set of finite rank operator in operator norm. In this
sense compact operator are similar to the finite dimensional case. One property of
finite rank operators that does not generalize to this setting is theorem from linear
algebra that ifT : X — Y is a linear transformation of finite dimensional vector
spaces then

dim(ker(T)) — dim(CokerT)) = dim(X) — dim(Y).
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Of course if X or Y is infinite dimensional then the right hand side of equal-
ity does not make sense however the stability property that the equality implies
could be generalized. This brings us to the study of Fredholm operators. It turns
out that many of the operators arising naturally in geometry, the Laplacian, the
Dirac operator etc give rise to Fredholm operators. The following is mainly from
Hormander

Definition 16.13. Let X andY be Banach spaces andTet X — Y be a bounded
linear operatorT is said to beFredholm if the following hold.

1. kenT) is finite dimensional.
2. RanT) is closed.
3. CokexT) is finite dimensional.

If T is Fredholm define thiadex of T denoted IndT) to be the number dikker(T))—
dim(CokerT))

First let us show that the closed range condition is redundant.

Lemma 16.14.Let T : X — Y be a operator so that the range admits a closed
complementary subspace. Then the range of T is closed.

Proof: C be a closed complement for the range. We can assumeT it
injective since ke(T) is a closed subspace and hexceker(T) is a Banach space
so we can replacé by the induced map from this quotient. Now consider the map
S: X@® C — Y defined by

S(x,c) = T(x) +c.

Sis bounded linear isomorphism and hence by the open mapping thé&iem
topological isomorphism. Thus R@h) = S(X & {0}) is closed. 0.

An important result that will be used over and over again is the openness of
invertibility in the operator norm.

Theorem 16.15.1f T : X — Y is a bounded invertible operator then for all
p: X — Y with sufficiently small norm ¥ p is also invertible.
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Proof. Without loss of generality we can assutde= Y andT = |. Then if the
norm of p is sufficiently small the Neumann series

Oo .
> (=p)
i=1
converges to the inverse bH- p. O

We begin with some lemma’s

Lemma 16.16.(F. Riesz)The unit ball B in a Banach space X is compact if and
only if B is finite dimensional.

Proof. See Kerszig Lemma 2.5-4. This is easy for Hilbert spaces but takes a little
care for Banach spaces. O

Lemma 16.17.The following are equivalent:
1. ker(T)) is finite dimensional an®anT) is closed.

2. Every bounded sequenfg} c X with T % convergent has a convergent
subsequence.

Proof: Suppose that 1 holds. Since ey is finite dimensional it admits a
closed complimen€. Since RafT) is closed it is a Banach space so the Banach
isomorphism theorem implies|c: C — Ran(T) is an isomorphism and the
result follows. Now suppose that 2 holds. Then a bounded sequence in the kernel
has a convergent subsequence so the kernel is finite dimensional. Thi&t) Ran
closed follows immediately from 2. O

Let Fred X, Y) denote the space of Fredholm operators betwéeand Y.

Also let Fred X) be the set of Fredholm operators ®n

Lemma 16.18.Fred X, Y) is a open subset @ (X, Y) and the index is a locally
constant function ofrred X, Y).

Proof. LetT : X — Y be a Fredholm operator and let X — Y be an operator
with small norm. We can write&X = C + ker(T) andY = RanT) + D. With
respect to this decomposition we can wilteas a matrix

T 0
T=[¢ o]
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and p as the matrix

_la b

P=lc d|
We prove the result by reduction to the finite dimensional situation. In fact we'll
prove

Lemma 16.19.For p sufficiently small there is a linear transformation Kern(T) —
CokerT) so that

ker(T + p) = ker(A) and Coke(T + p) = Coker(A).

In fact the norm ofp is small enough thef + a will be invertible and if we

set 1 | .
| (T +a)” _
G= [O I ] andH = [—C(T’+a)‘1 I] (7)
then T 0
/+ a
HT + PG = [ 0 —c(T+a b+ d] '

The lemma follows immediately from this takify= —c(T + a)~'b + d. O
The proof of the lemma proved the following conceptually useful result

Lemma 16.20.Let T: X — Y be a Fredholm map and:pX — Y alinear map.
If p has sufficiently small norm then there are isomorphism¥’i® K — X and
j: Y = X @C sothat

jo(TH+poi= |}) 8i|
for some linear map gK — C.

We’ll also need the notion of the adjoint of an operatoiX lis a Banach space
the dual space oK is the space of all bounded linear functionals X¥rand is
denotedX*. Given a bounded linear operatdr: X — Y we have get a linear
operator

T YY" - X*
by declaring that fop € Y*, T*(p) is the linear functional so which sexdo
p(T(X)).

First we give the dual characterization of the norm.
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Lemma 16.21.Forall x € X

X[l = sup ([pC)])
leoll=1

Proof. Fix xo € X Certainly|p(Xo)| < ||plll|Xoll SO

[Xoll = sup (lo (%))
lpll=1

Define a linear functional : sparixg) — R by A(Xg) = ||Xo|| and extending by
linearity to the span. Applying the Hahn-Banach theoremand the subadditive
function p(x) = ||x|| implies the existence of an extension\afo the whole ofX
with

A = [IX|

Lemma 16.22.1f T is bounded then Tis bounded with the same norm

Proof.
ITI = sup [ITX]
X[Ix[I<1

= sup | sup p(TX)
XIIXII<1 plllpli<1

= sup sup |p(TX)
plllel=1x]lx|<1

= sup [T*(p)ll
pllpl=1
= |ITI.
O
We’ll need the relationship between the cokernel adnd the kernel of *.

Lemma 16.23.1f T has closed range then

CokerT)* = ker(T™).
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Proof. There is a natural map k@*) — CokerT)* by sendingp € ker(T*)
to the linear functionah € CokerT)* wherei(y + T X) = p(y). This well
defined since for alk € X we havep(Tx) = T*(p)(X) = 0. Since Rafrl) is
closed, CokgiT) = Y/Ran(T) is a Banach space. Given a linear functionad
CokerT)*soi: Y/RanT) — R and hence defines a bounded linear functional

oY = Y/RanT) — R.

Now (T*p)(X) = p(T(x)) = 0. Itis easy to check that this inverts the previous
construction. O

Next we observe that compactness is preserved under taking adjoints.

Lemma 16.24.Let K: X — Y be compact then K Y* — X* is compact.

Proof. This takes a little work. See for example Kresigroductory functional
analysis with applicationgheorem 8.2-5. O

Lemma 16.25.Let K : X — X be a compact operator. ThenH K is Fredholm.

Proof: First we coincide the kernel df + K. Let B be the unit ball in
ker(l + K). ThenB = K(B) so B is image of a bounded set under a compact
operator hence is precompact. Buiis closed sd is compact. By Riesz’s lemma
ker(l + K) is finite dimensional. Next we show that R&nt+ K) is closed. By
lemma 16.17 it suffices to show thatifis a bounded sequence so that- K; X;
convergesty € Y then there ix € X so thatx+ Kx = y. Since{x; } is bounded
there is a subsequeneg so that{Kx;;} converges. But thefx;;} converges.
Thus the operatar+ K is a semi-Fredholm. Applying the same arguement to the
adjoint| 4+ K* completes the proof. ]

Next we give a useful characterization of Fredholm operators.

Theorem 16.26.T : X — Y is Fredholm if and only this a bounded linear
operator R: Y — X so that

RT —landTR— |

are compact operators.
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Proof. If T is Fredholm then as before we can write
X=X @kerT)andy =RanT) g C

for closed subspace§ C XandC C Y. T|x : X" — Ran(T) is an isomorphism
so it has and invers®. ExtendingR to a mapY — X using the direct sum
decomposition gives the required map.

If R exists ke(T) is finite dimensional from the equatioRT = | + K.
Ran(T) is finite dimensional from the equatidnR = | + K’ and the operator is
Fredholm. O

Next we consider the composition of Fredholm operators.

Lemma 16.27.Let T: X — Y and S: Y — Z be Fredholm operators. Then
ST: X — Z is Fredholm. Furthermor&nd(ST) = Ind(T) + Ind(S).

Proof: SincgST)~1(0) = T-1(S1(0)) we have dintker(ST)) < dim(ker(S))+
dim(ker(T)). Similarly dim(Coker(ST)) < dim(CokerS)) + dim(CokerT)) so
the composition is Fredholm.

Next we consider the index assertion. To this end consider the family of oper-
atorsA; . Y & X — Z @ X defined by the equation

cogt)S —sin(t)ST
sin(t)l cos(t)T

for 0 <t < 1. We claim thatA; is a continuous family of Fredholm operators.

But
A — SO0 cogt)l —sin(t)l I O
=10 |1 sin(t)l  cos(t)l 0T |
So A; is the composition of Fredholm operators and hence is Fredholm. Clearly
INd(Ag) = Ind(T) + Ind(S) and Ind A;) = Ind(ST). O

17 Smale’s Sard theorem

In the early sixties Smales realized that many of the ideas of differential topology
can be applied to aid in the study of PDEs and as part of this program he showed
how to generalize Sard’s theorem to the infinite dimensional case. First we need
to introduce the correct kind of mappings of Banach manifolds.
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Definition 17.1. Let X andY be Banach manifolds anfl: X — Y a smooth
map. We say that is a Fredholm mapping if for alt € X the differential

is a Fredholm map

The first problem we run into with trying generalize Sard’s theorem is that
the notion of measure zero isn't easy to make sense of in an infinite dimensional
space however the the complement of a (closed) set of measure zero is an open
dense set. The critical set of a map is closed so the image is at worst a countable
union of closed sets of measure zero. The complement is a countable intersection
of open dense sets. This notion makes sense in an arbitrary topological space. In
particular Banach manifold which satisfies the Baire category theorem so such a
set is non-empty.

Definition 17.2. Let X be topological space. A sé& C X is called residual it is
a countable intersection of open dense sets.

Thus the Baire category theorem says that a residual subset of a metric space
is dense.
Smale’s generalization of Sard’s theorem is

Theorem 17.3.Let f: X — Y be a smooth mapping of second countable Banach
manifolds. Then the set of regular values of f is residual in Y.

To prove this result we prove a result of independent interest which says that
after a change of coordinates a nonlinear Fredholm mapping differs from an linear
isomorphism by a nonlinear map between finite dimensional manifolds. We have
a kind of analogue of Lemna?

Lemmal7.4.Let f: X — Y be a Fredholm map. Then for anyexX there are
coordinate chartgp: U c X > B® K — andy:V CcY — B® C sothat

Vo fog (x, k) = (X, g(x, k).

Proof. This is a local result so we may assume without loss of generalitytisat
the origin inU ¢ X — B @ K and thatf (x) is the origininV c Y - B® C
whereB is a Banach spac& = ker(dy f), andC = Cokerdy f). We can also
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arrange that @ K is the kernel ofig,o) f and thatB & {0} is complement for the
range ofd,g) f and finally that

| 0
doo f = [o o}

f(x, k) = (a(x, k), b(x, k)).

As in the proof of the implicit function theorem consider the map

Write

h:U—-B@pK
given by
h(x, k) = (a(x, k), k).

Then the differential oh at (0, 0) is the identity so there is a mapinvertingh
near the origin. Notice that

foq(x, k) = (x,9(x,k)

as required. n

Remark3. This lemma has a very important consequence. Point preimages of
Fredholm mappings are locally homeomorphic to the point preimage of a smooth
map between finite dimensional manifolds. This the beginning of Kuranishi’s
work in deformation theory for complex manifolds. Kuranshi and Smale where
contemporaries at Columbia in the early sixties.

We need one more technical lemma.

Definition 17.5. Amap f: X — Y is said to be locally closed if for ak € X
there is a neighborhodd of x so thatf |U : UtoY is a closed map.

Any continuous map from a locally compact space is locally closed. Banach
spaces a locally compact if and only if they are finite dimensional.

Lemma 17.6.A Fredholm map f: X — Y is locally closed.
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Proof. Choose charts as guaranteed by Lemma 17.4 so that we can assume our
map has the form
f(x, k) = (X, 9(x, k)

If Ac U c B x K is closed we must show thdt(A) is closed. Le(x;, ¢;) be a
sequence irf (A) converging ta’x, ¢). Thenc; = g(x;, y;) for some sequencg.
Since they; are bounded in finite dimensional vector space we can assumg that
converge. Then clearlg, c) will be in f(A). O

We are now ready to prove Smale’s Sard theorem.

Proof. Let f: XtoY be our Fredholm map. Sinc¥ is second countable it is
enough to show that there is a covering>by open set&) so that the regular
values of f |y are residual. In fact we will show that we can fibdso that the
regular values off |y are open and dense. Sin€as locally closed and the since
the critical point set off is closed there in no problem in choosidgthe regular
values of f |y is an open set . Now choose charts about the point in question so
that the local representative éfhas the form guaranteed by Lemma 17.4. The
differential of local representative df has the form

" decond]
* d(x,k)g|K

so thatd i f is surjective if and only ifd k 9|k iS surjective in other words
(X, ¢) is a regular value foff |y if and only if c is a regular value ok — g(x, k)
for k in a suitable neighborhood. Thus the intersectio®of |y) with each slice
{x} x CNV is dense and hend@(f|y) is dense. O

18 Parametric transversality

An important tool in differential topology is the notion of transversality.

Definition 18.1. f: M — N is said to be transversal ® C N ifforall me M

we have

This is sometimes writteri MZ.
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Lemma 18.2.1f f: M — N is transverse to Z then the preimagelfZz) is a
smooth submanifold of dimension

dim(M) — dim(N) 4+ dim(Z2).

Proof. Let x € f~1(Z) and choose chartdJ, ¢) aboutx and (V, ¢) about
f(x) € Z. We can choos&V, ¢) so thaty (f(x)) = 0 andy(V N Z) C
R% x {0} c R". Let p: R" — R"“ be the projection. Defing : U — R"* by
g(X) = po ¢ o fly(x). Then the condition that is travsversal t& implies that
the origin a regular value af and hencgy=1(0) = Z NU is a submanifold. [

Remark4. Often one can make cleaner statements by introducing the notion of
codimension. IfZ c N is a submanifold we define codi@) = dim(N) —
dim(Z). It is the number of equations required to cut dukocally. In the above
theorem the codimension & and f ~1(Z) are the same. (They are each cut out
by the same number of equations!)

Our aim is to show that the condition of being transversal is generic in the
sense of Sard's theorem. As a model for what we wish to prove consider the
following situation.

Let

F:PxM—N

be a smooth map.

Theorem 18.3.Suppose that F is a submersion, i.e. the differential of F is surjec-
tive everywhere. Suppose further that P, M and N are finite dimensional. Then
for each pe P we getamap §: M — N. Given a submanifold Z of N t for a
generic pe P we have § is transversal to Z.

Proof. SinceF is a submersiorF is transversal t& so thatS = F~1(2) ¢
P x M is a submanifold. Consider the projection

p1: S— P.

Fix (p, m) € Sand seh = F(p, m) The tangent space &at(p, m) is (v, w) €
T(p.myM so thatdp,m) F (v, w) € ThZ or equivalently

We claim thatp is a regular value of the projection if and onlyfif is transverse
to Z. This follows from
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Lemma 18.4.S = F~1(Z) is transverse tgp} x M if and only if fo is transverse
to Z.

Proof. The first condition is
0@ TuM + (dpmF) " H(TnZ) = TpP & TyM
The second condition is
dp.mF(0® TmM) 4 TnZ = TaN.

SinceF is surjective these condition are equivalent.
O

Next we observe that the conditidhis transverse t¢p} x M is equivalent
to the condition thap is regular value of the projectiop|s : S — P. The first
condition is

0® TmM + (dp.mF) X (ThZ) = ToP & TyM

while the second is
dp.mp1 : [@p.mF) ™ (ThZ) = TpP.

Since 0B T M is the kernel ofly m p1 is 06 TmM these conditions are equivalent.
Thus we can appeal to Sard’s theorem applied to the projepiiols — P to

say that a generip € P is a regular value and by the lemma for gengrie P,

fp is transverse t@. O

Theorem 18.5.Suppose that F is a submersion, i.e. the differential of F is sur-
jective everywhere. Suppose further that P, M and N are Banach manifolds for
each pe P we getthe mappf. M — N is Fredholm. Given a finite dimensional
submanifold Z of N then for a residual set okpP we have f is transversal to

Z.

Proof. We simply need to check the mgg|s : S— P is Fredholm. To this end
we need to inspect the proofs of the two lemmas above. We can sharpen them to
the following.

Lemma 18.6. There an isomorphism

ToP® TaM/(0® TmM + (dp,mF)_l(TnZ) — TaN/dpmF(O® TmM) + ThZ
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Proof. Differential of F induces a map which is easily seen to be an isomorphism
using the fact thaF is a submersion. O

dpvmp]_ . (dp’mF)_l(TnZ) = TpP
Lemma 18.7. There an isomorphism

TpP @ TaM/(0® TmM + (dp.mF) ™ (ThZ) — TpP/dp.mp1 : (dp.mF) H(Th2)

Proof. Now the differential ofp; induces the desired map which is easily seen to
be an isomorphism using the fact thatis a submersion. O

These two lemmas tell us that the cokernepgfs is finite dimensional.
The kernel of the projectiop; |Sis the intersectio0® T, MN(dp m F)~"1(T,2).
This intersection Fits into a short exact sequence

0 — ker(dmfp) — (0@ TmM N (dp.mF) " H(ThZ) — ThZ — 0.
and hence is finite dimensional. O
The main application we will have of this result is the following result.

Theorem 18.8.Let M, N, and Z be smooth manifolds withZN a submanifold.
The set of maps :fM — N in CK(M, N) which are transverse to Z is residual
in CK(M, N).

A little later in the course we will deal with givinG¥(M, N) the structure of
a Banach manifold.
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Whitney proved a stronger version of this theorem.

Theorem 18.9. (Whitney 1944) Any compact n-manifold admits an embedding
into R?",

Proof. (Sketch). We will work out the caseis even andh > 2 andM orientable
first. Consider the spadenm of CX-immersions oM — R?". The condition of
being an immersion is an open condition in &topology on the space of maps
so thatlmm is a Banach manifold. By Proposition 15.3 proposition this space
is non-empty. First we will show that for a Baire set of immersions the there are
only finitely many double points and that the two sheets of image are transverse
at the double points.

To this end consider the map

F:immx (M x M\ A) > Grh(R?) x Gry(R?") x R?".
given byF (f, x, y) = (Im(Dy f), Im(Dy f), f(x) — f(x’). One checks th&f is

a submersion. LeZj ¢ Gr,(R?") x Gry(R?") be the set of pairélly, I[1») so that
dim(ITy N IIp) =i.

Lemma 18.10. Z; is a smooth submanifold of dimensiam® — i 2.
Proof. Write R?n as
MiNTL, @I NIy @7 NI @ My NIy

The standard coordinate chart abdLitrepresents a plane nddy as the graph of
a linear mapA; : IT; — I decomposing this matrix according the to the above
deomposition we can write
a1 B1
Al =
! |:V1 51:|

MyNT@ My NIy — i N3 @ I NI

viewed as a map

Doing the same of a chart abaldp we get

az B2
Ao =
2 [Vz 52}
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now viewed as a map
MiNT@ I N — i N3 @ [ NIy

The condition that the planes representedAy, A) also intersect in andimensional
subspace is the condition that = o so the total dimension isni — i? O

We seek a maff so that for all distinctx,y ¢ M F(f,x,y) € Z; x {0}
for anyi. The parametric transversality theorem implies that for a Baire sét of
the map(x, y) — F(f, X, y) is transverse t&; x {0}. But the codimension of
Zi x {0}is 2n? + 2n — (2n? — i?) = i? + 2n which is larger than the dimension
of the domain 8.
Exercise8. Show that we can in addition assume tliatas no triple points.

Thus wheneverf (x) = f(y) we have that the differentials have transverse
images at those points. We assume that in the remainder of the discussidn that
has been chosen satisfy these conditions.

Lemma 18.11. At each pair(x, X") with f(x) = f(x’) = y there are charts
U, ¢), (U’, ¢') near x, x" and (V, ) near y so that

v lo fop(Xe,Xo, ..., Xn) = (X1, X2, ..., Xn, 0,0, ...,0)
and
Yo fog (X, X5, ..., %)) =(0,0,...,0,X}, X5, ..., X)
Proof. Since f is an immersion there are coordinates= (Xy, ..., Xn) aboutx

andy1(yi, ..., Yon) abouty so that

lﬁl_lo fogp(Xy, X2, ..., Xn) = (X1, X2, ...,X%n,0,0,...,0)

and coordinate®’ = (Xy, ..., Xy) aboutx” andy, = (y;, ..., Y,,) abouty so
that

Yoto fod(X], X, ..., Xh) = (0,0,...,0,X], Xp, ..., X))
Then setyy = (y1,..., Yn, y,’Hl, ..., Y5,) We claim that this gives the desired
coordinate system. O
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Thus the double points are isolated and hence by compactness there are finitely
many.

Next we define the sign of a double point. Recall now that are assuming that
n is even and thaM is orientable. Choose an orientation Mf and of R2". If
f(x) = f(x') = y then transversality tells us that we can write

TyR?" = Dy f (TxM) @ Dy f (T M).

As both sides of this equations are oriented vector spaces we can assign a sign to
the double point according to whether or not the orientations agree. Notice that
sincen is even the order of the factors on the right hand side is immaterial. Also
notice that the sign is independent of the choice of orientatidvl of

We will now prove the following key proposition.

Proposition 18.12.1f a pair of double points y and y of opposite sign with
preimagesxy, X;) and(xz, X;) respectively. Then we can modify f so as to elim-
inate the double point without introducing any others.

Proof. Then choose andy’ embedded smooth curveshhwith endpointsi, x»
andxy, X, respectively. Sinca > 2 we can assume that the curves are disjoint
and that their images are disjoint except at the endpointsl’Letf (y) U f(y/)
denote the union of these imageE. is an embedded closed curve Rf" and
hence bounds a disk : D? — R?". We can assume that is transverse td
and to itself. This implies that has no double points and thatmissesf except
alongr".

Let N be the normal bundle af. Sinceo is contractibleN is trivial so that
there is a bundle isomorphism

N = D? x R?2,

Let v andv’ denote the normal bundles gfandy’ in M. These are again
trivial bundles. Note that alond(y), Df (v) defines a distinguished subbundle
similarly along f (y), Df (/).

Notice that the tubular neighborhood of By the tubular neighborhood theorem
there is a diffeomorphism

¥ : D? x D% - R
Suppose that we can writé = &1 @ &2 so that

Elty)=Df(v) and |,y =DfQ)
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Then we can write the tubular neighborhoodooin a standard way and we see
since we can push the two dimensional picture till the two arcs don'’t intersect we
can also push the higher dimensional picture till they don'’t intersect.

We must return to the issue of extending the splitting. The splitting gives rise
toamapv : I' — Gry,_1(R2-2) and we must understand when this map is null
homotopic. Form algebraic topology we know thai,Gr(R?"~2?) fundamental
groupZ/27 and is generated by the family of subspaces

IT; = sparicogt)e + sint)e”, €%, ..., e" 4.

ast varies between 0 and. In other words the identification dfig with IT, is
orientation reversing. Thus the orientatiorégp £, must be the same at the two
end if the splitting is to extend. On the other hand the normal vectors in the two
disk reverse orientation.

O

To prove the theorem we need to see that we first mofli§p that the signed
number of double points is zero. To this end consider the map

(X1, ..., Xp) = (X1 — 2X1/U, X2, ..., Xn, 1/U, X1X2/U, ..., X1Xn/U)

whereu(xy, . .., Xn) = (1+x2)(1+x3) ... (1+x32). Itis straightfoward if tedious
to check that this map has exactly one double point and also notice that at very
large distance from the origin this map is quite close to the linear embedding

X1, ..., %, 0,...,0

in other words we can shrink the map down a lot and use it to modify a given map
to have another double point and we can choose the sign of this double points as
well.

Now we consider the case thatis odd (it doesn’'t matter now iM is ori-
entable). Then the sign of a point of intersection is not well defined. In this case
however the relative sign of a pair of intersection points given the pair of curves
y andy’ is still well defined. If the curvey joining x; andx, andy’ joining x}
to x5 lead to intersection with the same sign choose different curves now joining
X1 to x5 and joiningx; to Xo.

If M is nonorientable and we have curvesandy’ leading to a pair of in-
tersection point with the same sign addytoa curve running around a loop that
reverses orientation. O
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19 Morse Theory

Definition 19.1. A function on a manifold is called ®orse functionif all of it
critical points are non-degenerate.

20 Canonical forms

20.1 The Lie Derivative

Let M be a vector field on a manifolil. As we say the vector field generates a
flow F; : M — M at least locally inM characterized by the condition that for all
x € M we have

d
gt = X(F(x))

Remark5. Or in words the tangent vector to the curve defined by F(x) at
t = 0is X(X).

Using the flow we can differentiate objects bh For example given a function
f : M — R we can compute

d
af O Ft(X).

Lemma 20.1. & f o Fi(X)|t=o = Dx f (X(X)).

Proof. This follows from remark 5. O

We will often write X f (x) for any of these expressions.

For vector field we can do the same. Here we need to be a little careful about
conventions. Suppose th&t Y are vector fields orX. Then we can form their
bracket [X, Y]. Here it is easiest to think in terms of the action on functiond. If
is aC? function then we define.

[X, Y](f) = X(Y f) — Y(XT)
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If in terms of local coordinateX = al a—i,— andY = b/ a_if then

bl al, @
X, Y] =(a'— — b'— -,
[ ] ( ox! ax! )8xl
The remaining terms dropping out since mixed partials commute.
A little more invariantly in term of a patch we have can represéaindY by

maps

X,Y:U—>B

and then
XY )(x) = D?f (X, Y) + DY (X) f

and hence
[X,Y]f(x) =(DXY(X) - DXX(Y))f

We can also get a path of vector fieldsxaty considering
Dr 0 F-t (Y (Ft(x)))

and we define theie Derivativeto be

d
LxY = at D x) F-t (Y (Ft(x)))

Fortunately we have

Proposition 20.2.
LxY =[X,Y]

Proof. Let G5 denote the time flow for the vector fieldy. Then

d
Dr ) Ft(Y(Fe(X) f = Esf o F_t o Gso F(X)|s=0

so that
d D F_i(Y(Fr(x))) f = d d foF G Ft (X)
gt DFo -t t lti=0 = giga oF-toGsoR |s=0,t=0
= d d foF Gso F(X)|
~  dsdt OF_t0LsO Mt s=0,t=0
d
= &(—Xf)(Gs(X)+X(f o Gg)(X)
= —Y(Xf)+ X(Y ).
As advertised. [
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Recall that every square matriwith complex entries is conjugate to one in
Jordan canonical form and many theorems about matrices are obvious once we
use this fact. So it is in geometry. We already saw one baby example of canonical
forms.

Theorem 20.3.Let X be a vector field on the Banach manifold M modeled on
B. Suppose for some ra M we have Xm) # O Then there is a charp :
U x (—€, €) — M about m so thap*(X) = (0, $).

In other words any two vector fields non-zero at a poinMrare equivalent
in small enough neighborhoods under the action of diffeomorphisn Bixing
the point.

Next we consider when can a subbunglief the tangent bundl& M of M can
be brought into a canonical form. In generality this is a very complicated problem
and we need to isolate manageable cases. The example that comes to mind is the
case wherep|x,y) = TxR" x {0} € TyR" x TxR™", the tangent bundle along
a product. A subbundle which is locally diffeomorphicig is calledintegrable

Notice thatEg is has following property. If

n n

; d ; d

X1 = E a'(xl,...,xm)ﬁ, and X, = E b'(xl,...,xm)ﬁ
i1 i—1

is a pair of local sections dfp then the bracket
N 9bl aal, 9

_ i R
= 3 )

is also a local section dE. A subbundle with this property is calledvolutive.
Clearly any integrable subbundle is involutive.
Examples:

2zx d 0 2zy 0
T2 v T T2 e 2
1+xc4ys0z oy 1+ X*+ycoz
is involutive indeed it field of tangent planes to the family of paraboloids

d
=1 = spaff—
1 pr{ax+

z=11+x>+Yy?

On the other hand 5 5 g
2, = sparf— — —
2=15p r{ax+yaz ay}
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is not involutive. In fact in has the interesting property that given any two points
and any path connected neighborhood there is a path tangépjdming the two
points contained in the neighborhood. Clearly ti&nis not integrable.

The following provides a converse.

Theorem 20.4.(Frobenius). IfE is involutive then it is integrable.
Proof. Choose first a coordinate patch about of the fipmU — R" x RM" so
that at¢(m) = 0 and¢, (§m) = ToR" x {0}. SetE1 = ¢, (E).

Then in some neighborhood x W of ¢(m) = 0 we can find a function

f:VxWxR"— R™" linearin the last factor witH (0, 0, -) = 0 and so that
any¢ € E can uniguely be written as

& =(e f(x,y,e.
There is a natural homotopy & to E; given by
Et = {(e, tf(tx,y, e)le e R"}.

We will show that there is a one parameter family of diffeomorphigimnso that

1. /() =0and

2. (Ft)«(Xt) = Eo.
ThusF; is the desired change of coordinates. kar V let

Xx(v, w) = (X, T (v, w, X))

Then the fact the2; is involutive implies that Ky, Xy] € E1 but [Xyx, Xy] is
certainly of the form(O, %) since the constant vectors fielkdsandy commute so
[Xx, Xy] = 0. More explicitly

[XX7 Xy] = (0’ D(v,w,x) f (y’ f(v9 w, y)’ O) - D(v,w,y) f(X, f(U, w, X)’ O)) = O

Let Xi (v, w) = (O, f(tv, w, v)). Atypical section ofE; is X; x(u, v) = (X, tf (tv, w, X)).
We can work out the brackeX}, X; x]

[Xt, Xt,X] - (0’ tD(tU,lU,X) f (0’ f(tl), w, U), O)
_t D(tv,w,v) f(X’ f(tU, w’ X)a O) - f(tva wa X))
= —tD(tv,w,x f(v,0,0) — f(tv, w,X)
d

= ——X
di h*

50



Thus the Lie derivative of([X;, %), Xt x] = 0 or equivalently ifF is the flow of
the time dependent vector field then we hate)..(Xsx) = Xstt,x as required.
H

Here is a more intuitive proof by induction on the dimension.

Proof. Induction on the dimension of the subbundle. The case of dimension one
follows from the standard form for an non-vanishing vector field. The question
is also local so we assume that we are given a subbundle of the tangent bundle
of R" defined in a neighborhood of & R". Suppose we have proved the result
for all subbundles of dimensiath. Let E be an involutive subbundle aGfR" of
dimensiord+ 1. Choose a nowhere vanishing local sectdénof E. Next choose

a coordinate system', ..., 2", centered at 0, so that; = X. TR""1 x {0} is

an integrable hence involutive subbundl&’ = E N TR"™! x {0} defines a
subbundle in a neighborhood of 0 of dimensanSinceE’ is the intersection of

two involutive subbundles it is involutive and so the induction hypothesis applies.
We can find a coordinate systeyh, . .., y" centered at 0 so th&’ is given in a
neighborhood of 0 as the spanydf . . ., y9 In this new coordinate systeX may

not be straight but we have that

0 d
—_— ., —, X
oyl ayd

forms a basis foE. We can write

whereXg is section ofT W. Then

0 0
P IR NP XO
oyl ayd

is also a basis foE. SinceXg is a section off W so is [387’ Xo]. By involutivity

it is parallel toXg so there is a smooth functioil defined in a neighborhood of 0
with

0
[ay" ol = f1Xo
Set L
g =—intd fiw,s,y% ... yds
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Then set
X1 = exp(g1) Xo.

It is now easy to check that

a
[—i, X]_] - O
ay
X1 is still a section off W so [-%-, Xg] is parallel toX; and we can find a smooth

oy’
function f so that

0
[ay' 1] = f2X4
We claim that
of,
— =0.
oyl
To see this notice that
0 0 ofo
[ [5 X1l = X1 =0
ay- "y ay

Using Jacobi’s identity we also have

0 0 0

0 0 0
8_)/1’[8_yz’xl] = [[ V]Xl]‘i‘[

: ayz Loyt

—, X
13 1]

= 0.

So if we set ,

y
o= —/ fiw, yl s y3, ..., ydds
0

and

Xo = e%2 X1
we have 5

ay!

fori = 1,2. Continuing in this fashion we eventually fir<h commuting with
yl, ..., y9 and we can construct the desired coordinate system as we did in class.
O
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20.2 Foliations

The local structure of the previous subsection has as its global counterpart the
notion of a foliation. Here is the precise definition.

Definition 20.5. A foliation F of M is a decomposition oM as a disjoint union
of connected immersed submanifolls = [ [, 5 £« called the leaves af so
that each point has a chattl, ¢) so that under the decomposition obtained
from the decompositiorh [, £« N U by taking components goes over to the
decomposition oR" = | [, pn—« R¥ x x.

It is important to realize that in the above definition we do not require the
leaves to have the subspace topology. For example Consider the 2-torus

T? = R?/7?

Fix a pair of real numbergzy, £2) so that¢y/¢2 is irrational. The cosets of the
subgroufd” generated by[t¢y, tgo]|t € R} give rise to a foliation with leaves that
are not locally closed subsets.

Remark6. The space of leaves of a foliation is one setting where one runs into
non-Hausdorff manifolds. The space of leaves has a natural covering by charts
(These may not be injective so be careful).

21 Characterizing a codimension one foliation in terms
of its normal vector.

Let F be a two dimensional foliation d&3.

Proposition 21.1. Letn be a local normal vector field t&. Then

n-(vVxn=0

Proof. Write
n=a —i—ba-i—c8
Y y 9z
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By rotating the coordinates we can assume that nore lofor c are zero. Then
F is locally spanned by the local sections
a0 0 0 0

0
—-b—+a—,c——-a—,c— —b—
X ay 0X 0z 9y 0z

and we have
0 a d d d d d d 0 0
[-b—+a—,c—-a—-] = [-b—,—-a—-]+[a—,c—]+[a—, —a—]
X ay 9X 0z X 0z ay 0X ay 0z
da o ob 0 ac d da 0 da 0 da 0
= bh——a———+a———-Cc——+-a——+a——
0X 0z dZ dX dy ax oxX dy ay 0z 0z ay
ac dob_ o odad odaad da 9 da 9
= a(-—-—2)—4+———-—2)+b——+-—Cc——.
dy 0z 90X 0dzdy dyoz 0X 0z axX ay

Since we are assuming thatis involutive we have
Sincea # 0 we have:

This same equation hold for any cyclic permutatiorapb, ¢ and simultaneous
permutation ok, y, z. Adding the resulting three equations gives

oc db Ja 0

C db oa
MT——MHE—XWH&—szﬂ

ax

as required. O

22 The holonomy of closed loop in a leaf

Definition 22.1. Let F be a foliation of a manifoldvi. A transversal toF is
smooth locally closed submanifold & which meets all leaves transversally. A
local transversal is a transversal which is diffeomorphic to a disk.

To discuss the holonomy we will use the terminology of a germs.
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Definition 22.2. Let X, Y be smooth manifolds. Fix a point € X. A germ of
smooth mappings at is the equivalence class of functiorfis: U — Y where

U c Xis an open neighborhood &funder the equivalence relation of agreement
upon restriction. Thatid : U — Y is equivalenttag : V — Y if there is a
neighborhoodV of x so thatf |w = g|w.

Let r1 andt, be local transversals hitting the same |€abf F. 71 andt, are
both contained in the same foliation chért Then the chart defines the germ of a
diffeomorphism fromry atty N Lto atto N L

Lety: St — £ be aC! closed loop based atin a leaf£ of foliation F. Let
7 be a transversal t& passing through.

23 Reeb’s stability theorem

Definition 23.1. A codimension one foliation is called transversally orientable if
the normal bundle = T M/ T F is orientable.

Theorem 23.2.LetF be a normally oriented two dimensional foliation of a com-
pact oriented three manifold. IF contains S as a closed leave then the pair
M, F is diffeomorphic to $x S* with the product foliation by two-spheres..

Remark7. To see that the normally oriented condition is important in the state-
ment of the result note the following? x S! has an orientation preserving invo-
lution 7 : §* x St — S? x St given by

t(x,€%) = (=x, e7'?).

This is a fixed point free involution so the quotieXt = S? x St/(x, €?) ~

(—x, €'%) has the structure of manifold as well. The product foliation i§o#

Sl is carried to itself byr and descends to a foliation &f. The induced foliation

is not normally oriented (can you see this). Most of the leaves are two sphere but
there are two leaves which are real projective planes.

Lemma 23.3.Let¢ : D2 — M be an smooth embedding of Into M2 with

image contained in a leaf L of. Then there is a foliating coordinate patch
¢ : D? x (—e, €) - M3 extendingp.
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Proof. First of all it is straightforward to construct a coordinate patch D? x
(—a, a) > M extendingp so thatF is transverse to all th¢ ({x} x (—a, a)) and
soT F agrees withDq,t) (To D2 x {0}). TransferF to a foliation of D2 x (—a, a)
still called . Let (r, 0) be polar coordinates in the disk.

DefineG on (D?\ {0}) x (—a, a) to be the span of} and%. By construction
G is transverse t&F and so the intersectiohF N G defines a line field 0GiD? \
{0}) x (—a, a). This line field is spanned by a vector field of the fooin, 6, t) =
a% +af(r, 6, t)%. We havea(r, 0, 0) = 0 anda(0, 6, t) = 0. and letFs denote the
time s flow of v. Fg(r,0,t) = (r + 5,0, Ts(r, 6,1)) when it is defined. Choose
b small enough so that the time 1-flow ofwith initial conditions (0, 6, t) for
t| < b is defined. Define a map : D? x (=b,b) — D2\ {0}) x (—a, a)
by sending(r, 8, t) to the point(r, 6, T, (0, 6, t)) or in words the time flow of
(0, 6,1) underv. This map takes the line segm€itt, 6,1)|0 < r < 1} to a leaf.
Since for anyd v(0,6,t) = 2 is tangent taF, ¢ carriesD? x {t} onto a leaf.
Thusé¢ is the required map. O

Next we prove that in a neighborhood of a two-sphere leaf the foliation has a
product structure.

Lemma 23.4. Suppose that is a leaf of F which diffeomorphic to 3The is
a saturated neighborhood N df which diffeomorphic to $x (—a, a) with the
product foliation.

Proof. DecomposeS? = D2 U D2. By the previous lemma we can find standard
neighborhoods and glue them together to get the result. O

Next we will show that the set of points on a leaf diffeomorphictds both
open and closed.

Theorem 23.5.Let F be a transversally oriented foliation. Then there is a em-
beddingy : St — M transverse to the leaves. In fagtcan be chosen to pass
through any point of M

Remark8. This is not to say that the image pfhits all the leaves. This is a much
stronger condition. A foliation with this addition property is called taut. The Reeb
foliation of S® is an example of a non-taut foliation. Any flow line can only touch
the torus leaf once but a closed circle transverse to a tor@ must meet the
torus in an even number of points.
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Proof. Fix a pointxg € M. SinceF is transversally oriented there is a nowhere
vanishing vector fieldy, which is transverse to the leaves. [Egtdenote the time-
t flow for this vector field and consider a particular flow line, of this vector
field. If this flow line is a periodic orbit we are done so suppose it is not. Then
we claim that there is leaf that is hit infinitely often by the flowline. We can find
X € X and sequencg — oo so that lim_,~ F;(Xo) = X. LetU be a foliation
chart inM aboutx. We can construct a smaller chawt, aboutx by using the
vector fieldv to flow away from the leaf’ containingx. In V if a pointis on a
connected component of the part of the flow linevint hits £. Since infinitely
many points ofy in different components of NV are contained itV the claim
follows.

Thus we can find a piece of orbit which contaigsand hits some leaf twice
and the points of intersection are contained in the pstch is straightforward to
modify the piece of flow line in this patch to close it up. O

Now consider our transversally oriented foliation f containing a leaf’
diffeomorphic toS?. Lety be a closed transverse curve passing throfighet I
denote the union of all the leaves which pass throligkive claim that" is all of
M and thaty hits each leaf the same number of times.

By Lemma 23.4I" is open. Also by this lemma there for each poynof ¢
there is a compact foliated neighborhood diffeomorphi&tox [0, 1]. By the
compactness of finitely many such neighborhoods coverbut thenTI is the
union of finitely many closed sets and hence closed. Finally consider the function
which associates to each poyof y the of points ofy contained in the same leaf
asy. By Lemma 23.4 this is a continuous function and hence is constant.

Finally choose a new which hits£ once and hence all leaves once. Then

h:Lxy —>M

given by takingy € £ andt € y to the unique point in the leaf throughit by
the flow line ofv throughy is the required diffeomorphism.

24 Differential forms and de Rham’s Theorem

24.1 The exterior algebra

Let V be a finite dimensional vector space over the reals. The tensor algeWra of
is direct sum

Ten(V)=ReV o V®. . @Vvek, |
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It is made into an algebra by declaring that the product ef V&K andb ¢
Veisa®b e V®k+D |tis characterized by the universal mapping property that
any linear map/ — A whereA is an algebra oveR extends to a unique map of
algebrasfen(V) — A.

The exterior algebra algebra is the quotient of exterior algebra by the relation

v®uv=0.

The exterior algebra is denoted* (V) or A(V). It is customary to denote the
multiplication in the exterior algebra b, ) — a A b If vy... vk is a basis foV
then this relation is equivalent to the relations

vi Avjp = —vj Ay for 0 #J,
vy Ay = 0

ThusA*(V) has basis the products
Vig A Vi, - .. Vi

where the indices run over all strictly increasing sequences of numbers between 1
andn.

l<ij<izg<...<ig=<n.
Since for eaclk there are<E) such sequences of lendtiwe have

dim(A*(V)) = 2".

A*(V) since the relation is homogenous the grading of the tensor algebra descends
to a grading on the exterior algebra (hence the *).

We can apply this construction fiberwise to a vector bundle. The most impor-
tant example is the cotangent bundle of a manifbfK in which case we get the
bundle of differential forms

A*(T*X) or A*(X).

We will denote the space of smooth sections\é{ X) by *(X). In local coor-
dinates a typical element 6&*(X) looks like

w= Z Oiiiy...<i X A X2 AL dXK,

1<ij<io<...<ik=<n

58



Since the construction af*(X) was functorial in the cotangent bundle these
bundles naturally pull back under diffeomorphism andfif: X — Y is any
smooth map there is natural map

£ Q5 (Y) = Q*(X).

The most important thing about differential forms is the existence of a natural
differential operator the exterior differential defined locally by the following rules

of .
df - ZWdXI

do = Z doi iy <ip A DX AAX2Z AL dXE,

1<ij<io<...<ik=<n

Notice that we can't invariantly define a similar operator on the tensor algebra.
If we have a one form .
0 =) fidx
i=1

and try to define
of; ; :
D6 = —dx! ® dx

then when if we have new coordinatgs. . . y" we have

=
and
n
0 = Z gmdym

m=1
where _
ox!
Om = fi E)y_m
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= a?aT/lay_mdym@dy
i gyl
- A ey
— E98)/—]cr'ng—);:dym@)dy'
_ %%dw®dy
= (aym(. y|> 3y ma .)dy'“@dy
_ Z 89'o|ym® y—f.a —rdy" @ dy
m= 1

Thus our definition depends on the choice of coordinates. Notice that when we
pass to the exterior algebra this last expression vanishes that exterior derivative is
well defined.

Theorem 24.1.d2 =0

Proof. From the definition in local coordinates it suffices to check tfat 0 on

functions.
n 2f

9 . .

2

d*(f)= ) o dX adxd =0
ij=1

since thef smooth so the matrix of second derivatives is symmetric. O

Proposition 24.2.

d@@nrb)=danb+ (—1)%9d A db.
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Proof. The bilinearity of the wedge product implies that it suffices to check the
result when _ _ _
a= fdxtAdx2Aa...Adxk

]

Definition 24.3. A cochain complex is a graded vector sp&e= > [, C; to-
gether with a mapl : C — C so thatdC; ¢ Cj;1 andd? = 0. The cohomology
groups of a cochain complex are defined to be

H'(C,d) = kerd : C' - C'*Y/Rand : C' "1 — C)

24.2 The DeRham cohomology

24.3 The Poincak lemma and homotopy invariance of the DeR-
ham cohomology

There are a bunch of basic forumlas in dealing with forms, the exterior derivative
and contraction and the Lie derivative.
Recall that the Lie derivative is defined as follow. Given a vector fidket F;
be its timet flow. By pull back this acts on forms on the manifold. Fixing a point
X € X we can watch what happens to the a form at the poumder the flow, i.e
consider the path
F (@R ) € AK(X)

The derivative at = 0 is called the Lie derivative

d
Lo = L F (@Rw)h=o € AK(X)

More generally there is a Lie derivative on tensors. Note thdtig a function
then this definition amounts to nothing more that

Evf = %f o) Ft(X)tzo = l)f(X) = Lvdf

Since the exterior derivative is natural under diffeomorphisms it follows that Lie
derivative commutes witd. Hence

L,df =dL, f =d,df.
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More generally we have Cartan’s formula or the homotopy formula.
Lyow = diyw + ,dw.

We prove this by induction on the degree of the form. We have checked the
case of functions. Furthermore it is enough to check that that both sides satisfy
the Leibniz rule.

Ly(wAn) =LylwAn) =dyo+ ,do.

Leti : M — R x M be the inclusion(x) = (0,x) andletrt : R x M — M
be the projection. We claim that the induced maps on cohomology are inverses of
each other. Thus we have

Proposition 24.4. The groups H(M) and H*(R x M) are isomorphic.

To prove this we will construct a malp

25 Cech cohomology

LetU = {Uy|a € Albe a open cover of a topological space. Using the combina-
torics of the cover when can define a complex as follows.@/&tl) be the space
of all locally constant functions op + 1 fold intersections

Ueo M. NUqg,
with the symmetry property that ¢ is a permutation of O.. ., p then

flUgo N...NUq, = signo) f Uy, N...NU

Yo (p)*

We write fag..cp fOr FUgq N ... N Ug,
There is a natural codifferential on such functions

8 :CPl) — CPy)
defined by the formula

p+1

(Sf)ao.“ap_‘_l = Z(_l)l foto...&iolp_;,_l'UaOﬂ...ﬂU
i=0

“p+1
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If we order A then we can consider only ordered intersections and define a
similary complex which has isomorphic cohomology. In practice this is how one
work but the first definition is choice free so a bit prefereable.

Example. Think ofS? as the boundary of tetrahedron. Co&rby the four
open which are the complements of the four closed two dimensional faces. If we
label these setdq, Uo, U3, Uy then the non empty two fold intersections are

UiNUs, Ui NU3, U, NUg Ua N U3, Uz NUg UzNUg.
and the non-empty three fold intersections are
UiNUaNUz, U NUaNUg, UiNU3NUg, U NUz N Ug

the four-fold intersection is empty.
Then all interections are connected and the complex is

R4 — RS R?

with the maps

So(f1, fa, fa, fa) = (f1 — fo, f1 — f3, f1 — f4, f2 — f3, f2 — fa, f3 — fa) (8)

and

81(f12, f13, 14, f23, f24, f32) = (fo3— f13+ f10, fou— f1a+f10, f34— f144f13, f3a— fost+f23)
9)

The kernel ofsg is clearlyvthe constant functions. Cokerneldgfis one dimen-

sional and hence we ha¥¢*(U) = R, O, R.

25.1 refinement

By a refinementJ of an open covetl we mean &5 = {Vg|8 € B} and a map
r : B — Asothatforallg € B we haveVg C U, (g). If we have a refinement

then there is a chain map of t@ck complexes.
F:CPW) — CP()
given by the formula
F{ fﬁoﬂ1~--ﬁp}) = {fﬂr(mﬂr(l)--ﬂr(p) |Vﬁr(0)ﬁr(l).../3r(p)}
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Thus there is a map 5 5
F*: H* (W) — H*(D).

Thus we have an directed system (well really need to check that if we have
two refinementJ, r and, r’ then the induced magsandr” are the same.) The
direct limit of this system is called théech cohomology oK.

26 The acyeclicity of the sheaf ofp-forms.

Then we can consider another version of the of @leeh complex. That is we
defineCP (U, ©9) to be all colletions of-forms we,...«, defined oy, 4, With
the symmetry properties above. The same formula above defines a differential

mapping 5 5
CP(u, Q%) — CPHL(g(, Q)

Given an open covei consider th&sech complex

L CL g Py S SR @P) S S of) S
Lemma 26.1. This sequence is exact so long as 10.

Proof. Fix a partition of unity{¢g|8 € B} subordinate tal = {Uy}eca. The
supports of theg are a refinement of thd, and we choose a refinement function
r: B— Asothatsupp¢g) C r(B). Define

K : CKHLL Sgp) — CHL: Sap)
by

K (w)lu(xoal...ak_l = Z ¢ﬂw|Ur(ﬂ)aoal...ak_l
BeB

Since the supports of thggs are locally finite by definition of partition of unity
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this is well defined. Now consider wheke> 1

k
BK + K80y e = D (D K@Uy g + D 385G Ur ey
i=0 BeB
k .
= (_1)| Z ¢ﬂw|Ur(ﬂ)ao...&i...ak
i=0 BeB
k .
+ Z ¢ﬂwluaoa1...ak - Z Z(_l)J¢13w|ur(ﬁ)ao~~&j"'ak)
’BeB IBEB ]:0
= wly

apaq---ak "

We have used that the sum if locally finite to rearrange the order summation.
Thus we have proved the identity is cochain homotopic to zero and so the co-
homology groups are zero. Note thakif= 0 then we simple get zero and the
arguement proves nothing. O

Definition 26.2. A sheaf that admits partitions of unity is called fine.

27 The Poincagé Lemmaimplies the equality ofCech
cohomology and de Rham cohomology

The proof here is modelled on the presentation of Weil's proof (see Weil, Andr
“Sur les thormes de de Rham.” Comment. Math. Helv. 26, (1952). 119-145.)
in Principles of Algerbraic Geometrypy Griffiths and Harris published by John
Wiley and Sons, Inc.

The scheme of the proof is to first restrict attention to countable good covers
which we assume to be cofinal in the set of countable covers.

The Poincag lemma tells us that that for a contractible operiset

R < Q°U) 3 Qlu) 2 Q2u) & ..

is a long exact sequence. We introduce the notafifrior the closedp-forms so
that
ZPU) =1{0 € QP(U)|ds = 0}

then we can break up this long exact sequence into short exact sequences.
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0— ZP(U) — QPU) S 2P+ U) - 0.

Note thatZ°(U) is the constant function so a copyRf These induce long exact
sequences in cohomology.

H=L(M; @P) — HI7Y(M; 2P — HI(M; 2P) — H'(M; QP) —
We have seen thai (M: QP) = {0} fori > 0 and hence
H'(M; 2P) = H'"}(m; 2Pt
fori > 2. Now by definition we the-th Cech cohomology group d¥l is
HP(M; R) = HP(M; 29).
Repeated applying the isomorphism above we have
HP(M; R) ~ HY(M; 2P71).

Now consider the beginning of the long exact sequence

— HY(M; zP Y — Hi(M; @P)
0— HoM; 2P~ — HOM; @P~1) — HO(M; 2P)

which becomes
0— 2P (M) > QP LMy S ZP(M) > HL(M: 2Py 5 0

Thus
HY(M; ZP~1) ~ ZP(M)/dQP~ (M) = H]. x(M; R).

Thus we have proved that there is a natural isomorphism

HP(M; R) &~ Hjpg(M; R).
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28 The immersion theorem of Smale

Let Imm (X, Y) denote the space of immersion ¥finto Y. Fixing base points
x € X andy € Y and an injectiorf : TyX — TyY. letimm (X, Y) be the space
of base point preserving immersions in the sense that

f(x) =y, dy f =¢&.

Let Imm1(X, Y) denote the space of paif, f') wheref : X — Y is an
immersion andf’ is a section off *(TY) — X with the property thatf'(x) >
Ran(dy f) and Ietlmmi(x, Y) denote the based version. Here is the proof of the
covering homotopy property of the natural map

7 Imm (DX, R") — Immi(s1, R

whererr () = (flge1, I |g1).

The idea of the proof is the following. The condition of being an immersion
is open and there is certainly a sectionmo{indeed linear) if we disregard the
immersion condition so we can alway lift a given a homotopy for a short time
where the time depends on how close to failing to be an immersion the time zero
lift is and on how big the derviatives of the section are. Smale’s trick is morally
to essentially homotope the time zero lift to be very much inside the space of im-
mersion. Then he can lift the homotopy a fixed amount along the time parameter
in the homotopy See “The classification of immersions of spheres in Euclidean
Spaces” by Stephen Smale in the Annals of Mathematics Vol. 69, No. 2, March
1959, pg 327.
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