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30. 5/1

30.1. Last time we began to discuss ideals. Recall that an ideal of R is a special
kind of additive subgroup of R: It is a subgroup that is moreover contagious
under multiplication.

Example 30.1. If R is any ring and a 2 R is any element, then

aR D fa � x j x 2 Rg;

the set of multiples of a, is an ideal of R. Indeed, it is an additive subgroup, and
the associativity identity .a �x/ �y D a � .x �y/ shows that aR is contagious under
multiplication. We say that aR is the principal ideal generated by a. Stillwell
writes .a/ for aR.

Thus, mZ is an ideal of Z for any integer m, and �ZŒi � is an ideal of ZŒi � for
any Gaussian integer �, and so on.

Example 30.2. In particular, R D 1R and f0g D 0R are ideals in any ring R.

Example 30.3. Z is not an ideal of ZŒi �. Even though it is a subgroup under
addition, it is not contagious under multiplication, because, for instance, i D 1 � i
and 1 2 Z, but i … Z.

Similar reasoning shows that mZ is not an ideal of ZŒi �, and that Z is not an
ideal of ZŒ!� or Q or R or C.

30.2. We claimed last time that we would show:

Theorem 30.4. If I � R is an ideal, then R=I forms a ring and the additive
group homomorphism R! R=I is a ring homomorphism.

The easy part is saying what the ring structure has to be. We already know
that R=I forms a group under the addition law

.x C I /C .y C I / :D .x C y/C I:

We want to define the multiplication law to be

.x C I / � .y C I / :D x � y C I:

The whole point is to check that this definition is consistent, or “well-defined”.

Proof. To show that the multiplication above is well-defined, we need to make
sure its definition is independent of how we choose the coset representatives x
and y. So suppose that x0 C I D x C I and y 0 C I D y C I . Then x0 2 x C I
and y 0 2 I , so there must be elements a; b 2 I such that x0 D x C a and
y 0 D y C b. Now

.x0 C I / � .y 0 C I / D x0y 0 C I

D .x C a/.y C b/C I

D xy C xb C ay C ab C I

D xy C I by contagiousness of I !
D .x C I / � .y C I /;
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so the multiplication is indeed independent of the choice of representatives.
Checking that the multiplication is associative, commutative, distributes over

addition, and admits the identity element 1R C I is routine. Checking that
R! R=I given by x 7! x C I is a ring homomorphism is also routine.

Example 30.5. We saw earlier that the quotient group ZŒi �=Z cannot form a ring
in which 1C Z is the multiplicative identity. Let’s demonstrate this in another
way, by showing that the multiplication law .x C Z/ � .y C Z/ D xy C Z is not
well-defined.

Observe that i C Z D .1C i/C Z. Under the proposed multiplication, we
would simultaneously have

.i C Z/ � .i C Z/ D �1C Z D Z;
.i C Z/ � .1C i C Z/ D i � 1C Z D i C Z:

But since i … Z, we know that Z ¤ i C Z as cosets, a contradiction.

30.3. Earlier we introduced principal ideals. An easy generalization: For any
finite list of elements a1; a2; : : : ; ak 2 R, the set of linear combinations

a1RC a2RC � � � C akR D fa1x1 C a2x2 C � � � C akxk j x1; x2; : : : ; xk 2 Rg

is an ideal of R. Sometimes it is convenient to abbreviate by writing

.a1; a2; : : : ; ak/ :D a1RC a2RC � � � C akR;

as Stillwell does, provided that we make clear that this is an ideal, not a vector
of elements of R. If I D .a1; a2; : : : ; ak/, then we say that a1; a2; : : : ; ak is a
generating set for I .

We can now restate one of the very first theorems we proved, on Feb 10, in the
language of ideals:

Theorem 30.6. For any a; b 2 Z, not both zero, we have

aZC bZ D gcd.a; b/Z

as ideals of Z. More generally, if a1; a2; : : : ; ak 2 Z are not all zero, then

a1ZC a2ZC � � � C akZ D gcd.a1; a2; : : : ; ak/Z

as ideals of Z.

Proof. This combines Theorem 3.1 and Theorem 3.2.

This theorem can be restated as follows: If an ideal I � Z admits a finite
generating set, then I is actually a principal ideal. In fact, every ideal of Z is a
principal ideal, but there’s a cleaner, more general way to show this namely, by
showing that this is a consequence of long division.
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30.4. Principal ideals as lattices Stillwell points out in §11.6:
In a ring of complex quadratic integers like ZŒi � or ZŒ

p
�2� or ZŒ!�, the

nonzero principal ideals look like rescaled and rotated versions of the ring itself,
when they are drawn in the complex plane. For instance, if ˛ 2 ZŒ!� is an Eisen-
stein integer, then ˛ZŒ!� is a rescaled and rotated copy of the triangular/rhombic
lattice ZŒ!�.

30.5. Non-principal ideals Ideals that aren’t principal may still look like lat-
tices, but will have the wrong “shape”.

Example 30.7. We claim that in ZŒ
p
�3�, the ideal

.2; 1C
p
�3/ D f2˛ C .1C

p
�3/ˇ j ˛; ˇ 2 ZŒ

p
�3�g

is not principal. It looks like:

We notice that while ZŒ
p
�3� is a rectilinear lattice, the ideal .2; 1C

p
�3/ is a

triangular/rhombic lattice. So this is an informal visual proof that .2; 1C
p
�3/

isn’t principal.
To make the proof rigorous, we can use the picture to guess, and then calculate,

a simplified expression for the ideal. Namely, it turns out that

.2; 1C
p
�3/ D f2mC .1C

p
�3/n j m; n 2 Zg:

If this were principal, say .2; 1 C
p
�3/ D ./, then  would be a common

divisor of 2 and 1C
p
�3. Using norms and casework, one can check that this

forces  D ˙1. But the work above shows˙1 … .2; 1C
p
�3/.
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31. 5/3

31.1. Warm-up: Determine all ideals of the following rings.

(1) Z.
(2) Z=6Z.
(3) C.
(4) R � R, under coordinatewise addition and multiplication.

Note that there is an isomorphism of additive groups from C onto R � R, given
by x C yi 7! .x; y/, but this is definitely not an homomorphism of rings.

31.2. Primes and irreducibility Today, we’ll use ideals to study primes.
Stillwell page 183 has a slight omission, but meant to define prime elements

of general rings as follows: An element a 2 R is prime, or irreducible, iff
it is not a unit and

a D xy in R H) either x 2 R� or y 2 R� (or both):

The reason that other authors prefer the term irreducible is to avoid confusion
with the prime divisor property. To wit: We say that a satisfies the prime divisor
property iff

a divides bc in R H) either a divides b or a divides c (or both):

In general rings, both irreducibility and the prime divisor property can behave in
pathological ways. Neither necessarily implies the other.

We might ask: In which rings does irreducibility imply the prime divisor
property? In which rings does the converse hold? The answers will lead us to be
interested only in the primes of rings “like” Z.

31.3. Integral domains We say that a ring R is an integral domain iff R ¤ f0g
and, for any elements x; y 2 R such that xy D 0, we must have either x D 0 or
y D 0.

Example 31.1. Z is an integral domain. Fields, like C, are integral domains. By
contrast, Z=6Z is not an integral domain because 2 � 3 � 0 .mod 6/, and R � R
is not an integral domain because .1; 0/ � .0; 1/ D .0; 0/.

A nice thing about integral domains: Even when a nonzero element lacks an
inverse, you can still cancel it from both sides of an equation.

Lemma 31.2 (Cancellation). Let R be an integral domain. If a 2 R is nonzero,
then ax D ay implies x D y for all x; y 2 R.

Proof. Rearranging, ax D ay implies a.x � y/ D 0. Since a is nonzero, we
require x � y D 0.

Proposition 31.3. Let R be an integral domain. If a 2 R is neither zero nor a
unit, and satisfies the prime divisor property, then a is irreducible.
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Proof. We must show that if a D xy, then either x 2 R� or y 2 R�. Tauto-
logically, a divides xy, so by the prime divisor property, either a divides x or
a divides y. Without loss of generality, suppose a divides x. Then x D az for
some z 2 R. Then a D xy D azy. By cancellation, 1 D zy, which proves that
y 2 R�.

Example 31.4. The ring ZŒ
p
�3� is an integral domain, so every element of

ZŒ
p
�3� that has the prime divisor property is irreducible.

By contrast, 2 is irreducible in ZŒ
p
�3�, but does not satisfy the prime divisor

property. Indeed: 2 divides 4 D .1 C
p
�3/.1 �

p
�3/, but does not divide

either 1C
p
�3 or 1 �

p
�3.

31.4. Euclidean and principal ideal domains We follow Artin’s Algebra, then
explain later how the terminology relates to Stillwell’s. A size function on a ring
R is a function

� W R � f0g ! N0 (where N0 D N [ f0g)

such that for all a; b 2 R with b ¤ 0, there exist q; r 2 R such that

a D qb C r and either r D 0 or �.r/ < �.b/:

We say that an integral domain R is Euclidean iff a size function on R exists. We
say that R is a principal ideal domain, or PID, iff every ideal of R is principal.

Theorem 31.5. Let R be an integral domain. Then

R is Euclidean
(1)
H) R is a PID

(2)
H)

�
irreducibles in R have the

prime divisor property

�
:

Proof of (1). Suppose R is Euclidean with size function � . We must show that
if I � R is an ideal, then I D aR for some a 2 R. If I D f0g, then we can take
a D 0, so suppose I ¤ f0g. Let

S D f�.x/ j x 2 I � f0gg � N0:

Since I is not the zero ideal, S is nonempty. By well-ordering, we can choose
a 2 I such that �.a/ is minimal. We claim that every element of I is a multiple
of a. Indeed, for any x 2 I , we can write x D qa C r where either r D 0

or �.r/ < �.a/. But �.r/ < �.a/ contradicts minimality of �.a/, because
r D x � qa 2 I . Therefore r D 0, and a divides x.

Proof of (2). Suppose that R is a PID. We must show that if a 2 R irreducible
and divides bc, then a either divides b or divides c. Suppose a does not divide b.
Since R is a PID, we can write

aRC bR D xR

for some x 2 R. Note that a; b 2 xR, meaning x divides both a and b. But a
is irreducible, so either x 2 R� or x D ua for some u 2 R�. The latter would
imply that a divides b, a contradiction, so we must have x 2 R�.
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Now xR D 1R D R. Therefore

aRC bR D R:

Rescaling both sides by c, we get

acRC bcR D cR:

But a divides bc, so the left-hand side is contained in aR. Therefore c 2 aR,
meaning a divides c.

31.5. Our earlier theorems about long division imply that:
(1) a 7! jaj is a Euclidean function on Z.
(2) N.x C yi/ D x2 C y2 is a Euclidean function on ZŒi �.
(3) N.x C y

p
�2/ D x2 C 2y2 is a Euclidean function on ZŒ

p
�2�.

(4) N.x C y!/ D x2 � xy C y2 is a Euclidean function on ZŒ!�, where
! D e2�=3.

But note, for instance, that Theorem 2.3 is different from—in fact, strictly
stronger than—the statement that a 7! jaj is a size function.

Our notion of a size function is different from Stillwell’s notion of a Euclidean
function (which is not standard). However, a Euclidean function on R in the
sense of Stillwell always restricts to a size function on R � f0g.
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32. 5/5

32.1. Polynomial rings Last time we introduced size/Euclidean functions, and
commented that Stillwell’s definition was different. Why do most authors define
them like we do, and not like Stillwell does? It’s because they want to include
the following example:

Example 32.1. Let R be any ring. The polynomial ring in x over R is

RŒx� D fpolynomials in x with coefficients in Rg:

The ring operations are the usual addition and multiplication of polynomials.
You can check that if R is an integral domain, then RŒx� is an integral domain as
well.

Suppose that F is a field, a fortiori an integral domain. Due to polynomial
long division, the degree function deg W F Œx� � f0g ! N0 is a size function on
F Œx�. Thus F Œx� is a Euclidean domain.

By the preceding example and Theorem 31.5, F Œx� is a PID. Let

F Œx; y� D F Œx�Œy�;

the ring of polynomials in two variables x and y. Do you think F Œx; y� is a PID?

32.2. Today we study how elements of general integral domains factor into
irreducible elements. If R is an integal domain and a 2 R, then an irreducible
factorization of a is an expression

a D p1 � � �pk;

where p1; : : : ; pk 2 R are irreducible and may include repetitions.
Define an (ascending) chain of ideals of R to be a sequence of inclusions

I1 � I2 � : : :, where I1; I2; : : : are all ideals of R. The length of a chain is the
number of inclusions that are strict.

Theorem 32.2. Let R be an integral domain. If every chain of principal ideals in
R has finite length, then every nonzero, non-unit element of R has an irreducible
factorization.

Proof. We show the contrapositive. Let a0 2 R. In general, suppose that ai 2 R
is neither zero nor a unit, yet fails to have an irreducible factorization. Since ai
cannot be irreducible itself, we must have ai D xy, where x; y 2 R are not units.
Moreover, since ai is nonzero, x and y are nonzero. So at least one must fail to
have an irreducible factorization: say, x.

We have aiR � xR. The inclusion must be strict because if xR � aiR, then
ai divides x, meaning ai D xy D aizy for some z 2 R; after cancelling ai ,
this forces y to be a unit, a contradiction. So taking aiC1 D x gives a strict
inclusion aiR ⊊ aiC1R. By induction, we get a chain of principal ideals of
infinite length.
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Example 32.3. The finiteness condition in Theorem 32.2 may seem strange, but
it is something very closely related to the well-ordering property of N0.

As a demonstration of how this works, let’s show that if R is a Euclidean
domain with a size function � for which

b divides a H) �.b/ � �.a/;

then every chain of principal ideals in R has finite length. Let � be the size
function satisfying the stated property. Then

aR � bR H) �.a/ � �.b/;

which in turn implies

aiR D aiC1R ” �.ai/ D �.aiC1/:(32.1)

Now, if a1R ⊊ a2R ⊊ : : : is a chain of principal ideals, then the numbers
�.ai/ form a decreasing sequence of elements of N0. By well-ordering, they
must eventually stop at some minimal value �.a`/. By (32.1), this means the
inclusions in the chain become equalities after the `th step.

Example 32.4. As it turns out, F Œx; y� is not a PID. For instance, .x; y/ is not
a principal ideal. However, every chain of principal ideals in F Œx; y� has finite
length. The key in the proof is to show that if .f / ⊊ .g/ is a strict inclusion of
nonzero principal ideals in F Œx; y�, then deg.f / > deg.g/. Note that deg is not
a size function on F Œx; y�, unlike the situation for F Œx�.

32.3. We say that a 2 R has uniqueness of irreducible factorization iff, given
any two irreducible factorizations

a D p1 � � �pk D q1 � � � q`;

we can reindex the qi in such a way that k D ` and, for some units ui 2 R�, we
have uipi D qi for all i .

Theorem 32.5. Let R be an integral domain. If every irreducible element of R
satisfies the prime divisor property, then every element of R has uniqueness of
irreducible factorization.

Proof. Suppose p1 � � �pk D q1 � � � q` are two irreducible factorizations of the
same element of R. If max.k; `/ D 1, then we’re done. Otherwise, by the prime
divisor property and induction, we can show that pk must divide at least one of
the qj .

Without loss of generality, say it is q`. Since q` is irreducible and pk is not
a unit, we must have ukpk D q`. So after replacing pk�1 with u�1

k
pk�1, we

obtain an identity of irreducible factorizations p1 � � �pk�1 D q1 � � � q`�1. Since
max.k � 1; ` � 1/ < max.k; `/, we can use induction to conclude.

Next time, we’ll finish this whole discussion by studying Theorem 32.2,
Example 32.3, and Theorem 32.5 in conjunction.


