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33. 5/8

33.1. Unique factorization domains We say that an integral domain R is a
unique factorization domain, or UFD, iff every element has nonzero non-unit
element has some irreducible factorization, and has uniqueness of the same.

Theorem 33.1. Let R be an integral domain. Then the following are equivalent:
(1) R is a UFD.
(2) Every chain of principal ideals in R has finite length, and every irreducible

element of R has the prime divisor property.

Proof. The previous two theorems show that (2) implies (1). Now suppose R is
a UFD.

Suppose a1R � a2R � : : : is a chain of principal ideals in R. We must show
that it has finite length. It is enough to assume that none of the ideals are f0g
or R. Since aiC1 must divide ai , the existence and uniqueness of irreducible
factorizations for nonzero non-unit elements implies that some irreducible factor-
ization of aiC1 occurs as a sub-product of some irreducible factorization of ai .
But there are finitely terms in any irreducible factorization of a1. Therefore only
finitely many of the ideals aiR can differ from their successors aiC1R.

Suppose a 2 R is irreducible, and suppose a divides bc. We must show that a
either divides b or divides c.

If bc D 0, then either b D 0 or c D 0 because R is an integral domain, and
certainly a divides 0. So suppose bc ¤ 0. We can write bc D ax for some
x 2 R. Therefore, a times any irreducible factorization of x gives an irreducible
factorization of bc. At the same time, so does the product of any irreducible
factorizations of b and of c. So by uniqueness, a must occur up to units in at
least one of the latter two factorizations, hence divides either b or c.

Corollary 33.2. Z and ZŒi � and ZŒ
p
�2� and ZŒ!� are UFDs.

Proof. Each of these rings is an integral domain with a size function given by
the corresponding norm N, so they are Euclidean domains. So by Theorem 31.5,
their irreducible elements have the prime divisor property. At the same time, the
norm N satisfies

ˇ divides ˛ H) N.ˇ/ divides N.˛/ H) N.ˇ/ � N.˛/;

so Example 32.3 shows that in these rings, chains of principal ideals have finite
length.

Corollary 33.3. For any field F , the polynomial ring F Œx� is a UFD.

Proof. In place of the norm N, we use the degree function, observing that

g.x/ divides f .x/ H) degg.x/ � degf .x/:

The rest is the same as the previous proof.

Remark 33.4. As it turns out, F Œx; y� is a UFD for any field F . However, since
it is neither a Euclidean domain nor a PID, one has to check directly that every
irreducible element of F Œx; y� has the prime divisor property, which is harder.
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33.2. Numbers versus polynomials We have seen that the polynomial rings
F Œx� are very similar to the rings Z, ZŒi �, etc., even though their elements are
not numbers per se. There is a kind of dictionary or Rosetta stone comparing
algebraic integers and polynomials:

numbers polynomials
Z 3 n F Œx� 3 f

Q D frational numbersg F.x/ D frational functions of xg
log jnj deg.f /
f˙1g F �

prime numbers irreducible polynomials
long division of integers long divison of polynomials
ZŒ
p
d� F Œx1=2�

ZŒ˛� F Œx; y�=.g.x; y//

This Rosetta stone was pointed out in the early 20th century by the mathematician
André Weil. It is the beginning of a subfield called arithmetic geometry, of which
I will try to give some glimpse on Friday.

33.3. Bonus material to the lecture It turns out that ZŒi � and ZŒ
p
�2� and ZŒ!�

are all quotient rings of the polynomial ring ZŒx�.
Recall that for any ring R, there is always a unique ring homomorphism

Z! R. It must send 1Z 7! 1R, and that determines where every other integer
goes. By comparison, a ring homomorphism ZŒx�! R is determined by where
it sends x, and this choice can be made freely.

In particular, there is a ring homomorphismˆ W ZŒx�! ZŒi � that sends n 7! n

for every integer n, and sends x 7! i . In other words,

ˆ.f .x// D f .i/:

What is the kernel of ˆ? It is precisely the set of polynomials f .x/ 2 ZŒi � that
have i as a root, when we allow f to take imaginary arguments. This set is the
principal ideal formed by the multiples of x2 C 1. Altogether,

x 7! i W ZŒx�! ZŒi � is surjective with kernel .x2 C 1/;

x 7!
p
d W ZŒx�! ZŒ

p
d� is surjective with kernel .x2 � d/ (d squarefree);

x 7! ! W ZŒx�! ZŒ!� is surjective with kernel .x2 C x2 C 1/:

We can rewrite, e.g., the first statement as the existence of a ring isomorphism

ZŒi �=.x2 C 1/! ZŒi �:

This game can be also be played starting from a field instead of Z. For instance,
there is a ring isomorphism

RŒi �=.x2 C 1/! C:
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And we also get interesting results if we use quotients by non-principal ideals:
There are ring isomorphisms

.Z=3Z/Œx�=.x2 C 1/  ZŒx�=.3; x2 C 1/ ! ZŒi �=3ZŒi �:

In summary, we can build up all of the rings interesting to number theory by
starting from familiar rings like Z, Q, or Z=mZ, then adjoining indeterminate
variables, then quotienting by ideals to assign values to those variables. This is
called giving presentations of the rings by generators and relations.
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34. 5/10

34.1. Our goal today is to sum up our study of ring theory by explaining an
analogue of unique prime factorization for ideals.

34.2. Algebraic numbers and algebraic integers The leading term of a nonzero
polynomial in one variable is its term of highest degree. Such a polynomial is
monic iff the coefficient of its leading term is 1.

A number ˛ 2 C is algebraic iff it is a root of a nonzero polynomial with
integer coefficients, or equivalently, of a monic nonzero polynomial with rational
coefficients.

More strongly, ˛ is an algebraic integer iff it is a root of a monic polynomial
with integer coefficients. This means that some positive power of ˛ can be
expressed as an integer linear combination of smaller powers of ˛.

Example 34.1. Any rational number is an algebraic number. A rational number
˛ is an algebraic integer if and only if ˛ is an integer in the usual sense. To
see the “only if” direction, note that if ˛ has a denominator greater than 1, then
there’s no way for a positive power of ˛ to be an integer.

Example 34.2. Consider the ring

Q.
p
d/ D fx C y

p
d j x; y 2 Qg:

The use of parentheses in place of brackets is a conventional notation to indicate
that Q.

p
d/ is actually a field. Indeed, if x C y

p
d ¤ 0, then

1

x C y
p
d
D
x � y

p
d

x2 � dy2

D
x

x2 � dy2
C

�
�

y

x2 � dy2

�
p
d 2 Q.

p
d/:

The fields Q.
p
d/ are called the quadratic number fields. They are classified as

real or imaginary based on whether d is positive or negative.
Any element ˛ 2 Q.

p
d/ is an algebraic number. By contrast, ˛ is algebraic

integer if and only if either of the following hold:

(1) d � 1 .mod 4/ and ˛ 2 ZŒ1C
p
d

2
�.

(2) d 6� 1 .mod 4/ and ˛ 2 ZŒ
p
d�.

This is proved in Stillwell, §10.4.

34.3. Number fields and their rings of integers The set of all algebraic numbers
forms a field, which we denote

NQ � C:

A number field is a field K � NQ such that, for some finite list of elements
1; : : : ; k 2 K, we can write

K D fa11 C � � � C akk j a1; : : : ; ak 2 Qg:
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In fancier language, this means the field K is finite-dimensional as an abstract
vector space over the field Q.

The set of all algebraic integers forms a subring

NZ � NQ:

The ring of integers of a number field K is

OK D K \ NZ;

or in words, the subring of K formed by the elements that are algebraic integers.

Example 34.3. Q is a number field. Its ring of integers is OQ D Z.

Example 34.4. Any quadratic number field Q.
p
d/ is a number field, since we

can take f1; 2g D f1;
p
dg above. Example 34.2 says that

OQ.
p
d/ D

(
ZŒ1C

p
d

2
� d � 1 .mod 4/

ZŒ
p
d� d 6� 1 .mod 4/

In particular, ZŒ!� is the ring of integers of Q.
p
�3/.

Example 34.5. Let �n D e2�i=n. Then the field

Q.�n/ D fa0 C a1�n C � � � C an�1�n�1n j a0; a1; : : : ; an�1 2 Qg

that appeared on Problem Set 6 is a number field. With some work, one can show
that OQ.�n/ D ZŒ�n�.

Example 34.6. There is a number field

Q.
p
2;
p
3/ D fa0 C a1

p
2C a2

p
3C a3

p
6 j a0; a1; a2; a3 2 Qg:

As a ring, it is isomorphic to QŒx; y�=.x2 � 2; y2 � 3/. With some work, one
can show that OQ.

p
2;
p
3/ D ZŒ

p
2;
p
3�.

Remark 34.7. For any integral domain R, there is always a field Frac.R/ called
the field of fractions of R that captures the intuitive notion of the “smallest”
field containing R as a subring. More precisely: There is an injective ring
homomorphism � W R! Frac.R/, and any other injective ring homomorphism
R! F , where F is a field, can be factored as

R
�
�! Frac.R/! F

in a unique way.
In particular, it turns out that Frac.OK/ can be identified with K. For instance,

Frac.ZŒ!�/ D Q.
p
�3/. It is possible for subrings of a given R to have the same

field of fractions as R: For instance, Frac.ZŒ
p
�3�/ D Q.

p
�3/ as well.
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34.4. We have seen that ZŒ
p
d� can fail to have unique prime factorization, but

that this is sometimes fixed by enlarging it to OQ.
p
d/. For instance, ZŒ

p
�3� is

not a UFD, but OQ.
p
�3/ D ZŒ!� is a UFD.

But OQ.
p
d/ can still fail be a UFD. In OQ.

p
�5/ D ZŒ

p
�5�, we saw the

example 6 D 2 � 3 D .1 �
p
�5/.1C

p
�5/.

It turns out that even if OK fails to have unique prime factorization for nonzero
elements, it always retains a notion of unique prime factorization for nonzero
ideals. This is actually the origin of the name “ideal”: It stands for “ideal
number”, in the sense that ideals of OK behave the way that the numbers in OK

would behave in an ideal world.

34.5. Product ideals In order to discuss factorization of ideals, we need notions
of products and primality for ideals. If I and J are ideals of the same ring, then
their product is defined as

I � J D fx1y1 C � � � C xkyk j xi 2 I; yi 2 J g:

Note that this can be different from—more precisely, larger than—the set fxy j
x 2 I; y 2 J g, which isn’t always closed under addition.

34.6. Prime ideals To motivate the definition of primality for ideals, recall the
prime divisor property for an element a 2 R: It’s the condition that

a divides bc H) either a divides b or a divides c:

In general, we know that a divides x if and only if x 2 aR. So the above
condition is equivalent to:

bc 2 aR H) either b 2 aR or c 2 aR:

In general, if I � R is an arbitrary ideal, then we say that I is prime iff I ¤ R
and ab 2 I implies that either a 2 I or b 2 I (or both). (Note that we do allow
the zero ideal f0g to be prime, if it satisfies the definition.)

This definition ensures that the principal ideal aR is prime if and only if a is a
non-unit with the prime divisor property. For instance, aZ is a prime ideal of Z
if and only if a is prime.

Remark 34.8. We see that

R=I is an integeral domain
” ab C I D I implies aC I D I or b C I D I in R
” ab 2 I implies a 2 I or b 2 I in R:

Thus I is prime if and only if R=I is an integral domain.

We can finally state the unique prime factorization theorem for ideals of rings
of integers of number fields.
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Theorem 34.9 (Dedekind). Let K be a number field. Then any nonzero ideal
I � OK admits a factorization

I D P1 � � �P2 � � �Pk;

where the Pi are prime ideals of OK that may repeat. Moreover, this factorization
is unique up to reordering.

Example 34.10. In R D OQ.
p
�5/ D ZŒ

p
�5�, the element 2 is irreducible.

Nonetheless, the principal ideal 2R can be factored further into non-principal
ideals!: Explicitly,

.2; 1 �
p
�5/ � .2; 1C

p
�5/

D .2RC .1 �
p
�5/R/ � .2RC .1C

p
�5/R/

D .2 � 2/RC .2 � .1 �
p
�5//RC .2 � .1C

p
�5//R

C ..1 �
p
�5/ � .1C

p
�5//R

D 4RC .2 � 2
p
�5/RC .2C 2

p
�5/RC 6R

D 2R:

This is why Dedekind’s theorem does not contradict the failure of R to be a UFD.


