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23. 4/10

23.1. The Legendre symbol Let p be a positive odd prime.
Previously, we discussed how the structure of nonzero QRs and QNRs modulo

p under multiplication is analogous to the structure of 1 and �1 under multipli-
cation. To make this precise, define the Legendre symbol modulo p to be the
function �

�

p

�
W .Z=pZ/� ! f˙1g

for which �
a

p

�
D

�
1 a is a QR mod p;
�1 a is a QNR mod p:

(Don’t confuse this notation with a fraction!) The left-hand side is usually
pronounced “a on p”.

We showed on March 17 that the Legendre symbol is multiplicative:�
ab

p

�
D

�
a

p

��
b

p

�
for all a; b 2 .Z=pZ/�.

Therefore, to calculate
�
a
p

�
for an arbitrary congruence class a C pZ, it’s

enough to calculate
�
˙1
p

�
and

�
q

p

�
for prime q.

23.2. Certainly,
�
1
p

�
D 1. More interestingly, we can restate the equivalence

�1 is a QR modulo p ” p � 1 .mod 4/

as the identity �
�1

p

�
D .�1/

p�1
2 ;

because p�1

2
is even when p � 1 .mod 4/, and odd when p � 3 .mod 4/. In

the same way, we can restate the equivalences

�2 is a QR modulo p ” p � 1; 3 .mod 8/;
�3 is a QR modulo p ” p � 1 .mod 3/

as the identities �
�2

p

�
D .�1/

.p�1/.p�3/
8 ;�

�3

p

�
D

�p
3

�
;
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respectively. Since
�
�1
p

�
D .�1/

p�1
2 , these are equivalent to�

2

p

�
D

�
�1

p

��
�2

p

�
D .�1/

p2�1
8 ;�

3

p

�
D

�
�1

p

��
�3

p

�
D .�1/

p�1
2

�p
3

�
:

23.3. Quadratic reciprocity What happens if we do more calculations?

Example 23.1. We list the odd primes p ¤ 5, and box those for which 5 is a
quadratic residue modulo p:

3; 7; 11 ; 13; 17; 19 ; 23; 29 ; 31 ; 37; 41 ; 43; 47; 53; 59 ; : : :

They are precisely the primes whose last digit is either 1 or 9. Thus they are
precisely the odd primes congruent to 1 or 4 modulo 5.

In general, we are led to conjecture:�
5

p

�
D

�p
5

�
;�

7

p

�
D .�1/

p�1
2

�p
7

�
;�

11

p

�
D .�1/

p�1
2

� p
11

�
;�

13

p

�
D

� p
13

�
;

: : :

So we are led to conjecture that for q ¤ p a positive odd prime,

�
q

p

�
D

8<:
�
p

q

�
q � 1 .mod 4/;

.�1/
p�1

2

�
p

q

�
q � 3 .mod 4/

D

8<:
�
p

q

�
p � 1 .mod 4/ or q � 1 .mod 4/;

�

�
p

q

�
p; q � 3 .mod 4/:

We can rewrite the last formula as:

Theorem 23.2 (Quadratic Reciprocity). For positive odd primes p ¤ q, we have�
q

p

�
D .�1/

p�1
2
�
q�1

2

�
p

q

�
:
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23.4. The law of quadratic reciprocity, combined with the multiplicativity of
the Legendre symbol, is usually the fastest way to determine if an integer yields
a quadratic residue modulo p. We may need the “supplementary” laws�

�1

p

�
D .�1/

p�1
2 ;�

2

p

�
D .�1/

p2�1
8

to finish the job.

Example 23.3. Two ways to determine whether �43 is a QR modulo 163:

(1) First compute�
�43

163

�
D

�
�1

163

��
43

163

�
D .�1/

162
2

�
43

163

�
D �

�
43

163

�
:

Next observe that 43 is prime, and compute�
43

163

�
D .�1/

162�42
4

�
163

43

�
D �

�
163

43

�
D �

�
34

43

�
D �

�
2

43

��
17

43

�
:

Finally compute�
2

43

�
D .�1/

432�1
8 D .�1/231 D �1;�

17

43

�
D .�1/21�8

�
43

17

�
D

�
9

17

�
D 1:

Altogether,
�
�43
163

�
D �.�.�1 � 1// D �1, so the answer is no.

(2) Alternatively, compute�
�43

163

�
D

�
120

163

�
D

�
2

163

�3 �
3

163

��
5

163

�
;

then compute�
2

163

�
D .�1/

1632�2
8 D .�1/3321 D �1;�

3

163

�
D .�1/81�1

�
163

3

�
D �

�
1

3

�
D �1;�

5

163

�
D .�1/81�2

�
163

5

�
D

�
3

5

�
D �1:
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23.5. Proof of the formula for
�
2
p

�
We already proved the formula for

�
�1
p

�
in the course of proving the two-squares theorem. It was a special case of Euler’s
criterion: �

a

p

�
� a

p�1
2 .mod p/:

In turn, we proved Euler’s criterion by a “shuffling-the-deck”-type argument.
We will prove the formula for

�
2
p

�
by a similar trick. We can rewrite the

formula as �
2

p

�
D

�
1 p � 1; 7 .mod 8/;
�1 p � 3; 5 .mod 8/

D

(
.�1/

p�1
4 p � 1 .mod 4/;

.�1/
pC1

4 p � 3 .mod 4/:

The case where p � 3 .mod 4/ is left to Problem Set 5.
In what follows, we explain the case where p � 1 .mod 4/ through the

example p D 13. Namely, observe that

12Š D .1 � 3 � 5 � 7 � 9 � 11/.2 � 4 � 6 � 8 � 10 � 12/

D .1 � 3 � 5 � 7 � 9 � 11/.1 � 2 � 3 � 4 � 5 � 6/.26/

D .1 � 3 � 5/.7 � 9 � 11/.1 � 2 � 3 � 4 � 5 � 6/.26/

� .�12/.�10/.�8/.7 � 9 � 11/.1 � 2 � 3 � 4 � 5 � 6/.26/ .mod 13/

� .�1/3.7 � 8 � 9 � 10 � 11 � 12/.1 � 2 � 3 � 4 � 5 � 6/.26/ .mod 13/

� .�1/3.26/12Š .mod 13/:

Since 12Š is invertible modulo 13, we can cancel it from both sides, then multiply
both sides by .�1/3, to get

26 � .�1/3 .mod 13/:

The left-hand side equals
�
2
13

�
by Euler’s criterion. The right-hand side equals

.�1/
13�1

4 .



59

24. 4/12

24.1. What are the odd primes p ¤ 7 for which 7 is a quadratic residue modulo
p? By quadratic reciprocity,�

7

p

�
D .�1/

p�1
2
� 7�1

2

�p
7

�
D .�1/

p�1
2

�p
7

�
:

Above, .�1/
p�1

2 equals 1 when p � 3 .mod 4/, and equals �1 otherwise;
�
p

7

�
equals 1 when p � 1; 2; 4 .mod 7/, and equals �1 otherwise. So

�
7

p

�
D 1 ”

either
�
p � 1 .mod 4/;
p � 1; 2; 4 .mod 7/

or
�
p � 3 .mod 4/;
p � 3; 5; 6 .mod 7/

The right-hand side can be reformulated in terms of congruences modulo 28.

24.2. Quotient groups We will use the “strong” Chinese Remainder Theorem
and group theory to prove quadratic reciprocity. First we need a review:

If .G; ?/ is a group and H � G a subgroup, then a left coset of H is a subset
S � G such that for some x 2 G, we can write

S D fx ? h j h 2 H g:

In this case, x is called a representative of the coset, and we write S D x ? H .
Note that the representative determines the coset, but not vice versa. We write
G=H for the set of left cosets of H .

All the groups we’ve studied have been abelian: This condition on G means
x ? y D y ? x for all x; y 2 G. For such G, the set G=H forms a group in its
own right, under the operation ı defined by

S ı T D fs ? t j s 2 S; t 2 T g:

It’s not obvious at first that S ı T is still a coset of H , but we can prove it: If
S D x ? H and T D y ? H , then

S ı T D fx ? h ? y ? h0 j h; h0 2 H g

D fx ? y ? h ? h0 j h; h0 2 H g

D x ? y ? H;

by the abelian property and the closedness of H under multiplication. We say
that .G=H; ı/ is the quotient of G by H .

Example 24.1. For any m 2 Z, the set H D mZ forms a subgroup of G D
.Z;C/. Here, the quotient group .G=H; ı/ is precisely .Z=mZ;C/.
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24.3. Suppose G=H is finite. We say that fg1; : : : ; gkg � G is a full set of
coset representatives for H in G iff g1H; : : : ; gkH are all the elements of G=H ,
without repetition. Note that in this case, k only depends on H . The following
observation will be key to our proof of quadratic reciprocity.

Lemma 24.2. Suppose G=H is finite. If fg1; : : : ; gkg and fg01; : : : ; g
0
k
g are two

full sets of coset representatives for H in G, then

g1 ? � � � ? gk ? H D g
0
1 ? � � � ? g

0
k ? H

as cosets. Thus, g1 ? � � � ? gk and g01 ? � � � ? g
0
k

only differ by (composing under
? with) an element of H .

24.4. Let p and q be distinct (positive) odd primes. Then

G D .Z=pZ/� � .Z=qZ/�

forms a group under coordinate-wise multiplication, and

H D f.1C pZ; 1C qZ/; .�1C pZ;�1C qZ/g

forms a subgroup of G.
It will be convenient to introduce the notation .mod p; q/, so that I can write

.a; b/ .mod p; q/ to mean .aC pZ; b C qZ/

going forward.
To give a full set of coset representatives for H in G, it suffices to give jG=H j

elements ofG whose corresponding cosets are pairwise distinct: that is, elements
.ai C pZ; bi C qZ/ for 1 � i � jG=H j such that

.ai ; bi/ 6� .aj ; bj /; .�aj ;�bj / .mod .p; q// for all i ¤ j :

Note that jGj D .p � 1/.q � 1/ and jH j D 2, so

jG=H j D
1

2
.p � 1/.q � 1/:

We’ll generalize the following example:

Example 24.3. Take p D 3 and q D 5. Then

G D f.1; 1/; .1; 2/; .1; 3/; .1; 4/; .2; 1/; .2; 2/; .2; 3/; .2; 4/g;

H D f.1; 1/; .2; 4/g:

We claim that .1; 1/; .1; 2/; .2; 1/; .2; 2/ is a full set of coset representatives for
H in G. Indeed,

.1; 1/ ? H D f.1; 1/; .2; 4/g D H; .1; 2/ ? H D f.1; 2/; .2; 3/g;

.2; 1/ ? H D f.2; 1/; .1; 4/g; .2; 2/ ? H D f.2; 2/; .1; 3/g:

Every element of G occurs in exactly one of these four sets.
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25. 4/14

25.1. We complete the proof of quadratic reciprocity. Like last time, we set
G D .Z=pZ/� � .Z=qZ/� and

H D f.1; 1/; .�1;�1/ .mod p; q/g:

We will exhibit two different full sets of coset representatives for H in G, then
compare their products.

Lemma 25.1. The set

X D
˚
.aC pZ; b C qZ/ 2 G j 1 � b � q�1

2

	
is a full set of coset representatives for H in G.

Proof. We must show that if .aC pZ; bC qZ/; .a0C pZ; b0C qZ/ 2 X satisfy
.a; b/ � ˙.a0; b0/ .mod p; q/, then we must have .a; b/ � .a0; b0/. But since
1 � b; b0 � q�1

2
, we must have b � b0, which then forces a � a0. Finally, X

has the right size 1
2
.p � 1/.q � 1/.

25.2. Let G 0 D .Z=pqZ/� as a group under multiplication. Recall that by the
Chinese Remainder Theorem, the map

G 0
f
�! G

aC pqZ 7! .aC pZ; aC qZ/

is an isomorphism of groups. Under this isomorphism, H � G corresponds to

H 0 D f.1C pqZ/; .�1C pqZ/g � G 0:

To give a full set of coset representatives forH 0 in G 0, it suffices to give elements
ni C pqZ 2 G 0 for 1 � i � jG 0=H 0j such that ni 6� ˙nj .mod pq/ for all
i ¤ j . Note that jG 0=H 0j D jG=H j.

Lemma 25.2. The set

Y 0 D fnC pqZ 2 .Z=pqZ/� j 1 � n � pq�1

2
g

is a full set of coset representatives for H 0 in G 0.

Proof. We must show that if nCpqZ; n0CpqZ 2 Y 0 satisfy n � ˙n0, then we
must have n � n0. This follows from the condition 1 � n; n0 � pq�1

2
. To show

that Y has the right size, we must show that jY 0j D 1
2
jG 0j. This follows from

observing that G 0 is the disjoint union of Y 0 and �Y 0 D f�y j y 2 Y 0g.

Corollary 25.3. The set

Y D f .Y / D
˚
.nC pZ; nC qZ/ 2 G j 1 � n � pq�1

2
and gcd.n; pq/ D 1

	
is a full set of coset representatives for H in G.
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25.3. Now we finish the proof of quadratic reciprocity. Let x1; : : : ; xjG=H j, resp.
y1; : : : ; yjG=H j be an ordering of the elements of X , resp. Y . By Lemma 24.2,

x1 ? � � � ? xjG=H j ? H D y1 ? � � � ? yjG=H j ? H

as cosets, where ? is the group law of G, i.e., coordinate-wise multiplication.
What does this actually mean? We calculate both sides:

Lemma 25.4. We have

x1 ? � � � ? xjG=H j � ..�1/
q�1

2 ; .�1/
p�1

2 .�1/
p�1

2
�
q�1

2 / .mod p; q/:

Proof. Explicitly,

x1 ? � � � ? xjG=H j �
Y

1�a�p�1
1�b�.q�1/=2

.a; b/ .mod p; q/

� ..p � 1/Š
q�1

2 ; .q�1
2
/Šp�1/ .mod p; q/:

We can simplify both entries using Wilson’s theorem. The first entry becomes
.�1/

q�1
2 .mod p/. As for the second entry,

�1 � .q � 1/Š � .�1/
q�1

2 .q�1
2
/Š2 .mod q/;

from which

.q�1
2
/Šp�1 � ..q�1

2
/Š2/

p�1
2 .mod q/

� .�1/
p�1

2 .�1/
p�1

2
�
q�1

2 .mod q/

as claimed.

Lemma 25.5. We have

y1 ? � � � ? yjG=H j �

�
.�1/

q�1
2

�
q

p

�
; .�1/

p�1
2

�
p

q

��
.mod p; q/:

Proof. Explicitly, y1 ? � � � ? yjG=H j D .…;…/, where

… D
Y

1�n�.pq�1/=2
gcd.n;pq/D1

n:

So we must show that

… � .�1/
q�1

2

�
q

p

�
.mod p/; … � .�1/

p�1
2

�
p

q

�
.mod q/:

By symmetry, it suffices to show the first equality.
As we run over integers n such that 1 � n � .pq � 1/=2, and reduce them

modulo p, we get q�1
2

copies of the sequence 1; 2; : : : ; p � 1, along with one



63

copy of the sequence 1; 2; : : : ; p�1
2

. Restricting to n such that gcd.n; pq/ D 1

means excluding the values n D q; 2q; : : : ; .p�1
2
/q. This argument shows

… �
.p � 1/Š

q�1
2 .p�1

2
/Š

q � .2q/ � � � .p�1
2
/q
� q�

p�1
2 .p � 1/Š

q�1
2 .mod p/:

By Wilson’s theorem, .p�1/Š � �1 .mod p/, and by Euler’s criterion, q
p�1

2 ��
q

p

�
.mod p/.

Example 25.6. If p D 5 and q D 7, then

f1 � n � pq�1

2
g D f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17g:

Reducing modulo 5, this becomes

f1 � n � pq�1

2
g D f1; 2; 3; 4; 0; 1; 7; 3; 4; 0; 1; 2; 3; 14; 0; 1; 2g:

Therefore, … � 4Š3�2Š
7�14

.mod 5/.

25.4. Since H D f.1; 1/; .�1;�1/ .mod p; q/g, the claim that

x1 ? � � � ? xjG=H j ? H D y1 ? � � � ? yjG=H j ? H

amounts to saying that either x1 ? � � � ? xjG=H j and y1 ? � � � ? yjG=H j are the same,
or that they differ in both entries by a minus sign. So we have

.�1/q�1 � � � .�1/q�1
�
q

p

�
.mod p/;

.�1/p�1.�1/
p�1

2
�
q�1

2 � � � .�1/p�1
�
p

q

�
.mod q/

for some sign � 2 f˙1g.
Since p; q > 2, and each sides of each congruence is either 1 or �1, we can

promote the congruences to equalities:

.�1/q�1 D � � .�1/q�1
�
q

p

�
;

.�1/p�1.�1/
p�1

2
�
q�1

2 D � � .�1/p�1
�
p

q

�
Multiplying these equalities together,

.�1/
p�1

2
�
q�1

2 D

�
q

p

��
p

q

�
:


