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1 Manifolds: definitions and examples

Loosely manifolds are topological spaces that look locally like Euclidean space.
A little more precisely it is a spacetogether witha way of identifying it locally
with a Euclidean space which is compatible on overlaps. To formalize this we
need the following notions. LetX be a Hausdorff, second countable, topological
space.

Definition 1.1. A chart is a pair(U, φ) whereU is an open set inX andφ : U →

Rn is homeomorphism onto it image. The components ofφ = (x1, x2, . . . , xn)

are called coordinates.

Given two charts(U1, φ1) and(U2, φ2) then we getoverlap or transitionmaps

φ2 ◦ φ−1
1 : φ1(U1 ∩ U2) → φ2(U1 ∩ U2)

and
φ1 ◦ φ−1

2 : φ2(U1 ∩ U2) → φ1(U1 ∩ U2)

Definition 1.2. Two charts(U1, φ1) and(U2, φ2) are called compatible if the over-
lap maps are smooth.

In practice it is useful to consider manifolds with other kinds of regularity. One
many considerCk-manifoldswhere the overlaps areCk-maps withCk inverses. If
we only require the overlap maps to be homeomorphisms we arrive at the notion
of a topological manifold. In some very important work of Sullivan one consider
Lipschitz, or Quasi-conformal manifolds.

An atlas for X is a (non-redundant) collectionA = {(Uα, φα)|α ∈ A} of pair
wise compatible charts . Two atlases areequivalentif there their union is an atlas.
An atlasA is calledmaximalif any other atlas compatible with it is contained in
it.
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Exercise1. Using Zorn’s lemma, show that any atlas is contained in a unique
maximal atlas.
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Definition 1.3. A smoothn-dimensional manifold is a Hausdorff, second count-
able, topological spaceX together with an atlas,A.

1.1 examples

Rn or any open subset ofRn is a smooth manifold with an atlas consisting of one
chart. The unit sphere

Sn
= {(x0, x1, . . . , xn)|

n∑
i =0

(xi )2 = 1}

has an atlas consisting of two charts(U±, φ±)whereU± = Sn
\{(±1,0,0, . . . ,0)}

and

φ±(x
0, x1, . . . , xn) =

1

±1 − x0
(x1, . . . , xn)

Real projective space,RPn, is space of all lines through the origin inRn+1

which we can identify with nonzero vectors up to the action of non-zero scalars
so RPn

= (Rn+1
\ {E0})/R∗. The equivalence class of(x0, . . . , xn) is denoted

[x0 : x1 : . . . : xn]. RPn has an atlas consisting ofn + 1 charts. The open sets are

Ui = {[x0 : x1 : . . . : xn]|x j ∈ R, and xi 6= 0}

and the corresponding coordinates are

φi ([x0 : x1 : . . . : xn]) = (x1/xi , . . . , x̂i /xi , . . . , xn/xi ).

Similarly we have complex projective space,CPn, the space of a line through
the origin inCn+1. So just as above we haveCPn

= (Cn+1
\ {E0})/C∗. A typical

point of CPn is written [z0 : z1 : . . . : zn]. CPn has a atlas consisting ofn + 1
charts. The open sets are

Ui = {[z0 : z1 : . . . : zn]|zi 6= 0}

and the corresponding coordinates are

φi ([z0 : z1 : . . . : zn]) = (z1/zi , . . . , ẑi /zi , zn/zi ).

.
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Exercise2. Show that in fact the above construction yield charts.

Notice that in the case ofCPn the coordinates have values inCn and so the overlap
maps map an open subset ofCn to Cn. We can ask that they are holomorphic. We
make the following definition.

Definition 1.4. A complex manifold is a Hausdorff second countable topological
spaceX, with an atlasA = {(Uα, φα)|α ∈ A the coordinate functionsφα take
values inCn and so all the overlap maps are holomorphic.

Let Grk(Rn) be the space ofk-planes through the origin inRn.

Exercise3. Show that Grk(Rn) has an atlas with
(n

k

)
charts each homeomorphic

with Rk(n−k).

Similarly we have Grk(Cn) the space of all complexk-plane through the origin
in Cn.

Exercise4. Show that Grk(Cn) has an atlas with
(n

k

)
charts each homeomorphic

with Ck(n−k). Show that we can give Grk(Cn) the structure of a complex manifold.

2 Smooth maps and the notion of equivalence

Let X andY be smooth manifolds. A continuous mapf : X → Y is called smooth
if for all charts(U, φ) for andX and(V, ψ) for Y we have that the composition

ψ ◦ f ◦ φ−1 : φ(U ∩ f −1(V)) → ψ(V)

is smooth.
Two manifoldsX andY are calleddiffeomorphicif there is a homeomorphism

h : X → Y so thath andh−1 are smooth.

3 Standard pathologies.

The condition thatX be Hausdorff and second countable does not follow from the
existence of an atlas.

The line with two origins. Let X be the quotient space ofR × {0,1} by the
equivalence relation(t,1) ≡ (t,0) unlesst = 0. ThenX is not Hausdorff, how-
everX admits an atlas with two charts. LetUi be the image ofR×{i } in X. These
maps invert to give coordinates.
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Remark1. Actually non-Hausdorff spaces which satisfy all the other properties
arise in real life for example in the theory of foliations or when taking quotients
by non- compact group actions. More work is required to come up with a useful
notions to replace that of manifolds in this context.

The long line. Let S� denote the smallest uncountable totally ordered set.
Consider the productX = S� × (0,1] with dictionary order topology. Then
give X charts as follows. For(ω, t) ∈ X if t 6= 1 let U(ω,t) = {ω} × (0,1)
andφ(ω,t) : U → R be given byφ(ω,t)(ω, t) = t . If t = 1 let S(ω) denote the
successor ofω. SetU(ω,1) = {ω} × (0,1] sup{S(ω)} × (0,1) and

φ(ω,t)(η, t) =

{
t if η = ω

t + 1 if η = S(ω).

Exercise5. Check that overlaps are smooth.

The collection{U(ω,1/2)}ω∈Sω is uncountable and consists of disjoint open sets,
so X is not second countable.

Different charts
ConsiderR1 denoteR with the following charts(R, x) andR2 with the chart

(R, x3). Identity mapR1 → R2 is smooth but notR2 → R1. R1 andR2 are
diffeomorphic by the mapx 7→ x3 thought of as a map fromR1 → R2.

These pathologies are simple problems to keep in mind when thinking about
the definitions. There are far more subtle issues that arise. Given a topological
manifold we can ask can carry an atlas, and if it carries an atlas how many non-
diffeomorphic atlases does it carry. The first observation of this phenomenon is
due to John Milnor who showed that the seven-sphere admits an atlas (with two
charts!) which is not diffeomorphic to the standard differentiable structure. We’ll
examine this example later in the course.

4 The derivative of a map between vector spaces

Let f : V → W be a smooth map between real vector spaces.

Definition 4.1. Givenx ∈ V we say thatf is differentiable atx if there is a linear
mapLx : V → W so that for allv ∈ V we have:

‖ f (x)− f (x′)− Lx(x − x′)‖ = o(‖x − x′
‖).
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Here we using the Landau symbolo to mean a functiono: R+ → R continu-
ous at zero ando(0) = 0.

Really this is an improper definition. We really needV andW to be normed
vector spaces and it is natural to require thatL is a continuous linear map. One
can try to develop differential calculus on manifolds modelled on general topolog-
ical vector spaces. A sufficiently general context to work in is that of manifolds
modelled on Banach spaces, that is complete normed linear spaces. Essentially of
the basic results in differential topology work in this context with the same proofs
(as long as proof don’t use coordinates)

Notice that mapL in the above definition is unique. IfL ′ is another such map
then

o(‖x − x′
‖) ≥ ‖ f (x)− f (x′)− L(x − x′)− ( f (x)− f (x′)− L ′(x − x′))‖

= ‖(L − L ′)(x − x′)‖

So(L − L ′)(x − x′) = 0.
The mapL is called thedifferentialof f at x and is denoted

dx f or Dx f.

We say f is differentiableif f is differentiable at eachx ∈ U and iscontinuously
differentiableif

d f : U → hom(V,W).

is continuous. The second derivative is the derivative of the first derivative and
thus is a map

d2 f : U → hom(V,hom(V,W)).

In the finite dimensional case hom(V,hom(V,W)) with a subspace of hom(V ⊗

V,W) . In the infinite dimensional case we need to be more careful but we can
identify hom(V,hom(V,W)) with bilinear maps from

V → W.

You can read all about this in gory detail in [?]

Definition 4.2. A smooth mapf : X → Y is called an immersion its differential
is everywhere injective. It is called a submersion if it differential is everywhere
surjective.
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There obvious examples of such maps. Supposem< n are positive integers

i : Rm
→ Rn

given by
i (x1, . . . , xm) = (x1, . . . , xm,0, . . . ,0)

is an immersion while
s : Rn

→ Rm

given by
s(x1, . . . , xm, xm+1, . . . , xn) = (x1, . . . , xm)

is a submersion. We will see in the next section that locally these simple examples
are completely general.

5 Inverse, and implicit function theorems.

Among the basic tools of the trade are the inverse and implicit function theorems.
We will first state them in a coordinate dependent fashion. When we develop some
of the basic terminology we will have available a coordinate free version.

Theorem 5.1. Let U be a neighborhood let f: U ⊂ V → W be a smooth
map. Suppose dx f : Rn

→ Rn is invertible for some x∈ U. Then there is a
neighborhood U′ ⊂ U of x so that

f |U ′
→ f (U ′)

is a diffeomorphism. Furthermore

d0( f −1) = (d0 f )−1.

Proof. We will construct an inverse forf using the contraction mapping theorem.
It is enough to prove the result in the case thatx = 0 and f (0) = 0 andD0 f = I d.
(For the last condition replacef by (D0 f )−1

◦ f.. Setg(x) = f (x) − x (so g is
the “nonlinear” part off .) The equationf (x) = y can be rewritten as

x + g(x) = y

or as the fixed point equation

y − g(x) = x.

7



We claim that if f is C1 then for y in a small enough neighborhood of 0x 7→

y − g(x) = hy(x) is a contraction mapping on a small enough ball.
Since D0hy(x) = 0 and hy is C1 there is a neighborhoodBr (0) so that

‖D0hy‖ ≤
1
2. By the mean value theorem forx, x′

∈ Br (0) we have

‖hy(x)− hy(x
′)‖ ≤

1

2
‖x − x′

‖.

Furthermore ifx ∈ Br (0) andy ∈ Br/2(0) we have

‖hy(x)‖ ≤‖hy(x)− hy(0)‖ + ‖hy(0)‖

≤
1

2
‖x‖ + ‖y‖

≤
r

2
+

r

2
≤ r.

Thus for y ∈ Br/2 we havehy(Br ) ⊂ Br and hy is a contraction there. The
contraction mapping theorem implies for eachy the existence of a unique fixed
pointφ(y) which is a least a set wise inverse forf .

We check thatφ(y) is continuous.

‖φ(y)− φ(y′)‖ = ‖hy(φ(y))− hy′(φ(y′))‖

≤ ‖g(φ(y))− g(φ(y′))‖ + ‖y′
− y‖

≤
1

2
‖φ(y)− φ(y′)‖ + ‖y′

− y‖

so
‖φ(y)− φ(y′)‖ ≤ 2‖y′

− y‖ (1)

Now we check thatφ is differentiable. Letx = φ(y) andx′
= φ(y′)

‖φ(y)− φ(y′)− (dx f )−1(y − y′)‖ = ‖x − x′
− (dx f )−1( f (x)− f (x′))‖

≤ ‖dx f ‖
−1

‖(dx f )(x − x′)− ( f (x)− f (x′)‖

≤ o(‖x − x′
‖)

≤ o(‖y − y′
‖).

where we use the differentiability off to go from the second to third lines and
and inequality 1 to go from the third to the fourth.

Notice that if f is continuously differentiable then so isφ.
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An important corollary of the inverse function theorem is the implicit function
theorem. The implicit function theorem can be stated in various, each useful in
some situation. We will use repeatedly theOpen Mapping Theoremwhich say
that a surjective bounded linear map between Banach spaces is an open mapping
in particular an bounded linear map which is an algebraic isomorphism is an iso-
morphism.

Theorem 5.2. Let f : U ⊂ V → W be a smooth map with f(0) = 0. Suppose
that for some x in U we have that Dx f is surjective andker(Dx f ) admits a closed
complement C. Then there are neighborhoods U1 of 0 ∈ ker(Dx f ), U2 of 0 ∈ W
and diffeomorphismsφ : U1 × U2 → U andψ : U2 → W so that the following
diagram commutes:

U
f

−→ W

↑ φ ↑ ψ

U1 × U2
p2

−→ U2

where p2 denotes the projection on the second factor.

Proof. Write a typical element ofU as a pair(k, c) with k ∈ ker(Dx f ) and
c ∈ C. The fact thatC is closed means in implies thatC is aC a Banach space
in its own right. Then the mapK × C → V given by (k, c) 7→ k + c is an
isomorphism by the Open Mapping Theorem. The Open Mapping Theorem also
implies thatd0,0 f |C : C → W is an isomorphism. LetL : W → C denote its
inverse. Consider the map

F(k, c) = (k, L f (k, c)).

We have that

d(0,0)F =

[
IdK ∗

0 IdC

]
and again by the Open Mapping Theorem the differential ofF at (0,0) is an
isomorphism. The inverse function theorem impliesF has an inverse,φ, in a
neighborhood of(0,0). Settingψ = d0,0 f |C we have

f (φ(k, c)) = ψ(p2(k, c))

on a sufficiently small neighborhood of(0,0) since

L f (φ(k, c)) = c

on such a neighborhood.
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We call a pointx whereDx f is not a surjective a critical point. A point in the
range of f which is not the image of a critical point is called a regular value.

Definition 5.3. A subsetY of a manifoldX is called submanifold if for ally ∈ Y
there is a neighborhoodU of Y and a chartφ : V → B so thatφ(Y ∩ U ) is an
open subset of a closed linear subspace admitting a complement.

Having made these definition we have a corollary of the implicit function the-
orem.

Corollary 5.4. The preimage of a regular value is a submanifold.

6 More examples.

The orthogonal group. Let

O(n) = {A ∈ Mn×n(R)|AAT
= I }.

be the group of orthogonal transformations ofRn. We claim that the orthogonal
group is a smooth manifold. To see this consider the map

f : Mn×n(R) → Symn(R)

given by
f (A) = AAT

where Symn(R) denotes the space of symmetricn × n matrices. ThenO(n) =

f −1(I ) so it suffices to show thatI is a regular value. The differential off is

DA f (B) = ABT
+ B AT .

and we must show that it is surjective. FixA ∈ O(n) and chooseC ∈ Symn(R).
If we takeB =

1
2C A then

DA f (B) =
1

2
(AATCT

+ C AAT ) = C

as required.
Let prove existence and uniqueness theorem for ODEs using the inverse func-

tion theorem. LetX : B → B be a smooth map of Banach spaces. We would like
so see that the differential equation

dx

dt
= X(x)x(0) = x0
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has a unique solution for allx0 ∈ B. Define a map

F : C1([0, ε], B) → C0([0, ε], B)× B

by

F(x) = (
dx

dt
− X(x), x(0))

Lemma 6.1. If X is K -Lipschitz so is F: C0
→ C0. If X is C1 with uniformly

bounded

Proof. |X(x)− X(x′)|C0 ≤ K |x − x′
|C0 if X is K -Lipschitz. We also have that

|X(x)− X(x′)− Dx X(x − x′)| ≤ ox(x − x′)

7 Vector bundles and the differential

Consider the Grassman manifold say Gr2(R4) of two planes inR4. Let

γ = {(5, x) ∈ Gr2(R4)× R4
|x ∈ 5}.

Let p : γ → Gr2(R4) be the natural projection. The fibers ofp, p−1(5) are
vector spaces (in this case over the reals).

This is an example of a vector bundle. We’ll give the definition appropriate
for the world of smooth manifolds. There is an obvious version of the definition
for more general topological spaces.

Definition 7.1. Let V be a vector space (over the reals, complexes or quaternions.)
A vector bundle with fiberV is a triple (E, B, p) where E and B are smooth
manifolds andπ : E → B is a smooth map. For eachb ∈ B, p−1(b) has the
structure of a vector space over the same field asV and for eachb ∈ B there is
an open setU and a smooth mapφ : p−1(U ) → V which is linear isomorphism
on each fiber. In addition the mapτφ : p−1(U ) → U × V given byτφ(e) =

(p(e), φ(e)) is a diffeomorphism.

The mapτφ is called alocal trivialization.
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Example 7.2.Let

γ = {(5, v) ⊂ Grk(Rn)× Rn
|v ∈ 5}.

We claim as the natural projectionp : γ → Grk(Rn) has the structure of a vector
bundle with fiberRk. Let φ : U5 → hom(5,5⊥) be one of our charts. Then
φ−1 is given byA → 0A ⊂ Rn

= 5 ⊕ 5⊥ where0A denotes the graph ofA.
The mapφ : p−1(U5) → 5 is simply the orthogonal projection.

A very important notion is the transition function. Suppose we are given two
trivializationsτα : p−1(Uα) → Uα × V andτβ : p−1(Uβ) → Uβ × V . Then get
a map

gαβ : Uα ∩ Uβ → Gl(V).

defined as follows. If

τα(v) = (p(v), φα(v))andτβ(v) = (p(v), φβ(v))

then
gαβ(p(v))φβ(v) = φα(v).

The transition function satisfy thecocycle condition: If we have three trivializa-
tionsτα, τβ, τγ over open setsUα,Uβ,Uγ then for allx ∈ Uα ∩ Uβ ∩ Uγ

gαβgβγ gγα = 1

A vector bundle is determined its transition functions and give an open cover
{Uα} and a collection of functions

gαβ : Uα ∩ Uβ → Gl(V).

satisfying the cocycle condition we can construct a vector bundle.

7.1 New vector bundles from old

We can get new vector bundles from old bundles in a number of ways. Given
p1 : V1 → X and p2 : V2 → X we can take direct (or Whitney) sum to get a
bundleV1⊕V2 → X whose fiber abovex is p−1

1 (x)⊕ p−1
2 (x). Another important

operation is the pullback. Suppose we havep : V → X and f : Y → X a smooth
map. Then we can form a vector bundle overY as follows. The total space denoted
f ∗(V) is:

f ∗(V) = {(y, v)| f (y) = p(v)}

and projection
f ∗(p)(y, v) = y.
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7.2 The tangent bundle

Let M be a smooth manifold. We will associate toM a bundleT M. We will do
this concretely but there are many ways of doing this. You should read about them
all!!!

We know what a tangent vector inRn.

Definition 7.3. A tangent vector toM at x is the equivalence class of all pairs
v, (U, φ) where(U, φ) is a chart aboutx andv is a tangent vector toRn atφ(x).
We say thatv′, (U ′, φ′) is equivalent tov, (U, φ) if

v′
= dφ(x)(φ

′
◦ φ−1)(v).

The tangent bundleT M to M is the set of all tangent vectors.

In other words the tangent bundle toM is bundle determined by choosing an
atlas{(Uα, φα)|α ∈ X} and taking as transition functions

gαβ(x) = dφβ(x)(φα ◦ φ−1
β )(v).

Given a chart(U, φ) we get coordinatesx1, x2, . . . , xn on U . A typical tan-
gentX vector is written as

X = a1 ∂

∂x1
+ a2 ∂

∂x2
+ . . .an ∂

∂xn
.

reminding us that we can differentiate function using tangent vectors. Given
f : M → R and a tangent vector atx inM we define

X f (x) = a1∂ f ◦ φ−1

∂x1
(φ(x))+ a2∂ f ◦ φ−1

∂x2
(φ(x))+ . . .+ an∂ f ◦ φ−1

∂xn
(φ(x)).

(2)
in other word the usual directional derivative off ◦ φ−1.

Given a smooth mapf : M → N we can define the differential off as a map

D f : T M → T N.

Givenx in M andX = (v, (U, φ)) a tangent vector and a chart(V, ψ) about f (x)
setDx f (X) to be the equivalence class of the vector

Dφ(x)(ψ ◦ f ◦ φ−1)(v)
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and the chart,(V, ψ) or in terms of coordinates if we write

ψ ◦ f ◦ φ−1(x1, x2, . . . , xn) = ( f 1(x1, . . . , xn), . . . , f m(x1, . . . , xn))

then the matrix ofD f is [ ∂ f i

∂x j

]
.

8 Connections

We motivate the introduction of connections in a vector bundle as a generalization
of the usual directional derivative of functions on a manifold. Given a vector field
X and a functionf on a manifoldM , its directional derivative is a new function
as in equation (2). Thus we have a map

C∞(M; T M)× C∞(M) → C∞(M).

This map has the following properties.

X( f g) = f Xg+ gX f (3)

(αX + βY) f = αX f + βY f (4)

whereX andY are smooth vector fields andα, β, f andg are smooth functions.
If we try to generalize this to a directional derivative on sections of a vector

bundle we would like a map

C∞(M; T M)× C∞(M; E) → C∞(M; E).

This map is using denoted
(X, s) 7→ ∇Xs

We can no longer multiply sections of a vector bundle but we can multiply sections
of a vector bundle by functions. The appropriate generalization of the two rules
about are

∇X f s = f ∇Xs + (X f )s (5)

∇αX+βYs = α∇Xs + β∇Y f (6)
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9 Partitions of unity

Given an open cover,{Uα|α ∈ A} of a topological spaceX we say that a collection
of functionβα : X → R≥0 is apartition of unityif

1. For allα ∈ A Support(βα) ⊂ Uα

2. The collection{Support(βα)|α ∈ A} is locally finite, that is to say for all
x ∈ X there is a neighborhood ofx meeting only finitely many of members
of the collection.

3. For allx ∈ X we have ∑
α∈A

βα(x) = 1.

Smooth manifolds have smooth partitions of unity.

10 The Grassmanian is universal

We say that bundle is offinite typeif there is a finite set of trivializations whose
open sets cover. In this section we will prove the following theorem.

Theorem 10.1.Let E → M be a vector bundle of finite type. Then for some N
large enough there is a map

f : M → Grk(RN).

Proof. Let {(Ui , τi )|i = 1, . . .m} be a collection of trivializations so that theUi

cover. Write the trivializations asτi (e) = (p(e), φi (e)) as before. Choose a
partition of unity{βi |i = 1, . . . ,m} subordinate to theUi . Then define

8 : E → Rmk

by the formula

8(e) = (β1(p(e))φ1(e), β2(p(e))φ2(e), . . . , βm(p(e))φm(e)).

8 is well defined by the support condition on the partition of unity.8 is linear on
each fiber ofE as theφi are. 8 is injective on each fiber since for eachb ∈ B
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there is aβi with βi (b) 6= 0. Thus for each pointb ∈ B we have that8−1(p−1(b))
is ak-plane inRmk. So we can now define

f : B → Grk(Rmk)

by
f (b) = 8(p−1(b)).

Exercise6. Check that this map is smooth. In other words write the map down in
charts on the domain and range.

We claim thatf ∗(γk) is isomorphic toE. Consider the map

8̃ : E → B × γk

given by
8̃(e) = (p(e), (8(p−1(p(e))),8(e))).

From the definition off this mapsE to f ∗(γk).

Exercise7. Check that this is an isomorphism.

11 The embedding manifolds inRN

Theorem 11.1.(The Whitney Embedding Theorem, Easiest Version). Let X be a
compact n-manifold. Then X admits a embedding inRN .

Proof. First we construct an embedding8 : X → RN for some largeN. Let
{ fi }k

i =1 be a partition of unity so that the support of eachfi is contained in some
coordinate chart(Ui , φi ) so thatφi (Ui ) is bounded. Then we can construction
smooth functions̃φi : X → Rn by

φ̃i (x) =

{
fi (x)φi (x) if x ∈ Ui

0 if x ∈ Ui
.

Then we can define8 by the equation

8(x) = (φ̃1(x), φ̃2(x), . . . , φ̃k(x), f1(x), f2(x), . . . , fk(x)).
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Then8(x) = 8(x′) implies that for somei , fi (x) = fi (x′) 6= 0 so that
x, x ∈ Ui . Then for the samei we have

φi (x) = φi (x
′)

and hencex = x′ sinceφi is a diffeomorphism onUi and so8 is injective.
Next we need to check that the differential of8 is injective. The differential

of 8 at x sendv ∈ Tx X to

(Dx f1(v)φ1(x)+ f1(x)Dxφ1(v), . . . , Dx fk(v)φk(x)+ fk(x)Dxφk(v), Dx f1(v), . . . , Dx fk(v))

and the result follows.

12 Sard’s Theorem

An extremely important notion in differential topology is that that of general posi-
tion or genercity. A particular map may have some horrible pathologies but often
a near by map has much nicer properties.

For example the map

f (θ) = ((cos(2θ) cos(θ), cos(2θ) sin(θ),0).

maps the unit circle in the plain to the a figure 8 lying in a plane inR3 while the
near by map

fε(θ) = (cos(2θ) cos(θ), cos(2θ) sin(θ), ε cos(θ)).

is an embedding. We will develop a general setting in which we can decide when
a nearby map will have some nice property. These ideas have been central in
topology since early days of Lagrange, Poincaré and where put into a modern
efficient setting by Thom and Smale.

The most basic result we will need is Sard’s Theorem. A subset of a manifold
is said to have measure zero if its intersection with every chart has measure zero
with respect to the Lebesque measure onRn. We will need an easy version of
Fubini’s theorem.

Theorem 12.1. Suppose a measureable C⊂ Rn has the property that for all
t ∈ R C ∩ {t} × Rn−1 has measure zero. Then C has measure zero.
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We will also use the following lemma.

Lemma 12.2. If C ⊂ Rm is measureable and f: Rm
→ Rn is continuous then

f (C) is measureable.

Theorem 12.3.Let f : M → N be a smooth map of finite dimensional manifolds.
Then the set of critical values has measure zero in N.

Proof. (Copied from Milnor’s little blue bookTopology from the differentiable
viewpoint, this proof does not give the sharp result that aCk map with k ≥

max{1,m − n + 1} also satisifies the conclusion.) The definition of measure zero
is local so it suffices to prove the result in caseM ⊂ Rm and N ⊂ Rn are open
subsets.

The proof is by induction onm the dimension of the domain. The casem = 0
is trivial. LetC = Crit ( f ) denote the critical set off . It suffices to prove that for
every pointy ∈ f (C) there is neighborhood ofy whose intersection withf (C)
has measure zero. Now set

Cs = {x ∈ M |d j
x f = 0, for all 1 ≤ j ≤ k}

ThenC ⊃ C1 ⊃ C2 ⊃ . . . is a desceding sequence of closed sets and hence
measureable sets. Futhermore the setsf (Cs \ Cs+1) are all measureable.

The proof has three steps. Ifm ≤ n then you can skip directly to step 3.
Step 1. f (C \ C1) has measure zero. Ifx ∈ C ⊂ C1 then there is some first

partial which doesn’t vanish so assume that

∂ f 1

∂x1
(x) 6= 0.

Then we consider the mapg : Rm
→ Rm.

g(x1, . . . , xm) = ( f 1(x1, . . . , xm), x2, . . . , xm)

Notice that from our assumption

dxg =


∂ f 1

∂x1
(x) ∂ f 1

∂x2
(x) . . .

∂ f 1

∂xm
(x)

0 1 0 . . . 0
0 0 1 . . . 0

...
. . .

...

0 0 0 . . . 1
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which is clearly invertible. The inverse function theorem then provides an inverse,
h : V → Rm,on small neighborhood ofx Then consider the mapf ◦ h we have

f ◦ h(x1, . . . , xm) = (x1, f 2
◦ h(x1, . . . , xm), . . . , f n

◦ h(x1, . . . , xm)).

So f (C ∩ h(V)) = f ◦ h(h−1(C) ∩ V). The inverse image of the set critical
h−1(C) ∩ V are simply the critical points off ◦ h. If we set

kt(x
2, x3, . . . , xm) = ( f 2

◦ h(t, . . . , xm), . . . , f n
◦ h(t, . . . , xm))

then
h−1(C) ∩ V = ∪t{t} × Crit (kt).

By the induction hypothesis we have

kt(Crit (kt))

has measure zero inRm−1 and hence by Fubini

f (C ∩ h(V)) = ∪t {t} × kt(Crit (kt))

has measure zero inRm.
Step 2. Supposex ∈ Cs\Cs+1. Then without loss of generality we can assume

that there is somes-th order mixed partial derivative so that if we set

w =
∂ i1+...+im f

∂(x1)i1 . . . ∂(xm)im

so that
∂w

∂x1
(x) 6= 0.

Define
g(x1, . . . , xm) = (w(x1, . . . , xm), x2, . . . , xm).

Again this map is a diffeomorphism with inverseh : V → Rm for some neighbor-
hoodV of g(x). Let

k = f ◦ h

and let
k̄ = k|{0}×Rm−1∩V .
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Clearlyg(Ck ∩ h(V)) ⊂ {0} × Rm−1
∩ V and the critical set of̄k containsg(Ck ∩

h(V)) since it containsg(C ∩ h(V)). Thus

f (Ck ∩ h(V)) ⊂ k̄(Crit (k̄))

which has measure zero by the induction hypothesis.
Step 3. Suppose thatx ∈ Ck wherek + 1 > m

n . Choose a little cubeI of side
lengthδ. We have from Taylors theorem and the compactness ofI that there is a
constantM > 0 so that for ally ∈ I and allx ∈ Ck ∩ I

‖ f (x)− f (y)‖ ≤ M‖x − y‖
k+1

SubdivideI into l m subcubes of side lengthδ/ l . By the above estimate ifI ′ is
such a subcube containing a point ofCk then f (I ′) is contained in a cube of side
length at most

2M
√

m(δ/ l )k+1

Thus thef (Ck ∩ I ) is contained in set of total volume bounded above

(2M
√

m(δ/ l )k+1)nl m
= Clm−n(k+1).

By our assumption this goes to zero asl goes to infinity.
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13 Stratified Spaces

.

Definition 13.1. A stratification of a topological spaceX is a filtraion is a de-
compositionX =

⋃n
i =0 Si where each of theSi are smooth manifolds (possibily

empty) of dimensioni and so that

Sk \ Sk ⊂

k−1⋃
i =0

Si .

The closureSk is called the stratum of dimensionk.

Note that any stratum of a strafied space is a stratified space in its own right.
Stratified spaces are useful because many results about smooth manifolds can

be extended to stratified spaces. A good example is the space of matricesMk×nl.
The strata are the matrices of rank bounded above by a fixed number. (assume
thatk ≤ n)

As an application of this result we will compute the low homotopy groups for
the Stiefel manifolds, Stk(Rn). Recall that the Stiefel manifold is the space of
k-frames inRn. Given ak-frame(v1, v2, . . . , vk) we get an injective linear map
A : Rk

→ Rn by sending the standard basis vectorsei → vi . In other words we
can identify the Stiefel manifold,Vk(Rn), with the open subset of hom(Rk,Rn)

consisting of injective maps. The compliment ofVk(Rn) has a decomposition
according to the dimension of the kernel of the map. To codify this set

Rl = {A ∈ hom(Rk,Rn)|Rank(A)) = l }.

We claim that in fact theseRl are submanifolds.

Proposition 13.2. Rl ⊂ hom(Rk,Rn) is a smooth submanifold of codimension

(k − l )(n − l ).

Proof. Fix A ∈ Sl . Write Rk
= ker(A)⊕ Ran(A∗) andRn

= ker(A∗)+ Ran(A).
Then with respect to this decomposition we can write

A =

[
Ā 0
0 0

]
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and a nearby matrix as

B = A +

[
α β

γ δ

]
Lemma 13.3. If Ā + α is invertible then a vector(v,w) is in the kernel of B if
and only ifv = −(Ā + α)−1βw and(δ − γ (Ā + α)−1β)v = 0

Proof. If (v,w) is the the kernel ofB then

(Ā + α)v + βw = 0

so the first equation is clear. The second equation follows by substituting the first
into

γ v + δw = 0

The lemma implies that the kernel ofB is l -dimensional if and only if

δ − γ (Ā + α)−1β = 0

The map [
α β

γ δ

]
7→ δ − γ (Ā + α)−1β

is clearly a submersion so the preimage of 0, our local model ofRl is a submani-
fold of codimension

dim(ker(A))dim(Coker(A)) = (k − l )(n − l ).

We’ll use this to do a simple calculation of homotopy groups.

πi (Stk(Rn) = 0

for i < n − k. From its definition Stk(Rn) can be identified with the space of
matrices of maximal rank inMk×n and so

Stk(Rn) = Mk×n \ (∪k−1
l=0 Rl
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so the problem is to show that a map

f : Si
→ Stk(Rn)

from a sphere of dimensioni < n − k is null homotopic. We know that there is a
null-homotopy in the larger contractible space of matrices that is to say there is a
map

h : Di +1
→ Mk×n.

so that
h|

i
S = f.

If we can find a homotopyk : I × Di +1
→ Mk×n so that during the homotopy

the following two conditions hold.

1. k|I × Si
⊂ Stk(Rn)

2. k({1} × Di +1) ⊂ Stk(Rn).

To see that we can do this we will appeal to Sard’s theorem. Lets consider the
larger family of maps

H : Mk×n × Di +1
→ Mk×n

given by
H(A, x) = A + h(x).

If A is small enough then

k(t, x) = H(t A, x) = t A + f (x)

satisfies the first condition. To see that we can arrange that the second condition
is satisfied we note thatH is a submersion. Thus the preimages of theRl ’s are all
submanifolds. Set

R̃l = H−1(Rl )

these are submanifolds of codimension(k − l )(n − l ). so they have dimension

i + 1 + nk − (k − l )(n − l )

Consider the projectioñRl → Mk×n. Provided that for alll ≤ k − 1

i + 1 + nk − (k − l )(n − l ) < nk

23



then image of the projection has measure zero. The worst case isl = k − 1 when
the right hand side is

i + nk + k − n

so that the inequality holds ifi < n − k. If (A, x) 3 R̃l that for allx f (x) 3 Rl

completing the proof.

14 Fiber bundles

The notion of a vector bundle has a natural and useful generalization, that of a
fiber bundle. Here is a basic example.

Example 14.1.A k-frame forRn is ak-tuple(e1, . . . ,ek) of linearly independent
vectors.

Let Stk(Rn) be the space of allk-frames forRn. This the Stiefel manifold.
There is a natural map

p : Stk(Rn) → Grk(Rn)

given by sending thek-tuple to(v1, v2, . . . , vk) to its span. This map is a submer-
sion and the preimage of small open sets can be given a product structure.

Definition 14.2. A (locally trivial) fiber bundle with fiberF is triple (E, B, p)
wherep : E → B is a smooth map so that for allb ∈ B in B there is a neighbor-
hoodU of b and a diffeomorphism:

τ : p−1(U ) → U × F

so thatp1 ◦ τ = p wherep1 : U × F → U is the projection.

In our example letU5 be one of our standard charts and letF = Inj(Rk,Rn)

be the space of injective linear maps. This an open subset of hom(Rk,Rn) so it is
a manifold. We’ll define the inverse of the trivialization

τ−1 : U5 × F → p−1(U5).

To do this we need to fix an identification ofι : 5 → Rk. Then

τ−1(0A, j ) = (A ◦ ι ◦ je1), A ◦ ι ◦ j (e2), . . . , A ◦ ι ◦ j (ek)).

where as usualA: 5 → 5⊥ is a linear transformation and0A is its graph.
For another example consider a real vector bundlep : E → B. The projec-

tivization of E, denotedP(E) is space of lines inE and has natural projection
p′ : P(E) → B which is a fiber bundle with fiberRPn−1.
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15 Whitney’s embedding theorem, medium version.

Theorem 15.1. (Whitney). Let X be a compact n-manifold. Then M admits a
embedding inR2n+1.

Proof. From Theorem [?] we can assume thatM is embedded inRN for someN.
To state the next result for a hyperplane5 ⊂ RN let p5 : RN

→ 5 denote the
orthogonal projection. Note that the set of hyperplanes inRN is a copy ofRPN−1

by associating to each hyperplane the orthogonal line. The desired result follows
from:

Lemma 15.2. If N > 2n + 1 then for a full measure set of hyperplanes5 ⊂ RN

the composition p5 ◦8 is a differentiable embedding of M into5.

Proof. Let1 ⊂ M × M be the diagonal,1 = {(x, x)|x ∈ M}. Define the map

a : M × M \1 → RPN−1.

which sends distinct pointsx andx′ to the line through the origin parallel to the
line passing throughx andx′ or equivalently the line through 0 andx − x′. Notice
that p5 ◦ 8 is injective if and only ifa misses the line orthogonal to5. If 2n <
N − 1 then any point in the image ofa is a critical value and hence by Sard’s
theorem the image of has measure zero. Thus the set of then the image ofa has
measure zero and so the set of hyperplane for which the composition is injective
is a Baire set.

Next consider the projectivization of the tangent bundle ofM , P(T M). This is
a fiber bundle overM with fiberRPn−1. The total space of the bundle is a smooth
manifold of dimension 2n − 1. Define the map

b : P(T M) → RPN−1

which sends a linè ∈ Tx M to the lineDx8(`) in RN . Notice that the differential
of p5 ◦8 is injective precisely when the line orthogonal to5 is not in the image
of b. If 2n − 1< N − 1 then as above the image ofb has full measure.

Thus the set of good planes is the intersection of two sets of full measure and
hence had full measure itself.
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Notice that the condition on the mapb was weaker then the condition on the
mapa so the proof also proves:

Proposition 15.3. If M is a closed smooth n-manifold then M immerses intoR2n.

Proof.

We’ll use this theorem to prove the hard version of Whitney’s theorem.
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16 A brief introduction to linear analysis

In a number of place we’ve talked about the so called infinite dimensional context.
In this section we’ll introduce briefly the basic notions necessary to discuss this
story rigorously. The main application we have in mind is to the

16.1 Basic definitions

Definition 16.1. A normed vector space is a vector spaceX (over the real or
complex numbers) with a function‖ · ‖ : X → R+ satisfying the usual properties
of a norm. A Banach space is a complete normed vector space that is all sequences
which are Cauchy with respect to the converge.

Examples. C0(X), the space of continuous functions on a compact metric space
is a Banach space with its natural norm. Completeness is the statement that a
uniform limit of continuous functions is continuous.

Ck(X), the space of k-times continuously differentiable functions on a compact
manifold when given the norm

‖ f ‖Ck = sup
x∈X, I with`(I )≤k

‖
∂ I f

∂x I
‖.

where I = (i1, i2, . . . , in) is a multi-index and̀ (I ) =
∑n

j =1 i j . Completeness
follows form the same theorem applied to the derivatives off .

L p-spaces.

Spaces of Ḧolder continuous functions.

Next we wish to consider functions on normed vector spaces. It turns out that
continuity of maps on a normed vector space is equivalent to boundedness. More
precisely we have:

Definition 16.2. A linear mapT : X → Y is called bounded if there is a constant
C ≥ 0 so that for allx ∈ X we have

‖T x‖Y ≤ C‖x‖X.

Furthermore the smallest such constantC is called the operator norm ofT and is
denoted‖T‖.
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Exercise: T : X → Y is continuous if and onlyT is bounded.
A basic fact of life is that every normed vector space sits in canonical fashion

in a Banach space.

Theorem 16.3.To each normed vector space X there corresponds a unique Ba-
nach spaceX called the completion of X and a unique injective map continuous
linear map X→ X satisfying the following universal property. If T: X → Y is a
continuous linear map then there is a unique continuous linear mapT : X → Y
so that the operator norm of T andT agree.

For proof see for example Royden’s text. In practice the significance of this
theorem is that we will consider various norms onC∞

0 (R
n) and take the comple-

tions with respect to these norms. To check if maps between these completions
are continuous it suffices to check that the map is bounded onC∞

0 with respect to
the norms in question.

Definition 16.4. Let B(X,Y) denote the space of bounded linear operators from
X to Y.

B(X,Y) is Banach space in its own right. In fact it is a Banach algebra (i.e.
a Banach space with the structure of an algebra so that forx, y ∈ X we have
‖xy‖ ≤ ‖x‖‖y‖.

16.1.1 The three pillar’s of linear analysis

You can look in any book on Functional analysis for this material. Its also in
Abraham-Marsden and Ratiu.

Theorem 16.5. The Hahn-Banach theorem Let X be a linear space overF =

R orC and p : X → R be a map satisfying

1. For all x, y ∈ X p(x + y) ≤ p(x)+ p(y)

2. For all λ ∈ F and all x ∈ X we have p(λx) = |λ|p(x).

Let Z ⊂ X be a linear subspace andρ : Z → F be a linear functional. If for all
z ∈ Z we have|ρ(z)| ≤ p(z) then there is a linear functional̃ρ : X → F which
extendsρ and satisfies|ρ̃(x)| ≤ p(x) for all x ∈ X.

The proof goes by a Zorn’s lemma argument considering all possible exten-
sions with the given property. One shows that this is a partially ordered set and
any extension which is not defined on the whole space has a nontrivial extension.

This has one corollary that we will need later.
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Corollary 16.6. Let X be a Banach space and F⊂ B a finite dimensional sub-
space. Then F has closed complementary subspace. (i.e., there is a closed sub-
space C⊂ B so that F∩ C = {0} and F+ C = B.

Proof. Take a basis{ f1, . . . , f )n} for F . Let φ1, . . . , φn be the correspond-
ing dual basis ofF∗. Clearly theφi satisfy the hypothesis of the Hahn-Banach
theorem withp being a multiple of the norm. So there are linear functionals
φ̃1, . . . , φ̃n extending these. SetC = ∩

n
i =1 ker(φ̃i ).

Theorem 16.7. The Open mapping theoremAny surjective bounded linear map-
ping T : X → Y is an open mapping, that is it takes open sets to open sets.

The proof of this theorem is an application of the Baire category theorem.
An important corollary is the Banach isomorphism theorem.

Theorem 16.8. The Banach isomorphism theoremA bounded linear map T: X →

Y which is an isomorphism of vector spaces is a topological isomorphism.

Proof. At issue is show thatT−1 which exists as a map of sets is continuous.
So we must show for allU ⊂ X open that(T−1)−1(U ) = T(U ) is open. T is
surjective so this following from the open mapping theorem.

Theorem 16.9. The closed graph theoremA linear operator T: X → Y is
bounded if and only if its graph0T = {(x, T x)|x ∈ X‖ ⊂ X × Y is closed.

16.2 Compact operators

In this subsubsectionX andY will denote Banach spaces.

Definition 16.10. A linear operatorT : X → Y is called a compact operator the
image underT of the unit ball inX has compact closure inY.

Remark2. Compact operators are sometime called completely continuous.

The prototypical compact operator is the following LetX andY be the space
`2 of all sequencesa = (a1,a2, . . .) so that

∑
∞

i =1(aI )
2

≤ ∞ and define

T(a1,a2, . . .) = (a1,a2/2,a3/3, . . . ,an/n, . . .)

To see thatT is compact choose a sequenceai in B1 the ball of radius one. By
a diagonal argument we can pass to a subsequence where components ofai con-
verge to somea∞. Then we claim thatT(ai ) converges iǹ 2. Chooseε > 0.
Then choosei0 > 0 so that the following hold.
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1. 1
i0
< ε/2

2. (
∑i0−1

n=1 |ai
n − a∞

n |
2)

1
2 ≤ ε/2.

The last follows from the component-wise convergence. Then we have fori ≥ i0

‖T(ai )− T(a∞)‖2
≤

i0−1∑
n=1

1

i 2
|ai

n − a∞

n |
2
+ (

∞∑
n=i0

1

i 2
|ai

n − (a∞

n )
2
|)

1
2

≤ ε2/4 +
1

i 2
0

∞∑
n=i0

|ai
n − a∞

n |
2

≤ ε2/4 + ε2/4 = ε2/2.

The basic result that we will need is Arzela-Ascoli theorem. LetB be a ball in
Rn. Recall we call a subsetA ∈ C0(B) equicontinuous if for allε > 0 there is a
δ > 0 so that if|x − y| < δ then| f (x)− f (y)| < ε for all f ∈ A.

Theorem 16.11.(Arzela-Ascoli). A subset A∈ C0(B) has compact closure in
C0(B) if and only if A is bounded and equicontinuous.

This has an immediate corollary:

Corollary 16.12. The embedding C1(B) → C0(B) is compact.

Proof. The unit ball inC0,α(B) is certainly bounded inC0(B). If ‖ f ‖C0,α ≤ 1
then| f (x)− f (y)| ≤ |x − y| we can takeδ = ε.

16.3 Fredholm Operators

A nice way to think about compact operators is to show that set of compact op-
erators is the closure of the set of finite rank operator in operator norm. In this
sense compact operator are similar to the finite dimensional case. One property of
finite rank operators that does not generalize to this setting is theorem from linear
algebra that ifT : X → Y is a linear transformation of finite dimensional vector
spaces then

dim(ker(T))− dim(Coker(T)) = dim(X)− dim(Y).
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Of course if X or Y is infinite dimensional then the right hand side of equal-
ity does not make sense however the stability property that the equality implies
could be generalized. This brings us to the study of Fredholm operators. It turns
out that many of the operators arising naturally in geometry, the Laplacian, the
Dirac operator etc give rise to Fredholm operators. The following is mainly from
Hörmander

Definition 16.13.Let X andY be Banach spaces and letT : X → Y be a bounded
linear operator.T is said to beFredholm if the following hold.

1. ker(T) is finite dimensional.

2. Ran(T) is closed.

3. Coker(T) is finite dimensional.

If T is Fredholm define theindex of T denoted Ind(T) to be the number dim(ker(T))−
dim(Coker(T))

First let us show that the closed range condition is redundant.

Lemma 16.14.Let T : X → Y be a operator so that the range admits a closed
complementary subspace. Then the range of T is closed.

Proof: C be a closed complement for the range. We can assume thatT is
injective since ker(T) is a closed subspace and henceX/ ker(T) is a Banach space
so we can replaceT by the induced map from this quotient. Now consider the map
S : X ⊕ C → Y defined by

S(x, c) = T(x)+ c.

S is bounded linear isomorphism and hence by the open mapping theoremS is a
topological isomorphism. Thus Ran(T) = S(X ⊕ {0}) is closed. .

An important result that will be used over and over again is the openness of
invertibility in the operator norm.

Theorem 16.15. If T : X → Y is a bounded invertible operator then for all
p : X → Y with sufficiently small norm T+ p is also invertible.
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Proof. Without loss of generality we can assumeX = Y andT = I . Then if the
norm of p is sufficiently small the Neumann series

∞∑
i =1

(−p)i

converges to the inverse ofI + p.

We begin with some lemma’s

Lemma 16.16.(F. Riesz)The unit ball B in a Banach space X is compact if and
only if B is finite dimensional.

Proof. See Kerszig Lemma 2.5-4. This is easy for Hilbert spaces but takes a little
care for Banach spaces.

Lemma 16.17.The following are equivalent:

1. ker(T)) is finite dimensional andRan(T) is closed.

2. Every bounded sequence{xi } ⊂ X with T xi convergent has a convergent
subsequence.

Proof: Suppose that 1 holds. Since ker(T) is finite dimensional it admits a
closed complimentC. Since Ran(T) is closed it is a Banach space so the Banach
isomorphism theorem impliesT |C : C → Ran(T) is an isomorphism and the
result follows. Now suppose that 2 holds. Then a bounded sequence in the kernel
has a convergent subsequence so the kernel is finite dimensional. That Ran(T) is
closed follows immediately from 2.

Let Fred(X,Y) denote the space of Fredholm operators betweenX and Y.
Also let Fred(X) be the set of Fredholm operators onX

Lemma 16.18.Fred(X,Y) is a open subset ofB(X,Y) and the index is a locally
constant function onFred(X,Y).

Proof. Let T : X → Y be a Fredholm operator and letp : X → Y be an operator
with small norm. We can writeX = C + ker(T) andY = Ran(T) + D. With
respect to this decomposition we can writeT as a matrix

T =

[
T ′ 0
0 0

]
.
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and p as the matrix

p =

[
a b
c d

]
.

We prove the result by reduction to the finite dimensional situation. In fact we’ll
prove

Lemma 16.19.For p sufficiently small there is a linear transformation A: ker(T) →

Coker(T) so that

ker(T + p) ≡ ker(A)and Coker(T + p) ≡ Coker(A).

In fact the norm ofp is small enough thenT + a will be invertible and if we
set

G =

[
I −(T ′

+ a)−1b
0 I

]
andH =

[
I 0

−c(T ′
+ a)−1 I

]
(7)

then

H(T + p)G =

[
T ′

+ a 0
0 −c(T ′

+ a)−1b + d

]
.

The lemma follows immediately from this takingA = −c(T + a)−1b + d.

The proof of the lemma proved the following conceptually useful result

Lemma 16.20.Let T : X → Y be a Fredholm map and p: X → Y a linear map.
If p has sufficiently small norm then there are isomorphisms i: X′

⊕ K → X and
j : Y → X′

⊕ C so that

j ◦ (T + p) ◦ i =

[
I 0
0 q

]
.

for some linear map q: K → C.

We’ll also need the notion of the adjoint of an operator. IfX is a Banach space
the dual space ofX is the space of all bounded linear functionals onX and is
denotedX∗. Given a bounded linear operatorT : X → Y we have get a linear
operator

T∗ : Y∗
→ X∗

by declaring that forρ ∈ Y∗, T∗(ρ) is the linear functional so which sendx to

ρ(T(x)).

First we give the dual characterization of the norm.
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Lemma 16.21.For all x ∈ X

‖x‖ = sup
‖ρ‖=1

(|ρ(x)|)

Proof. Fix x0 ∈ X Certainly|ρ(x0)| ≤ ‖ρ‖‖x0‖ so

‖x0‖ ≥ sup
‖ρ‖=1

(|ρ(x0)|)

Define a linear functionalλ : span(x0) → R by λ(x0) = ‖x0‖ and extending by
linearity to the span. Applying the Hahn-Banach theorem toλ and the subadditive
function p(x) = ‖x‖ implies the existence of an extension ofλ to the whole ofX
with

|λ(x)| ≤ ‖x‖

Lemma 16.22.If T is bounded then T∗ is bounded with the same norm

Proof.

‖T‖ = sup
x|‖x‖≤1

‖T x‖

= sup
x|‖x‖≤1

| sup
ρ|‖ρ‖≤1

ρ(T x)|

= sup
ρ|‖ρ‖≤1

sup
x|‖x‖≤1

|ρ(T x)|

= sup
ρ|‖ρ‖≤1

‖T∗(ρ)‖

= ‖T∗
‖.

We’ll need the relationship between the cokernel ofT and the kernel ofT∗.

Lemma 16.23.If T has closed range then

Coker(T)∗ ≡ ker(T∗).
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Proof. There is a natural map ker(T∗) → Coker(T)∗ by sendingρ ∈ ker(T∗)

to the linear functionalλ ∈ Coker(T)∗ whereλ(y + T X) = ρ(y). This well
defined since for allx ∈ X we haveρ(T x) = T∗(ρ)(x) = 0. Since Ran(T) is
closed, Coker(T) = Y/Ran(T) is a Banach space. Given a linear functionalλ ∈

Coker(T)∗ soλ : Y/Ran(T) → R and hence defines a bounded linear functional

ρ : Y → Y/Ran(T) → R.

Now (T∗ρ)(x) = ρ(T(x)) = 0. It is easy to check that this inverts the previous
construction.

Next we observe that compactness is preserved under taking adjoints.

Lemma 16.24.Let K : X → Y be compact then K∗ : Y∗
→ X∗ is compact.

Proof. This takes a little work. See for example KreszigIntroductory functional
analysis with applicationsTheorem 8.2-5.

Lemma 16.25.Let K : X → X be a compact operator. Then I+ K is Fredholm.

Proof: First we coincide the kernel ofI + K . Let B be the unit ball in
ker(I + K ). ThenB = K (B) so B is image of a bounded set under a compact
operator hence is precompact. ButB is closed soB is compact. By Riesz’s lemma
ker(I + K ) is finite dimensional. Next we show that Ran(I + K ) is closed. By
lemma 16.17 it suffices to show that ifxi is a bounded sequence so thatxi + K i xi

converges toy ∈ Y then there isx ∈ X so thatx+ K x = y. Since{xi } is bounded
there is a subsequencexi j so that{K xi j } converges. But then{xi j } converges.
Thus the operatorI + K is a semi-Fredholm. Applying the same arguement to the
adjoint I + K ∗ completes the proof.

Next we give a useful characterization of Fredholm operators.

Theorem 16.26.T : X → Y is Fredholm if and only this a bounded linear
operator R: Y → X so that

RT − I andT R− I

are compact operators.
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Proof. If T is Fredholm then as before we can write

X = X′
⊕ ker(T)andY = Ran(T)⊕ C

for closed subspacesX′
⊂ X andC ⊂ Y. T |X′ : X′

→ Ran(T) is an isomorphism
so it has and inversẽR. ExtendingR̃ to a mapY → X using the direct sum
decomposition gives the required map.

If R exists ker(T) is finite dimensional from the equationRT = I + K .
Ran(T) is finite dimensional from the equationT R = I + K ′ and the operator is
Fredholm.

Next we consider the composition of Fredholm operators.

Lemma 16.27.Let T : X → Y and S: Y → Z be Fredholm operators. Then
ST : X → Z is Fredholm. FurthermoreInd(ST) = Ind(T)+ Ind(S).

Proof: Since(ST)−1(0) = T−1(S−1(0))we have dim(ker(ST)) ≤ dim(ker(S))+
dim(ker(T)). Similarly dim(Coker(ST)) ≤ dim(Coker(S))+ dim(Coker(T)) so
the composition is Fredholm.

Next we consider the index assertion. To this end consider the family of oper-
atorsAt : Y ⊕ X → Z ⊕ X defined by the equation

At =

[
cos(t)S −sin(t)ST
sin(t)I cos(t)T

]
for 0 ≤ t ≤ 1. We claim thatAt is a continuous family of Fredholm operators.
But

At =

[
S 0
0 I

] [
cos(t)I −sin(t)I
sin(t)I cos(t)I

] [
I 0
0 T

]
.

So At is the composition of Fredholm operators and hence is Fredholm. Clearly
Ind(A0) = Ind(T)+ Ind(S) and Ind(Aπ ) = Ind(ST).

17 Smale’s Sard theorem

In the early sixties Smales realized that many of the ideas of differential topology
can be applied to aid in the study of PDEs and as part of this program he showed
how to generalize Sard’s theorem to the infinite dimensional case. First we need
to introduce the correct kind of mappings of Banach manifolds.

36



Definition 17.1. Let X andY be Banach manifolds andf : X → Y a smooth
map. We say thatf is a Fredholm mapping if for allx ∈ X the differential

dx f : Tx X → T f (x)Y

is a Fredholm map

The first problem we run into with trying generalize Sard’s theorem is that
the notion of measure zero isn’t easy to make sense of in an infinite dimensional
space however the the complement of a (closed) set of measure zero is an open
dense set. The critical set of a map is closed so the image is at worst a countable
union of closed sets of measure zero. The complement is a countable intersection
of open dense sets. This notion makes sense in an arbitrary topological space. In
particular Banach manifold which satisfies the Baire category theorem so such a
set is non-empty.

Definition 17.2. Let X be topological space. A setA ⊂ X is called residual it is
a countable intersection of open dense sets.

Thus the Baire category theorem says that a residual subset of a metric space
is dense.

Smale’s generalization of Sard’s theorem is

Theorem 17.3.Let f : X → Y be a smooth mapping of second countable Banach
manifolds. Then the set of regular values of f is residual in Y .

To prove this result we prove a result of independent interest which says that
after a change of coordinates a nonlinear Fredholm mapping differs from an linear
isomorphism by a nonlinear map between finite dimensional manifolds. We have
a kind of analogue of Lemma??

Lemma 17.4. Let f : X → Y be a Fredholm map. Then for any x∈ X there are
coordinate chartsφ : U ⊂ X → B ⊕ K → andψ : V ⊂ Y → B ⊕ C so that

ψ ◦ f ◦ φ−1(x, k) = (x, g(x, k)).

Proof. This is a local result so we may assume without loss of generality thatx is
the origin inŪ ⊂ X → B ⊕ K and that f (x) is the origin inV̄ ⊂ Y → B ⊕ C
whereB is a Banach space,K = ker(dx f ), andC = Coker(dx f ). We can also
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arrange that 0⊕ K is the kernel ofd(0,0) f and thatB ⊕ {0} is complement for the
range ofd(0,0) f and finally that

d(0,0) f =

[
I 0
0 0

]
Write

f (x, k) = (a(x, k),b(x, k)).

As in the proof of the implicit function theorem consider the map

h : U → B ⊕ K

given by
h(x, k) = (a(x, k), k).

Then the differential ofh at (0,0) is the identity so there is a mapq invertingh
near the origin. Notice that

f ◦ q(x, k) = (x, g(x, k))

as required.

Remark3. This lemma has a very important consequence. Point preimages of
Fredholm mappings are locally homeomorphic to the point preimage of a smooth
map between finite dimensional manifolds. This the beginning of Kuranishi’s
work in deformation theory for complex manifolds. Kuranshi and Smale where
contemporaries at Columbia in the early sixties.

We need one more technical lemma.

Definition 17.5. A map f : X → Y is said to be locally closed if for allx ∈ X
there is a neighborhoodU of x so that f |Ū : Ū toY is a closed map.

Any continuous map from a locally compact space is locally closed. Banach
spaces a locally compact if and only if they are finite dimensional.

Lemma 17.6.A Fredholm map f: X → Y is locally closed.
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Proof. Choose charts as guaranteed by Lemma 17.4 so that we can assume our
map has the form

f (x, k) = (x, g(x, k))

If A ⊂ U ⊂ B × K is closed we must show thatf (A) is closed. Let(xi , ci ) be a
sequence inf (A) converging to(x, c). Thenci = g(xi , yi ) for some sequenceyi .
Since theyi are bounded in finite dimensional vector space we can assume thatyi

converge. Then clearly(x, c) will be in f (A).

We are now ready to prove Smale’s Sard theorem.

Proof. Let f : XtoY be our Fredholm map. SinceX is second countable it is
enough to show that there is a covering ofX by open setsU so that the regular
values of f |U are residual. In fact we will show that we can findU so that the
regular values off |U are open and dense. Sincef is locally closed and the since
the critical point set off is closed there in no problem in choosingU the regular
values of f |U is an open set . Now choose charts about the point in question so
that the local representative off has the form guaranteed by Lemma 17.4. The
differential of local representative off has the form[

I 0
∗ d(x,k)g|K

]
so thatd(x,k) f is surjective if and only ifd(x,k)g|K is surjective in other words
(x, c) is a regular value forf |U if and only if c is a regular value ofk 7→ g(x, k)
for k in a suitable neighborhood. Thus the intersection ofR( f |U ) with each slice
{x} × C ∩ V is dense and henceR( f |U ) is dense.

18 Parametric transversality

An important tool in differential topology is the notion of transversality.

Definition 18.1. f : M → N is said to be transversal toZ ⊂ N if for all m ∈ M
we have

dm f (TmM)+ T f (m)Z = T f (m)N.

This is sometimes writtenf ∩TZ.
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Lemma 18.2. If f : M → N is transverse to Z then the preimage f−1(Z) is a
smooth submanifold of dimension

dim(M)− dim(N)+ dim(Z).

Proof. Let x ∈ f −1(Z) and choose charts(U, φ) about x and (V, φ) about
f (x) ∈ Z. We can choose(V, φ) so thatψ( f (x)) = 0 andψ(V ∩ Z) ⊂

Rz
× {0} ⊂ Rn. Let p : Rn

→ Rn−z be the projection. Defineg : U → Rn−z by
g(x) = p ◦ψ ◦ f |U (x). Then the condition thatf is travsversal toZ implies that
the origin a regular value ofg and henceg−1(0) = Z ∩ U is a submanifold.

Remark4. Often one can make cleaner statements by introducing the notion of
codimension. IfZ ⊂ N is a submanifold we define codim(Z) = dim(N) −

dim(Z). It is the number of equations required to cut outZ locally. In the above
theorem the codimension ofZ and f −1(Z) are the same. (They are each cut out
by the same number of equations!)

Our aim is to show that the condition of being transversal is generic in the
sense of Sard’s theorem. As a model for what we wish to prove consider the
following situation.

Let
F : P × M → N

be a smooth map.

Theorem 18.3.Suppose that F is a submersion, i.e. the differential of F is surjec-
tive everywhere. Suppose further that P, M and N are finite dimensional. Then
for each p∈ P we get a map fp : M → N. Given a submanifold Z of N t for a
generic p∈ P we have fp is transversal to Z.

Proof. Since F is a submersionF is transversal toZ so thatS = F−1(Z) ⊂

P × M is a submanifold. Consider the projection

p1 : S → P.

Fix (p,m) ∈ Sand setn = F(p,m) The tangent space ofSat (p,m) is (v,w) ∈

T(p,m)M so thatd(p,m)F(v,w) ∈ TnZ or equivalently

dm f p(w)+ d(p,m)F(v,0) ∈ TnZ.

We claim thatp is a regular value of the projection if and only iff p is transverse
to Z. This follows from
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Lemma 18.4.S = F−1(Z) is transverse to{p}×M if and only if fp is transverse
to Z.

Proof. The first condition is

0 ⊕ TmM + (dp,mF)−1(TnZ) = TpP ⊕ TmM

The second condition is

dp,mF(0 ⊕ TmM)+ TnZ = TnN.

SinceF is surjective these condition are equivalent.

Next we observe that the conditionS is transverse to{p} × M is equivalent
to the condition thatp is regular value of the projectionp1|S : S → P. The first
condition is

0 ⊕ TmM + (dp,mF)−1(TnZ) = TpP ⊕ TmM

while the second is

dp,mp1 : (dp,mF)−1(TnZ) = TpP.

Since 0⊕TmM is the kernel ofdp,mp1 is 0⊕TmM these conditions are equivalent.
Thus we can appeal to Sard’s theorem applied to the projectionp1 : S → P to

say that a genericp ∈ P is a regular value and by the lemma for genericp ∈ P,
f p is transverse toZ.

Theorem 18.5.Suppose that F is a submersion, i.e. the differential of F is sur-
jective everywhere. Suppose further that P, M and N are Banach manifolds for
each p∈ P we get the map fp : M → N is Fredholm. Given a finite dimensional
submanifold Z of N then for a residual set of p∈ P we have fp is transversal to
Z.

Proof. We simply need to check the mapp1|S : S → P is Fredholm. To this end
we need to inspect the proofs of the two lemmas above. We can sharpen them to
the following.

Lemma 18.6.There an isomorphism

TpP ⊕ TmM/(0 ⊕ TmM + (dp,mF)−1(TnZ) → TnN/dp,mF(0 ⊕ TmM)+ TnZ
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Proof. Differential of F induces a map which is easily seen to be an isomorphism
using the fact thatF is a submersion.

dp,mp1 : (dp,mF)−1(TnZ) = TpP.

Lemma 18.7.There an isomorphism

TpP ⊕ TmM/(0 ⊕ TmM + (dp,mF)−1(TnZ) → TpP/dp,mp1 : (dp,mF)−1(TnZ)

Proof. Now the differential ofp1 induces the desired map which is easily seen to
be an isomorphism using the fact thatp1 is a submersion.

These two lemmas tell us that the cokernel ofp1|S is finite dimensional.
The kernel of the projectionp1|S is the intersection(0⊕TmM∩(dp,mF)−1(TnZ).

This intersection Fits into a short exact sequence

0 → ker(dm f p) → (0 ⊕ TmM ∩ (dp,mF)−1(TnZ) → TnZ → 0.

and hence is finite dimensional.

The main application we will have of this result is the following result.

Theorem 18.8.Let M, N, and Z be smooth manifolds with Z⊂ N a submanifold.
The set of maps f: M → N in Ck(M, N) which are transverse to Z is residual
in Ck(M, N).

A little later in the course we will deal with givingCk(M, N) the structure of
a Banach manifold.
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Whitney proved a stronger version of this theorem.

Theorem 18.9. (Whitney 1944) Any compact n-manifold admits an embedding
into R2n.

Proof. (Sketch). We will work out the casen is even andn > 2 andM orientable
first. Consider the spaceImm of Ck-immersions ofM → R2n. The condition of
being an immersion is an open condition in theCk-topology on the space of maps
so thatImm is a Banach manifold. By Proposition 15.3 proposition this space
is non-empty. First we will show that for a Baire set of immersions the there are
only finitely many double points and that the two sheets of image are transverse
at the double points.

To this end consider the map

F : Imm× (M × M \1) → Grn(R2n)× Grn(R2n)× R2n.

given byF( f, x, y) = (Im(Dx f ), Im(Dy f ), f (x)− f (x′). One checks thatF is
a submersion. LetZi ⊂ Grn(R2n)× Grn(R2n) be the set of pairs(51,52) so that
dim(51 ∩52) = i .

Lemma 18.10. Zi is a smooth submanifold of dimension2n2
− i 2.

Proof. Write R2n as

51 ∩52 ⊕51 ∩5⊥

2 ⊕5⊥

1 ∩52 ⊕51 ∩5⊥

2

The standard coordinate chart about51 represents a plane near51 as the graph of
a linear mapA1 : 51 → 5⊥

1 decomposing this matrix according the to the above
deomposition we can write

A1 =

[
α1 β1

γ1 δ1

]
viewed as a map

51 ∩52 ⊕51 ∩5⊥

2 → 5⊥

1 ∩5⊥

2 ⊕5⊥

1 ∩52

Doing the same of a chart about52 we get

A2 =

[
α2 β2

γ2 δ2

]
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now viewed as a map

51 ∩52 ⊕5⊥

1 ∩52 → 5⊥

1 ∩5⊥

2 ⊕51 ∩5⊥

2

The condition that the planes represented by(A1, A2) also intersect in ani -dimensional
subspace is the condition thatα1 = α2 so the total dimension is 2n2

− i 2

We seek a mapf so that for all distinctx, y ∈ M F( f, x, y) 6∈ Zi × {0}

for any i . The parametric transversality theorem implies that for a Baire set off
the map(x, y) 7→ F( f, x, y) is transverse toZi × {0}. But the codimension of
Zi × {0} is 2n2

+ 2n − (2n2
− i 2) = i 2

+ 2n which is larger than the dimension
of the domain 2n.

Exercise8. Show that we can in addition assume thatf has no triple points.

Thus wheneverf (x) = f (y) we have that the differentials have transverse
images at those points. We assume that in the remainder of the discussion thatf
has been chosen satisfy these conditions.

Lemma 18.11. At each pair(x, x′) with f (x) = f (x′) = y there are charts
(U, φ), (U ′, φ′) near x, x′ and(V, ψ) near y so that

ψ−1
◦ f ◦ φ(x1, x2, . . . , xn) = (x1, x2, . . . , xn,0,0, . . . ,0)

and
ψ−1

◦ f ◦ φ′(x′

1, x′

2, . . . , x′

n) = (0,0, . . . ,0, x′

1, x′

2, . . . , x′

n)

Proof. Since f is an immersion there are coordinatesφ = (x1, . . . , xn) aboutx
andψ1(y1, . . . , y2n) abouty so that

ψ−1
1 ◦ f ◦ φ(x1, x2, . . . , xn) = (x1, x2, . . . , xn,0,0, . . . ,0)

and coordinatesφ′
= (x′

1, . . . , x′
n) aboutx′ andψ2 = (y′

1, . . . , y′

2n) abouty so
that

ψ−1
2 ◦ f ◦ φ(x′

1, x′

2, . . . , x′

n) = (0,0, . . . ,0, x′

1, x′

2, . . . , x′

n)

Then setψ = (y1, . . . , yn, y′

n+1, . . . , y′

2n) We claim that this gives the desired
coordinate system.
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Thus the double points are isolated and hence by compactness there are finitely
many.

Next we define the sign of a double point. Recall now that are assuming that
n is even and thatM is orientable. Choose an orientation ofM and ofR2n. If
f (x) = f (x′) = y then transversality tells us that we can write

TyR2n
= Dx f (Tx M)⊕ Dx′ f (Tx′ M).

As both sides of this equations are oriented vector spaces we can assign a sign to
the double point according to whether or not the orientations agree. Notice that
sincen is even the order of the factors on the right hand side is immaterial. Also
notice that the sign is independent of the choice of orientation ofM .

We will now prove the following key proposition.

Proposition 18.12. If a pair of double points y1 and y2 of opposite sign with
preimages(x1, x′

1) and(x2, x′

2) respectively. Then we can modify f so as to elim-
inate the double point without introducing any others.

Proof. Then chooseγ andγ ′ embedded smooth curves inM with endpointsx1, x2

andx′

1, x′

2 respectively. Sincen > 2 we can assume that the curves are disjoint
and that their images are disjoint except at the endpoints. Let0 = f (γ ) ∪ f (γ ′)

denote the union of these images.0 is an embedded closed curve inR2n and
hence bounds a diskσ : D2

→ R2n. We can assume thatσ is transverse tof
and to itself. This implies thatσ has no double points and thatσ missesf except
along0.

Let N be the normal bundle ofσ . Sinceσ is contractibleN is trivial so that
there is a bundle isomorphism

N ≡ D2
× R2n−2.

Let ν andν′ denote the normal bundles ofγ andγ ′ in M . These are again
trivial bundles. Note that alongf (γ ), D f (ν) defines a distinguished subbundle
similarly along f (γ ′), D f (ν′).

Notice that the tubular neighborhood of By the tubular neighborhood theorem
there is a diffeomorphism

ψ : D2
× D2n−2

→ R2n

Suppose that we can writeN = ξ1 ⊕ ξ2 so that

ξ | f (γ ) = D f (ν) and ξ | f (γ ′) = D f (ν′)
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Then we can write the tubular neighborhood ofσ in a standard way and we see
since we can push the two dimensional picture till the two arcs don’t intersect we
can also push the higher dimensional picture till they don’t intersect.

We must return to the issue of extending the splitting. The splitting gives rise
to a mapυ : 0 → Grn−1(R2n−2) and we must understand when this map is null
homotopic. Form algebraic topology we know that Grn−1(R2n−2) fundamental
groupZ/2Z and is generated by the family of subspaces

5t = span{cos(t)e1
+ sin(t)en,e2, . . . ,en−1

}.

as t varies between 0 andπ. In other words the identification of50 with 5π is
orientation reversing. Thus the orientation ofξ1 ⊕ ξ2 must be the same at the two
end if the splitting is to extend. On the other hand the normal vectors in the two
disk reverse orientation.

To prove the theorem we need to see that we first modifyf so that the signed
number of double points is zero. To this end consider the map

(x1, . . . , xn) 7→ (x1 − 2x1/u, x2, . . . , xn,1/u, x1x2/u, . . . , x1xn/u)

whereu(x1, . . . , xn) = (1+x2
1)(1+x2

2) . . . (1+x2
n). It is straightfoward if tedious

to check that this map has exactly one double point and also notice that at very
large distance from the origin this map is quite close to the linear embedding

(x1, . . . , xn,0, . . . ,0)

in other words we can shrink the map down a lot and use it to modify a given map
to have another double point and we can choose the sign of this double points as
well.

Now we consider the case thatn is odd (it doesn’t matter now ifM is ori-
entable). Then the sign of a point of intersection is not well defined. In this case
however the relative sign of a pair of intersection points given the pair of curves
γ andγ ′ is still well defined. If the curvesγ joining x1 andx2 andγ ′ joining x′

1
to x′

2 lead to intersection with the same sign choose different curves now joining
x1 to x′

2 and joiningx′

1 to x2.
If M is nonorientable and we have curvesγ andγ ′ leading to a pair of in-

tersection point with the same sign add toγ ′ a curve running around a loop that
reverses orientation.
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19 Morse Theory

Definition 19.1. A function on a manifold is called aMorse functionif all of it
critical points are non-degenerate.

20 Canonical forms

20.1 The Lie Derivative

Let M be a vector field on a manifoldM . As we say the vector field generates a
flow Ft : M → M at least locally inM characterized by the condition that for all
x ∈ M we have

d

dt
Ft(x) = X(Ft(x))

Remark5. Or in words the tangent vector to the curve defined byt → Ft(x) at
t = 0 is X(x).

Using the flow we can differentiate objects onM . For example given a function
f : M → R we can compute

d

dt
f ◦ Ft(x).

Lemma 20.1. d
dt f ◦ Ft(x)|t=0 = Dx f (X(x)).

Proof. This follows from remark 5.

We will often write X f (x) for any of these expressions.
For vector field we can do the same. Here we need to be a little careful about

conventions. Suppose thatX,Y are vector fields onX. Then we can form their
bracket [X,Y]. Here it is easiest to think in terms of the action on functions. Iff
is aC2 function then we define.

[X,Y]( f ) = X(Y f)− Y(X f )
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If in terms of local coordinatesX = ai ∂
∂xi andY = b j ∂

∂x j then

[X,Y] =
(
ai ∂b j

∂xi
− bi ∂a j

∂xi

) ∂

∂x j
.

The remaining terms dropping out since mixed partials commute.
A little more invariantly in term of a patch we have can representX andY by

maps
X,Y : U → B

and then
X(Y f)(x) = D2 f (X,Y)+ DxY(X) f

and hence
[X,Y] f (x) =

(
DxY(X)− Dx X(Y)

)
f

We can also get a path of vector fields atx by considering

DFt (x)F−t(Y(Ft(x)))

and we define theLie Derivativeto be

LXY =
d

dt
DFt (x)F−t(Y(Ft(x)))

Fortunately we have

Proposition 20.2.
LXY = [X,Y]

Proof. Let Gs denote the times flow for the vector fieldY. Then

DFt (x)F−t(Y(Ft(x))) f =
d

ds
f ◦ F−t ◦ Gs ◦ Ft(x)|s=0

so that

d

dt
DFt (x)F−t(Y(Ft(x))) f |t=0 =

d

dt

d

ds
f ◦ F−t ◦ Gs ◦ Ft(x)|s=0,t=0

=
d

ds

d

dt
f ◦ F−t ◦ Gs ◦ Ft(x)|s=0,t=0

=
d

ds
(−X f )(Gs(x)+ X( f ◦ Gs)(x)

= −Y(X f )+ X(Y f).

As advertised.
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Recall that every square matrixA with complex entries is conjugate to one in
Jordan canonical form and many theorems about matrices are obvious once we
use this fact. So it is in geometry. We already saw one baby example of canonical
forms.

Theorem 20.3.Let X be a vector field on the Banach manifold M modeled on
B. Suppose for some m∈ M we have X(m) 6= 0 Then there is a chartφ :
U × (−ε, ε) → M about m so thatφ∗(X) = (0, d

dt ).

In other words any two vector fields non-zero at a point inM are equivalent
in small enough neighborhoods under the action of diffeomorphisms ofM fixing
the point.

Next we consider when can a subbundleξ of the tangent bundleT M of M can
be brought into a canonical form. In generality this is a very complicated problem
and we need to isolate manageable cases. The example that comes to mind is the
case where40|(x,y) = TxRn

× {0} ⊂ TxRn
× TxRm−n, the tangent bundle along

a product. A subbundle which is locally diffeomorphic to40 is calledintegrable.
Notice that40 is has following property. If

X1 =

n∑
i =1

ai (x1, . . . , xm)
∂

∂xi
, and X2 =

n∑
i =1

bi (x1, . . . , xm)
∂

∂xi

is a pair of local sections of40 then the bracket

[X1, X2] =

n∑
i, j =1

(
ai ∂b j

∂xi
− bi ∂a j

∂xi

) ∂

∂x j

is also a local section of4. A subbundle with this property is calledinvolutive.
Clearly any integrable subbundle is involutive.
Examples:

41 = span{
∂

∂x
+

2zx

1 + x2 + y2

∂

∂z
,
∂

∂y
+

2zy

1 + x2 + y2

∂

∂z
}

is involutive indeed it field of tangent planes to the family of paraboloids

z = λ(1 + x2
+ y2)

On the other hand

42 = span{
∂

∂x
+ y

∂

∂z
,
∂

∂y
}
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is not involutive. In fact in has the interesting property that given any two points
and any path connected neighborhood there is a path tangent to42 joining the two
points contained in the neighborhood. Clearly then42 is not integrable.

The following provides a converse.

Theorem 20.4.(Frobenius). If4 is involutive then it is integrable.

Proof. Choose first a coordinate patch about of the fromφ : U → Rn
× Rm−n so

that atφ(m) = 0 andφ∗(ξm) = T0Rn
× {0}. Set41 = φ∗(4).

Then in some neighborhoodV × W of φ(m) = 0 we can find a function
f : V × W × Rn

→ Rm−n, linear in the last factor withf (0,0, ·) = 0 and so that
anyξ ∈ 4 can uniquely be written as

ξ = (e, f (x, y,e).

There is a natural homotopy of40 to41 given by

4t = {(e, t f (t x, y,e)|e ∈ Rn
}.

We will show that there is a one parameter family of diffeomorphismsFt so that

1. Ft(0) = 0 and

2. (Ft)∗(Xt) = 40.

ThusF1 is the desired change of coordinates. Forx ∈ V let

Xx(v,w) = (x, f (v,w, x))

Then the fact the41 is involutive implies that [Xx, Xy] ∈ 41 but [Xx, Xy] is
certainly of the form(O, ∗) since the constant vectors fieldsx andy commute so
[Xx, Xy] = 0. More explicitly

[Xx, Xy] =
(
0, D(v,w,x) f (y, f (v,w, y),0)− D(v,w,y) f (x, f (v,w, x),0)

)
= 0

Let Xt(v,w) = (0, f (tv,w, v)). A typical section of4t is Xt,x(u, v) = (x, t f (tv,w, x)).
We can work out the bracket [Xt , Xt,x]

[Xt , Xt,x] =
(
0, t D(tv,w,x) f (0, f (tv,w, v), 0)

−t D(tv,w,v) f (x, f (tv,w, x),0)− f (tv,w, x)
)

= −t D(tv,w,x) f (v,0,0)− f (tv,w, x)

= −
d

dt
Xt,x
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Thus the Lie derivative of [(Xt ,
d
dt ), Xt,x] = 0 or equivalently ifFt is the flow of

the time dependent vector field then we have(Ft)∗(Xs,x) = Xs+t,x as required.

Here is a more intuitive proof by induction on the dimension.

Proof. Induction on the dimension of the subbundle. The case of dimension one
follows from the standard form for an non-vanishing vector field. The question
is also local so we assume that we are given a subbundle of the tangent bundle
of Rn defined in a neighborhood of 0∈ Rn. Suppose we have proved the result
for all subbundles of dimensiond. Let E be an involutive subbundle ofTRn of
dimensiond+1. Choose a nowhere vanishing local section,X, of E. Next choose
a coordinate systemz1, . . . , zn , centered at 0, so that∂

∂zn = X. TRn−1
× {0} is

an integrable hence involutive subbundle.E′
= E ∩ TRn−1

× {0} defines a
subbundle in a neighborhood of 0 of dimensiond. SinceE′ is the intersection of
two involutive subbundles it is involutive and so the induction hypothesis applies.
We can find a coordinate systemy1, . . . , yn centered at 0 so thatE′ is given in a
neighborhood of 0 as the span ofy1, . . . , yd In this new coordinate systemX may
not be straight but we have that

∂

∂y1
, . . . ,

∂

∂yd
, X

forms a basis forE. We can write

X =

d∑
i =1

ai ∂

∂yi
+ X0

whereX0 is section ofT W. Then

∂

∂y1
, . . . ,

∂

∂yd
, X0

is also a basis forE. SinceX0 is a section ofT W so is [ ∂
∂yi , X0]. By involutivity

it is parallel toX0 so there is a smooth functionf1 defined in a neighborhood of 0
with

[
∂

∂yi
, X0] = f1X0.

Set
g1 = −int y1

0 fi (w, s, y2, . . . , yd)ds.
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Then set
X1 = exp(g1)X0.

It is now easy to check that

[
∂

∂yi
, X1] = 0.

X1 is still a section ofT W so [ ∂
∂yi , X0] is parallel toX1 and we can find a smooth

function f2 so that

[
∂

∂yi
, X1] = f2X1

We claim that
∂ f2
∂y1

= 0.

To see this notice that

[
∂

∂y1
, [
∂

∂y2
, X1] =

∂ f2
∂y1

X1 = 0.

Using Jacobi’s identity we also have

[
∂

∂y1
, [
∂

∂y2
, X1] = [[

∂

∂y1
,
∂

∂y2
]X1] + [

∂

∂y2
, [
∂

∂y1
, X1]

= 0.

So if we set

g2 = −

∫ y2

0
fi (w, y1, s, y3, . . . , yd)ds.

and
X2 = eg2 X1

we have

[
∂

∂yi
, X2] = 0

for i = 1,2. Continuing in this fashion we eventually findXd commuting with
y1, . . . , yd and we can construct the desired coordinate system as we did in class.
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20.2 Foliations

The local structure of the previous subsection has as its global counterpart the
notion of a foliation. Here is the precise definition.

Definition 20.5. A foliation F of M is a decomposition ofM as a disjoint union
of connected immersed submanifoldsM =

∐
α∈ALα called the leaves ofF so

that each point has a chart(U, φ) so that underφ the decomposition obtained
from the decomposition

∐
α∈ALα ∩ U by taking components goes over to the

decomposition ofRn
=

∐
x∈Rn−k Rk

× x.

It is important to realize that in the above definition we do not require the
leaves to have the subspace topology. For example Consider the 2-torus

T2
= R2/Z2

Fix a pair of real numbers(ζ1, ζ2) so thatζ1/ζ2 is irrational. The cosets of the
subgroup0 generated by{[tζ1, tζ2]|t ∈ R} give rise to a foliation with leaves that
are not locally closed subsets.

Remark6. The space of leaves of a foliation is one setting where one runs into
non-Hausdorff manifolds. The space of leaves has a natural covering by charts
(These may not be injective so be careful).

21 Characterizing a codimension one foliation in terms
of its normal vector.

LetF be a two dimensional foliation ofR3.

Proposition 21.1.Letn be a local normal vector field toF . Then

n · (∇ × n) = 0

Proof. Write

n = a
∂

∂x
+ b

∂

∂y
+ c

∂

∂z
.
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By rotating the coordinates we can assume that none ofa,b or c are zero. Then
F is locally spanned by the local sections

−b
∂

∂x
+ a

∂

∂y
, c
∂

∂x
− a

∂

∂z
, c
∂

∂y
− b

∂

∂z

and we have

[−b
∂

∂x
+ a

∂

∂y
, c
∂

∂x
− a

∂

∂z
] = [−b

∂

∂x
,−a

∂

∂z
] + [a

∂

∂y
, c
∂

∂x
] + [a

∂

∂y
,−a

∂

∂z
]

= b
∂a

∂x

∂

∂z
− a

∂b

∂z

∂

∂x
+ a

∂c

∂y

∂

∂x
− c

∂a

∂x

∂

∂y
+ −a

∂a

∂y

∂

∂z
+ a

∂a

∂z

∂

∂y

= a
(
(
∂c

∂y
−
∂b

∂z
)
∂

∂x
+
∂a

∂z

∂

∂y
−
∂a

∂y

∂

∂z
)+ b

∂a

∂x

∂

∂z
+ −c

∂a

∂x

∂

∂y
.

Since we are assuming thatF is involutive we have

a
(
(
∂c

∂y
−
∂b

∂z
)a +

∂a

∂z
b −

∂a

∂y
c) = 0.

Sincea 6= 0 we have: (
(
∂c

∂y
−
∂b

∂z
)a +

∂a

∂z
b −

∂a

∂y
c) = 0.

This same equation hold for any cyclic permutation ofa,b, c and simultaneous
permutation ofx, y, z. Adding the resulting three equations gives

2
(
(
∂c

∂y
−
∂b

∂z
)a + (

∂a

∂z
−
∂c

∂x
)b + (

∂b

∂x
−
∂a

∂y
c)

)
= 0.

as required.

22 The holonomy of closed loop in a leaf

Definition 22.1. Let F be a foliation of a manifoldM . A transversal toF is
smooth locally closed submanifold ofM which meets all leaves transversally. A
local transversal is a transversal which is diffeomorphic to a disk.

To discuss the holonomy we will use the terminology of a germs.
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Definition 22.2. Let X,Y be smooth manifolds. Fix a pointx ∈ X. A germ of
smooth mappings atx is the equivalence class of functionsf : U → Y where
U ⊂ X is an open neighborhood ofx under the equivalence relation of agreement
upon restriction. That isf : U → Y is equivalent tog : V → Y if there is a
neighborhoodW of x so that f |W = g|W.

Let τ1 andτ2 be local transversals hitting the same leafL of F . τ1 andτ2 are
both contained in the same foliation chartU . Then the chart defines the germ of a
diffeomorphism fromτ1 at τ1 ∩ L to τ2 at τ2 ∩ L

Let γ : S1
→ L be aC1 closed loop based atx in a leafL of foliationF . Let

τ be a transversal toF passing throughx.

23 Reeb’s stability theorem

Definition 23.1. A codimension one foliation is called transversally orientable if
the normal bundleν = T M/TF is orientable.

Theorem 23.2.LetF be a normally oriented two dimensional foliation of a com-
pact oriented three manifold. IfF contains S2 as a closed leave then the pair
M,F is diffeomorphic to S2 × S1 with the product foliation by two-spheres..

Remark7. To see that the normally oriented condition is important in the state-
ment of the result note the following.S2

× S1 has an orientation preserving invo-
lution τ : S2

× S1
→ S2

× S1 given by

τ(x,ei θ ) = (−x,e−i θ ).

This is a fixed point free involution so the quotientX = S2
× S1/(x,ei θ ) ∼

(−x,e−i θ ) has the structure of manifold as well. The product foliation is ofS2
×

S1 is carried to itself byτ and descends to a foliation ofX. The induced foliation
is not normally oriented (can you see this). Most of the leaves are two sphere but
there are two leaves which are real projective planes.

Lemma 23.3. Let φ : D2
→ M be an smooth embedding of D2 into M3 with

image contained in a leaf L ofF . Then there is a foliating coordinate patch
φ̃ : D2

× (−ε, ε) → M3 extendingφ.
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Proof. First of all it is straightforward to construct a coordinate patchψ : D2
×

(−a,a) → M extendingφ so thatF is transverse to all theψ({x}× (−a,a)) and
soTF agrees withD(0,t)ψ(T0D2

×{0}). TransferF to a foliation ofD2
×(−a,a)

still calledF . Let (r, θ) be polar coordinates in the disk.
DefineG on (D2

\ {0})× (−a,a) to be the span of∂
∂r and ∂

∂t . By construction
G is transverse toF and so the intersectionTF ∩ G defines a line field on(D2

\

{0})× (−a,a). This line field is spanned by a vector field of the formv(r, θ, t) =
∂
∂r + a(r, θ, t) ∂

∂t . We havea(r, θ,0) = 0 anda(0, θ, t) = 0. and letFs denote the
time s flow of v. Fs(r, θ, t) = (r + s, θ, Ts(r, θ, t)) when it is defined. Choose
b small enough so that the time 1-flow ofv with initial conditions(0, θ, t) for
|t | < b is defined. Define a map̃φ : D2

× (−b,b) → D2
\ {0}) × (−a,a)

by sending(r, θ, t) to the point(r, θ, Tr (0, θ, t)) or in words the timer flow of
(0, θ, t) underv. This map takes the line segment{(r, θ, t)|0 ≤ r < 1} to a leaf.
Since for anyθ v(0, θ, t) =

∂
∂r is tangent toF , φ̃ carriesD2

× {t} onto a leaf.
Thusφ̃ is the required map.

Next we prove that in a neighborhood of a two-sphere leaf the foliation has a
product structure.

Lemma 23.4. Suppose thatL is a leaf ofF which diffeomorphic to S2 The is
a saturated neighborhood N ofL which diffeomorphic to S2 × (−a,a) with the
product foliation.

Proof. DecomposeS2
= D2

+ ∪ D2
−. By the previous lemma we can find standard

neighborhoods and glue them together to get the result.

Next we will show that the set of points on a leaf diffeomorphic toS2 is both
open and closed.

Theorem 23.5.LetF be a transversally oriented foliation. Then there is a em-
beddingγ : S1

→ M transverse to the leaves. In factγ can be chosen to pass
through any point of M

Remark8. This is not to say that the image ofγ hits all the leaves. This is a much
stronger condition. A foliation with this addition property is called taut. The Reeb
foliation of S3 is an example of a non-taut foliation. Any flow line can only touch
the torus leaf once but a closed circle transverse to a torus inS3 must meet the
torus in an even number of points.

56



Proof. Fix a pointx0 ∈ M . SinceF is transversally oriented there is a nowhere
vanishing vector field,v, which is transverse to the leaves. LetFt denote the time-
t flow for this vector field and consider a particular flow line,γ , of this vector
field. If this flow line is a periodic orbit we are done so suppose it is not. Then
we claim that there is leaf that is hit infinitely often by the flowline. We can find
x ∈ X and sequenceti → ∞ so that limi →∞ Fti (x0) = x. Let U be a foliation
chart in M aboutx. We can construct a smaller chart,V , aboutx by using the
vector fieldv to flow away from the leafL containingx. In V if a point is on a
connected component of the part of the flow line inV it hits L. Since infinitely
many points ofγ in different components ofγ ∩ V are contained inV the claim
follows.

Thus we can find a piece of orbit which containsx0 and hits some leaf twice
and the points of intersection are contained in the patchV . It is straightforward to
modify the piece of flow line in this patch to close it up.

Now consider our transversally oriented foliation ofM3 containing a leafL
diffeomorphic toS2. Let γ be a closed transverse curve passing throughL. Let0
denote the union of all the leaves which pass through0. We claim that0 is all of
M and thatγ hits each leaf the same number of times.

By Lemma 23.40 is open. Also by this lemma there for each pointy of γ
there is a compact foliated neighborhood diffeomorphic toS2

× [0,1]. By the
compactness ofγ finitely many such neighborhoods coverγ but then0 is the
union of finitely many closed sets and hence closed. Finally consider the function
which associates to each pointy of γ the of points ofγ contained in the same leaf
asy. By Lemma 23.4 this is a continuous function and hence is constant.

Finally choose a newγ which hitsL once and hence all leaves once. Then

h : L× γ → M

given by takingy ∈ L andt ∈ γ to the unique point in the leaf throught hit by
the flow line ofv throughy is the required diffeomorphism.

24 Differential forms and de Rham’s Theorem

24.1 The exterior algebra

Let V be a finite dimensional vector space over the reals. The tensor algebra ofV
is direct sum

Ten(V) = R ⊕ V ⊕ V⊗2 . . .⊕ V⊗k . . .
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It is made into an algebra by declaring that the product ofa ∈ V⊗k andb ∈

V⊗l is a⊗b ∈ V⊗(k+l ). It is characterized by the universal mapping property that
any linear mapV → A whereA is an algebra overR extends to a unique map of
algebrasTen(V) → A.

The exterior algebra algebra is the quotient of exterior algebra by the relation

v ⊗ v = 0.

The exterior algebra is denoted3∗(V) or 3(V). It is customary to denote the
multiplication in the exterior algebra by(a, ) 7→ a ∧ b If v1 . . . vk is a basis forV
then this relation is equivalent to the relations

vi ∧ v j = −v j ∧ vi for i 6= j,

vi ∧ vi = 0

Thus3∗(V) has basis the products

vi1 ∧ vi2 . . . vik

where the indices run over all strictly increasing sequences of numbers between 1
andn.

1 ≤ i i < i2 < . . . < ik ≤ n.

Since for eachk there are

(
n
k

)
such sequences of lengthk we have

dim(3∗(V)) = 2n.

3∗(V) since the relation is homogenous the grading of the tensor algebra descends
to a grading on the exterior algebra (hence the *).

We can apply this construction fiberwise to a vector bundle. The most impor-
tant example is the cotangent bundle of a manifoldT∗X in which case we get the
bundle of differential forms

3∗(T∗X) or 3∗(X).

We will denote the space of smooth sections of3∗(X) by�∗(X). In local coor-
dinates a typical element of�∗(X) looks like

ω =

∑
1≤i i<i2<...<ik≤n

ωi i i2...<ikdxi1 ∧ dxi2 ∧ . . . dxik .
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Since the construction of3∗(X) was functorial in the cotangent bundle these
bundles naturally pull back under diffeomorphism and iff : X → Y is any
smooth map there is natural map

f ∗ : �∗(Y) → �∗(X).

The most important thing about differential forms is the existence of a natural
differential operator the exterior differential defined locally by the following rules

d f =

n∑
i =1

∂ f

∂xi
dxi

dω =

∑
1≤i i<i2<...<ik≤n

dωi i i2...<ik ∧ dxi1 ∧ dxi2 ∧ . . . dxik .

Notice that we can’t invariantly define a similar operator on the tensor algebra.
If we have a one form

θ =

∑
i =1

fi dxi

and try to define

Dθ =

∑
i =1

∂ fi
∂x j

dx j
⊗ dxi

then when if we have new coordinatesy1 . . . yn we have

dxi
=

n∑
j =1

∂xi

∂y j
dy j

and

θ =

n∑
m=1

gmdym

where

gm = fi
∂xi

∂ym
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Dθ =

∑
i =1

∂ fi
∂x j

dx j
⊗ dxi

=
∂ fi
∂x j

∂xi

∂yl

∂x j

∂ym
dym

⊗ dyl

=
∂ fi
∂yk

∂yk

∂x j

∂xi

∂yl

∂x j

∂ym
dym

⊗ dyl

=
∂ fi
∂ym

∂xi

∂yl
dym

⊗ dyl

=
∂ fi
∂ym

∂xi

∂yl
dym

⊗ dyl

=
( ∂

∂ym
( fi
∂xi

∂yl
)− fi

∂2xi

∂ym∂yl

)
dym

⊗ dyl

=

n∑
m=1

∂gl

∂ym
dym

⊗ dyl
− fi

∂2xi

∂ym∂yl
dym

⊗ dyl .

Thus our definition depends on the choice of coordinates. Notice that when we
pass to the exterior algebra this last expression vanishes that exterior derivative is
well defined.

Theorem 24.1.d2
= 0.

Proof. From the definition in local coordinates it suffices to check thatd2
= 0 on

functions.

d2( f ) =

n∑
i, j =1

∂2 f

∂xi ∂x j
dxi

∧ dx j
= 0

since thef smooth so the matrix of second derivatives is symmetric.

Proposition 24.2.

d(a ∧ b) = da ∧ b + (−1)deg(a)
∧ db.
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Proof. The bilinearity of the wedge product implies that it suffices to check the
result when

a = f dxi1 ∧ dxi2 ∧ . . . ∧ dxik .

Definition 24.3. A cochain complex is a graded vector spaceC =
∑

∞

i =0 Ci to-
gether with a mapd : C → C so thatdCi ⊂ Ci +1 andd2

= 0. The cohomology
groups of a cochain complex are defined to be

H i (C,d) = ker(d : Ci
→ Ci +1)/Ran(d : Ci −1

→ Ci )

24.2 The DeRham cohomology

24.3 The Poincaŕe lemma and homotopy invariance of the DeR-
ham cohomology

There are a bunch of basic forumlas in dealing with forms, the exterior derivative
and contraction and the Lie derivative.

Recall that the Lie derivative is defined as follow. Given a vector fieldv let Ft

be its timet flow. By pull back this acts on forms on the manifold. Fixing a point
x ∈ X we can watch what happens to the a form at the pointx under the flow, i.e
consider the path

F∗

t (ωFt (x)) ∈ 3k
x(X)

The derivative att = 0 is called the Lie derivative

Lvω =
d

dt
F∗

t (ωFt (x))|t=0 ∈ 3k
x(X)

More generally there is a Lie derivative on tensors. Note that iff is a function
then this definition amounts to nothing more that

Lv f =
d

dt
f ◦ Ft(x)t=0 = v f (x) = ιvd f

Since the exterior derivative is natural under diffeomorphisms it follows that Lie
derivative commutes withd. Hence

Lvd f = dLv f = dιvd f.
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More generally we have Cartan’s formula or the homotopy formula.

Lvω = dιvω + ιvdω.

We prove this by induction on the degree of the form. We have checked the
case of functions. Furthermore it is enough to check that that both sides satisfy
the Leibniz rule.

Lv(ω ∧ η) = Lv(ω ∧ η) = dιvω + ιvdω.

Let i : M → R × M be the inclusioni (x) = (0, x) and letπ : R × M → M
be the projection. We claim that the induced maps on cohomology are inverses of
each other. Thus we have

Proposition 24.4.The groups H∗(M) and H∗(R × M) are isomorphic.

To prove this we will construct a mapK

25 Čech cohomology

Let U = {Uα|α ∈ A}be a open cover of a topological space. Using the combina-
torics of the cover when can define a complex as follows. LetCp(U) be the space
of all locally constant functions onp + 1 fold intersections

Uα0 ∩ . . . ∩ Uαp

with the symmetry property that ifσ is a permutation of 0, . . . , p then

f |Uα0 ∩ . . . ∩ Uαp = sign(σ ) f |Uασ(0) ∩ . . . ∩ Uασ(p) .

We write fα0...αp for f |Uα0 ∩ . . . ∩ Uαp

There is a natural codifferential on such functions

δ : Cp(U) → Cp+1(U)

defined by the formula

(δ f )α0...αp+1 =

p+1∑
i =0

(−1)i fα0...α̂i αp+1|Uα0∩...∩Uαp+1
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If we order A then we can consider only ordered intersections and define a
similary complex which has isomorphic cohomology. In practice this is how one
work but the first definition is choice free so a bit prefereable.

Example. Think ofS2 as the boundary of tetrahedron. CoverS2 by the four
open which are the complements of the four closed two dimensional faces. If we
label these setsU1,U2,U3,U4 then the non empty two fold intersections are

U1 ∩ U2,U1 ∩ U3,U1,∩U4,U2 ∩ U3,U2 ∩ U4,U3 ∩ U4.

and the non-empty three fold intersections are

U1 ∩ U2 ∩ U3,U1 ∩ U2 ∩ U4,U1 ∩ U3 ∩ U4,U2 ∩ U3 ∩ U4

the four-fold intersection is empty.
Then all interections are connected and the complex is

R4
7→ R6

7→ R4

with the maps

δ0( f1, f2, f3, f4) = ( f1 − f2, f1 − f3, f1 − f4, f2 − f3, f2 − f4, f3 − f4) (8)

and

δ1( f12, f13, f14, f23, f24, f34) = ( f23− f13+ f12, f24− f14+ f12, f34− f14+ f13, f34− f24+ f23)

(9)
The kernel ofδ0 is clearly the constant functions. Cokernel ofδ1 is one dimen-
sional and hence we havěH∗(U) = R,0,R.

25.1 refinement

By a refinementV of an open coverU we mean aV = {Vβ |β ∈ B} and a map
r : B → A so that for allβ ∈ B we haveVβ ⊂ Ur (β). If we have a refinement
then there is a chain map of theČeck complexes.

r̃ : Čp(U) → Čp(V)

given by the formula

r̃ ({ fβ0β1...βp}) = { fβr (0)βr (1)...βr (p)|Vβr (0)βr (1)...βr (p)
}
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Thus there is a map
r̃ ∗ : Ȟ∗(U) → Ȟ∗(V).

Thus we have an directed system (well really need to check that if we have
two refinementsV, r andV, r ′ then the induced maps̃r andr̃ ′ are the same.) The
direct limit of this system is called thěCech cohomology ofX.

26 The acyclicity of the sheaf ofp-forms.

Then we can consider another version of the of theČech complex. That is we
defineČp(U, �q) to be all colletions ofq-formsωα0...αp defined onUα0...αp with
the symmetry properties above. The same formula above defines a differential
mapping

Čp(U, �q) → Čp+1(U, �q)

Given an open coverU consider thěCech complex

. . . Čk−1(U;�p)
δ

→ Čk(U;�p)
δ

→ Čk+1(U;�p)
δ

→

Lemma 26.1.This sequence is exact so long as k> 0.

Proof. Fix a partition of unity{φβ |β ∈ B} subordinate toU = {Uα}α∈A. The
supports of theφβ are a refinement of theUα and we choose a refinement function
r : B → A so thatsupp(φβ) ⊂ r (β). Define

K : Čk+1(U;S�p) → Čk(U;S�p)

by
K (ω)|Uα0α1...αk−1

=

∑
β∈B

φβω|Ur (β)α0α1...αk−1

Since the supports of theφβs are locally finite by definition of partition of unity
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this is well defined. Now consider wherek ≥ 1

(δK + K δ)ω|Uα0α1...αk
=

k∑
i =0

(−1)i K (ω)|Uα0...α̂i ...αk
+

∑
β∈B

φβ(δω)|Ur (β)α0α1...αk

=

k∑
i =0

(−1)i
∑
β∈B

φβω|Ur (β)α0...α̂i ...αk

+

∑
β∈B

φβω|Uα0α1...αk
−

∑
β∈B

k∑
j =0

(−1) jφβω|Ur (β)α0...α̂ j ...αk

)
= ω|Uα0α1...αk

.

We have used that the sum if locally finite to rearrange the order summation.
Thus we have proved the identity is cochain homotopic to zero and so the co-
homology groups are zero. Note that ifk = 0 then we simple get zero and the
arguement proves nothing.

Definition 26.2. A sheaf that admits partitions of unity is called fine.

27 The Poincaŕe Lemma implies the equality ofČech
cohomology and de Rham cohomology

The proof here is modelled on the presentation of Weil’s proof (see Weil, Andr
“Sur les thormes de de Rham.” Comment. Math. Helv. 26, (1952). 119–145.)
in Principles of Algerbraic Geometryby Griffiths and Harris published by John
Wiley and Sons, Inc.

The scheme of the proof is to first restrict attention to countable good covers
which we assume to be cofinal in the set of countable covers.

The Poincaŕe lemma tells us that that for a contractible open setU

R ↪→ �0(U )
d

→ �1(U )
d

→ �2(U )
d

→ . . .

is a long exact sequence. We introduce the notationZ p for the closedp-forms so
that

Z p(U ) = {θ ∈ �p(U )|dθ = 0}

then we can break up this long exact sequence into short exact sequences.
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0 → Z p(U ) ↪→ �p(U )
d

→ Z p+1(U ) → 0.

Note thatZ0(U ) is the constant function so a copy ofR. These induce long exact
sequences in cohomology.

Ȟ i −1(M;�p) → Ȟ i −1(M;Z p+1) → Ȟ i (M;Z p) → Ȟ i (M;�p) →

We have seen thaťH i (M;�p) = {0} for i > 0 and hence

Ȟ i (M;Z p) ≡ Ȟ i −1(M;Z p+1)

for i ≥ 2. Now by definition we thep-th Čech cohomology group ofM is

Ȟ p(M; R) = H p(M;Z0).

Repeated applying the isomorphism above we have

Ȟ p(M; R) ≈ H1(M;Z p−1).

Now consider the beginning of the long exact sequence

→ H1(M;Z p−1) → H1(M;�p)

0 → H0(M;Z p−1) → H0(M;�p−1) → H0(M;Z p)

which becomes

0 → Z p−1(M) → �p−1(M)
d

→ Z p(M) → H1(M;Z p−1) → 0

Thus
H1(M;Z p−1) ≈ Z p(M)/d�p−1(M) = H p

deR(M; R).

Thus we have proved that there is a natural isomorphism

Ȟ p(M; R) ≈ H p
deR(M; R).
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28 The immersion theorem of Smale

Let Imm(X,Y) denote the space of immersion ofX into Y. Fixing base points
x ∈ X andy ∈ Y and an injectionξ : Tx X → TyY. let Imm∗(X,Y) be the space
of base point preserving immersions in the sense that

f (x) = y, dx f = ξ.

Let Imm1(X,Y) denote the space of pair( f, f ′) where f : X → Y is an
immersion andf ′ is a section off ∗(T Y) → X with the property thatf

′

(x) 3

Ran(dx f ) and letImm1
∗(X,Y) denote the based version. Here is the proof of the

covering homotopy property of the natural map

π : Imm(Dk,Rn) → Imm1(Sk−1,Rn)

whereπ( f ) = ( f |Sk−1,
∂ f
∂n |Sk−1).

The idea of the proof is the following. The condition of being an immersion
is open and there is certainly a section ofπ (indeed linear) if we disregard the
immersion condition so we can alway lift a given a homotopy for a short time
where the time depends on how close to failing to be an immersion the time zero
lift is and on how big the derviatives of the section are. Smale’s trick is morally
to essentially homotope the time zero lift to be very much inside the space of im-
mersion. Then he can lift the homotopy a fixed amount along the time parameter
in the homotopy See “The classification of immersions of spheres in Euclidean
Spaces” by Stephen Smale in the Annals of Mathematics Vol. 69, No. 2, March
1959, pg 327.
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