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26. 4/19

26.1. The notes for this day are longer than usual, to include supplementary
material that would have been covered on Patriots’ Day.

26.2. Last week, we learned an efficient algorithm to determine whether an
integer a is a quadratic residue modulo an odd prime p. What about the quadratic
residues modulo m for composite m 2 N?

As usual, the prime 2 causes complications, so for now, let’s stick to odd m.
The smallest composite odd number is m D 9. We compute:

x .mod 9/ 0 ˙1 ˙2 ˙3 ˙4

x2 .mod 9/ 0 1 4 0 7

So the nonzero quadratic residues modulo 9 are 1; 4; 7. We notice that these
remainders form an arithmetic progression: In fact, they are precisely the remain-
ders mod 9 that are congruent to 1 modulo 3.

At the same time, the only nonzero quadratic residue modulo 3 is 1. So for
a 6� 0 .mod 3/, we find that a is a QR modulo 9 if and only if a is a QR modulo
3. The analogue is true for other odd primes, and also for higher powers:

Theorem 26.1. If p > 0 is an odd prime and k 2 N and a 6� 0 .mod pk/, then

a is a QR modulo pkC1 ” a is a QR modulo pk:

26.3. Which direction is easier to prove? If x2 � a .mod pkC1/, then x2 � a
.mod pk/ because divisibility by pk is weaker than divisibility by pkC1. But the
converse fails: 22 � 1 .mod 3/, but 22 6� 1 .mod 9/. Nonetheless:

Lemma 26.2. If a 6� 0 .mod pk/, and xk is a solution to

x2k � a .mod pk/:

then there is some integer b such that xkC1 D xk C bpk is a solution to

x2kC1 � a .mod pkC1/:

Proof. If xk � 0 .mod pk/, then a � 0 .mod pk/, so we may assume that
xk 6� 0 .mod pk/ in what follows. We expand

x2kC1 D x
2
k C 2xkbp

k
C b2p2k � x2k C 2xkbp

k .mod pkC1/;

using the fact that 2k � k C 1. So it suffices to construct some b such that

x2k C 2xkbp
k
� a .mod pkC1/:

Since p is odd and xk 6� 0 .mod pk/, we can invert 2xk modulo pkC1: That is,
2xku � 1 .mod pkC1/ for some integer u. So it suffices to construct b so that

bpk � .a � x2k/u .mod pkC1/:

Such b exists, because the right-hand side vanishes modulo pk.
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26.4. Hensel’s lemma You can think of the argument above as studying the
solutions of x2 � a D 0 using “Taylor expansion in p”. The argument can be
generalize to show:

Theorem 26.3 (Hensel). Let p > 0 be prime, and let f .x/ be a polynomial with
integer coefficients. If there exist k 2 N and an integer xk such that

f .xk/ � 0 .mod pk/;
f 0.xk/ 6� 0 .mod p/;

then there exists some integer xkC1 such that

f .xkC1/ � 0 .mod pkC1/:

Explicitly, if f 0.xk/u � 1 .mod p/, then we set xkC1 D xk � f .xk/u.

26.5. The discussion above shows how to deal with quadratic residues modulo
odd prime powers. As for other odd composite numbers:

Theorem 26.4. If m D m0m00, where m0 and m00 are relatively prime, and a 6� 0
.mod m/, then

a is a QR modulo m ” a is a QR modulo m0 and modulo m00:

Proof. By the Chinese Remainder Theorem, .Z=mZ/� under multiplication is
isomorphic to .Z=m0Z/��.Z=m00Z/� under coordinate-wise multiplication.

So we can always reduce the case of an odd composite number to the case of
an odd prime power, and from there, to the case of an odd prime. It’s also easy
to do 2m, 4m, and 8m for odd m, since 1 is the only nonzero quadratic residue
modulo 2, 4, and 8.

Example 26.5. To check if something is a quadratic residue modulo 90, we just
need to check modulo 2 and 5 and 9. To check the modulo-9 case, we just need
to check modulo 3.

Higher powers of 2 are complicated, and I don’t want to spend time on them
in this course. But the theory has been worked out. For instance, it’s known that
if a � 1 mod 8, then a is a QR modulo 2k for all k 2 N.

26.6. Adjoining solutions We’ve seen that the equation x2 � a � 0 .mod m/
does not always have solutions. The answer to whether or not solutions exist
involves a rich interplay between the arithmetic of a and of m.

But this situation already happens in a more familiar number system: namely,
the set of real numbers R. We cannot solve x2 C 1 D 0 for a real number x.
Rather, we invent the complex numbers by adjoining a solution of this equation,
which we call i , to the number system R.

We want to extend the operations of addition and multiplication from R to
C, so that these operations remain associative and commutative, and so that
multiplication still distributes over addition. Everything works if we define C
as the set of formal sums x C yi , where x; y 2 R, and define our operations in
terms of the distributive property. The big question is: Can we do a similar thing
with the sets Z=mZ?
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26.7. Rings Up till now, I have used the term “number system” in an informal
way, but now we are forced to fix a precise definition.

Namely, a commutative ring is a set R together with two binary operations,
called its additionC and its multiplication � , such that:

(1) C and � are associative.
(2) C and � are commutative. That is, x C y D y C x and x � y D y � x.
(3) There is an element 0 2 R such that x C 0 D x for all x 2 R.
(4) There is an element 1 2 R such that x � 1 D x for all x 2 R.
(5) For all x 2 R, there is an element �x 2 R such that x C .�x/ D 0.
(6) For all x; y; z, we have

x � .y C z/ D x � y C x � z;

.y C z/ � x D y � x C z � x:

That is, � distributes overC on both the left and the right.
The axioms above imply that R forms an abelian group under C. However, it
need not form a group under � , because we do not require that every element of
R have an inverse under � .

26.8. Henceforth, we will refer to commutative rings simply as rings. This
is a serious abbreviation: In the literature, the term ring usually means the
multiplication � is not required to be commutative. For intance, the set of n � n
real matrices forms a ring in which multiplication is not commutative. However,
in this course, all rings we study will be commutative.

26.9. When we study groups, the group operation could be addition, multiplica-
tion, or even something else. When we study rings,C always denotes addition,
and � always denotes multiplication. So we will not mention these symbols
whenever we introduce a new ring.

26.10. We have seen many rings in this course:

Z; Q; R; C; Z=mZ; ZŒi �; ZŒi �=˛ZŒi �; ZŒ!�; : : :

By contrast, mZ is not a ring when m > 1: only a group under addition.

26.11. Units and fields An element x 2 R is invertible, or a unit, iff it does
have an inverse under multiplication: that is, an element x�1 2 R such that
x � x�1 D 1.

Example 26.6. You can check that x � 0 D 0 for all x 2 R. Thus the only case
where 0 is a unit is when R D f0g.

The set of units of R forms a group under multiplication, which we denote by
R�. This notation generalizes our earlier notation .Z=mZ/�.

We say that R is a field iff R ¤ f0g and every nonzero element is invertible:
that is, R� D R � f0g. We immediately see that Q;R;C are fields. But if p is a
prime, then the ring Z=pZ also forms a field. In the literature, when people want
to emphasize this fact, they will often write Fp in place of Z=pZ.
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Suppose ˛ is a Gaussian prime. Is it true that ZŒi �=˛ZŒi � forms a field? It
turns out that the answer is yes. One of the non-book problems on Problem Set 5
asks you to explore this fact for various ˛.

26.12. Recall that �1 is not a quadratic residue modulo 3. That is, there is no
integer x such that x2 � �1 .mod 3/. Yet there are indeed Gaussian integers
such that x2 � �1 .mod 3/: namely, x D ˙i .

In other words, we cannot solve x2 C 1 D 0 in the ring Z=3Z, but we can in
the larger ring ZŒi �=3ZŒi �. This is exactly analogous to how we cannot solve this
equation in R, but can in C.

What about ZŒi �=5ZŒi �? Here there are actually four distinct solutions to
x2 C 1 D 0: namely, x � ˙2;˙i .mod 5/. This hints at a serious structural
difference between ZŒi �=3ZŒi � and ZŒi �=5ZŒi �. We will find that the former is a
field, but the latter is not.


