23. $4 / 10$
23.1. The Legendre symbol Let p be a positive odd prime.

Previously, we discussed how the structure of nonzero QRs and QNRs modulo p under multiplication is analogous to the structure of 1 and -1 under multiplication. To make this precise, define the Legendre symbol modulo p to be the function

$$
\left(\frac{-}{p}\right):(\mathbf{Z} / p \mathbf{Z})^{\times} \rightarrow\{ \pm 1\}
$$

for which

$$
\left(\frac{a}{p}\right)=\left\{\begin{array}{rl}
1 & a \text { is a QR } \bmod p, \\
-1 & a \text { is a QNR } \bmod p .
\end{array}\right.
$$

(Don't confuse this notation with a fraction!) The left-hand side is usually pronounced " a on p ".

We showed on March 17 that the Legendre symbol is multiplicative:

$$
\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)
$$

for all $a, b \in(\mathbf{Z} / p \mathbf{Z})^{\times}$.
Therefore, to calculate $\left(\frac{a}{p}\right)$ for an arbitrary congruence class $a+p \mathbf{Z}$, it's enough to calculate $\left(\frac{ \pm 1}{p}\right)$ and $\left(\frac{q}{p}\right)$ for prime q.
23.2. Certainly, $\left(\frac{1}{p}\right)=1$. More interestingly, we can restate the equivalence

$$
-1 \text { is a } \mathrm{QR} \text { modulo } p \Longleftrightarrow p \equiv 1 \quad(\bmod 4)
$$

as the identity

$$
\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}},
$$

because $\frac{p-1}{2}$ is even when $p \equiv 1(\bmod 4)$, and odd when $p \equiv 3(\bmod 4)$. In the same way, we can restate the equivalences

$$
\begin{aligned}
& -2 \text { is a } \mathrm{QR} \text { modulo } p \Longleftrightarrow p \equiv 1,3 \quad(\bmod 8), \\
& -3 \text { is a } \mathrm{QR} \text { modulo } p \Longleftrightarrow p \equiv 1 \quad(\bmod 3)
\end{aligned}
$$

as the identities

$$
\begin{aligned}
& \left(\frac{-2}{p}\right)=(-1)^{\frac{(p-1)(p-3)}{8}}, \\
& \left(\frac{-3}{p}\right)=\left(\frac{p}{3}\right),
\end{aligned}
$$

respectively. Since $\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}$, these are equivalent to

$$
\begin{aligned}
& \left(\frac{2}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{-2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}} \\
& \left(\frac{3}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{-3}{p}\right)=(-1)^{\frac{p-1}{2}}\left(\frac{p}{3}\right) .
\end{aligned}
$$

23.3. Quadratic reciprocity What happens if we do more calculations?

Example 23.1. We list the odd primes $p \neq 5$, and box those for which 5 is a quadratic residue modulo p :

$$
3,7, \boxed{11}, 13,17, \boxed{19}, 23, \boxed{29}, \boxed{31}, 37, \boxed{41}, 43,47,53, \boxed{59}, \ldots
$$

They are precisely the primes whose last digit is either 1 or 9 . Thus they are precisely the odd primes congruent to 1 or 4 modulo 5 .

In general, we are led to conjecture:

$$
\begin{aligned}
\left(\frac{5}{p}\right) & =\left(\frac{p}{5}\right) \\
\left(\frac{7}{p}\right) & =(-1)^{\frac{p-1}{2}}\left(\frac{p}{7}\right) \\
\left(\frac{11}{p}\right) & =(-1)^{\frac{p-1}{2}}\left(\frac{p}{11}\right) \\
\left(\frac{13}{p}\right) & =\left(\frac{p}{13}\right)
\end{aligned}
$$

So we are led to conjecture that for $q \neq p$ a positive odd prime,

$$
\begin{aligned}
\left(\frac{q}{p}\right) & =\left\{\begin{array}{lll}
\left(\frac{p}{q}\right) & q \equiv 1 & (\bmod 4), \\
(-1)^{\frac{p-1}{2}}\left(\frac{p}{q}\right) & q \equiv 3 & (\bmod 4)
\end{array}\right. \\
& =\left\{\begin{array}{rll}
\begin{array}{lll}
\left(\frac{p}{q}\right) & p \equiv 1 & (\bmod 4) \operatorname{or} q \equiv 1 \\
-\left(\frac{p}{q}\right) & p, q \equiv 3 & (\bmod 4)
\end{array}
\end{array}\right.
\end{aligned}
$$

We can rewrite the last formula as:
Theorem 23.2 (Quadratic Reciprocity). For positive odd primes $p \neq q$, we have

$$
\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}\left(\frac{p}{q}\right) .
$$

23.4. The law of quadratic reciprocity, combined with the multiplicativity of the Legendre symbol, is usually the fastest way to determine if an integer yields a quadratic residue modulo p. We may need the "supplementary" laws

$$
\begin{aligned}
\left(\frac{-1}{p}\right) & =(-1)^{\frac{p-1}{2}} \\
\left(\frac{2}{p}\right) & =(-1)^{\frac{p^{2}-1}{8}}
\end{aligned}
$$

to finish the job.
Example 23.3. Two ways to determine whether -43 is a QR modulo 163:
(1) First compute

$$
\left(\frac{-43}{163}\right)=\left(\frac{-1}{163}\right)\left(\frac{43}{163}\right)=(-1)^{\frac{162}{2}}\left(\frac{43}{163}\right)=-\left(\frac{43}{163}\right) .
$$

Next observe that 43 is prime, and compute

$$
\left(\frac{43}{163}\right)=(-1)^{\frac{162 \cdot 42}{4}}\left(\frac{163}{43}\right)=-\left(\frac{163}{43}\right)=-\left(\frac{34}{43}\right)=-\left(\frac{2}{43}\right)\left(\frac{17}{43}\right) .
$$

Finally compute

$$
\begin{aligned}
& \left(\frac{2}{43}\right)=(-1)^{\frac{43^{2}-1}{8}}=(-1)^{231}=-1 \\
& \left(\frac{17}{43}\right)=(-1)^{21 \cdot 8}\left(\frac{43}{17}\right)=\left(\frac{9}{17}\right)=1
\end{aligned}
$$

Altogether, $\left(\frac{-43}{163}\right)=-(-(-1 \cdot 1))=-1$, so the answer is no.
(2) Alternatively, compute

$$
\left(\frac{-43}{163}\right)=\left(\frac{120}{163}\right)=\left(\frac{2}{163}\right)^{3}\left(\frac{3}{163}\right)\left(\frac{5}{163}\right)
$$

then compute

$$
\begin{aligned}
& \left(\frac{2}{163}\right)=(-1)^{\frac{163^{2}-2}{8}}=(-1)^{3321}=-1 \\
& \left(\frac{3}{163}\right)=(-1)^{81 \cdot 1}\left(\frac{163}{3}\right)=-\left(\frac{1}{3}\right)=-1 \\
& \left(\frac{5}{163}\right)=(-1)^{81 \cdot 2}\left(\frac{163}{5}\right)=\left(\frac{3}{5}\right)=-1
\end{aligned}
$$

23.5. Proof of the formula for $\left(\frac{2}{p}\right)$ We already proved the formula for $\left(\frac{-1}{p}\right)$ in the course of proving the two-squares theorem. It was a special case of Euler's criterion:

$$
\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \quad(\bmod p)
$$

In turn, we proved Euler's criterion by a "shuffling-the-deck"-type argument.
We will prove the formula for $\left(\frac{2}{p}\right)$ by a similar trick. We can rewrite the formula as

$$
\begin{aligned}
\left(\frac{2}{p}\right) & =\left\{\begin{array}{rll}
1 & p \equiv 1,7 & (\bmod 8), \\
-1 & p \equiv 3,5 & (\bmod 8)
\end{array}\right. \\
& =\left\{\begin{array}{lll}
(-1)^{\frac{p-1}{4}} & p \equiv 1 & (\bmod 4), \\
(-1)^{\frac{p+1}{4}} & p \equiv 3 & (\bmod 4)
\end{array}\right.
\end{aligned}
$$

The case where $p \equiv 3(\bmod 4)$ is left to Problem Set 5 .
In what follows, we explain the case where $p \equiv 1(\bmod 4)$ through the example $p=13$. Namely, observe that

$$
\begin{aligned}
12! & =(1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11)(2 \cdot 4 \cdot 6 \cdot 8 \cdot 10 \cdot 12) \\
& =(1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11)(1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6)\left(2^{6}\right) \\
& =(1 \cdot 3 \cdot 5)(7 \cdot 9 \cdot 11)(1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6)\left(2^{6}\right) \\
& \equiv(-12)(-10)(-8)(7 \cdot 9 \cdot 11)(1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6)\left(2^{6}\right) \quad(\bmod 13) \\
& \equiv(-1)^{3}(7 \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12)(1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6)\left(2^{6}\right) \quad(\bmod 13) \\
& \equiv(-1)^{3}\left(2^{6}\right) 12!\quad(\bmod 13) .
\end{aligned}
$$

Since 12 ! is invertible modulo 13 , we can cancel it from both sides, then multiply both sides by $(-1)^{3}$, to get

$$
2^{6} \equiv(-1)^{3} \quad(\bmod 13)
$$

The left-hand side equals $\left(\frac{2}{13}\right)$ by Euler's criterion. The right-hand side equals $(-1)^{\frac{13-1}{4}}$.

24. 4/12

24.1. What are the odd primes $p \neq 7$ for which 7 is a quadratic residue modulo p ? By quadratic reciprocity,

$$
\left(\frac{7}{p}\right)=(-1)^{\frac{p-1}{2} \cdot \frac{7-1}{2}}\left(\frac{p}{7}\right)=(-1)^{\frac{p-1}{2}}\left(\frac{p}{7}\right) .
$$

Above, $(-1)^{\frac{p-1}{2}}$ equals 1 when $p \equiv 3(\bmod 4)$, and equals -1 otherwise; $\left(\frac{p}{7}\right)$ equals 1 when $p \equiv 1,2,4(\bmod 7)$, and equals -1 otherwise. So

$$
\left(\frac{7}{p}\right)=1 \Longleftrightarrow \text { either } \begin{aligned}
& \left\{\begin{array}{l}
p \equiv 1 \quad(\bmod 4), \\
p \equiv 1,2,4 \quad(\bmod 7)
\end{array}\right. \\
& \text { or }\left\{\begin{array}{l}
p \equiv 3(\bmod 4), \\
p \equiv 3,5,6(\bmod 7)
\end{array}\right.
\end{aligned}
$$

The right-hand side can be reformulated in terms of congruences modulo 28 .
24.2. Quotient groups We will use the "strong" Chinese Remainder Theorem and group theory to prove quadratic reciprocity. First we need a review:

If (G, \star) is a group and $H \subseteq G$ a subgroup, then a left coset of H is a subset $S \subseteq G$ such that for some $x \in G$, we can write

$$
S=\{x \star h \mid h \in H\} .
$$

In this case, x is called a representative of the coset, and we write $S=x \star H$. Note that the representative determines the coset, but not vice versa. We write G / H for the set of left cosets of H.

All the groups we've studied have been abelian: This condition on G means $x \star y=y \star x$ for all $x, y \in G$. For such G, the set G / H forms a group in its own right, under the operation \circ defined by

$$
S \circ T=\{s \star t \mid s \in S, t \in T\} .
$$

It's not obvious at first that $S \circ T$ is still a coset of H, but we can prove it: If $S=x \star H$ and $T=y \star H$, then

$$
\begin{aligned}
S \circ T & =\left\{x \star h \star y \star h^{\prime} \mid h, h^{\prime} \in H\right\} \\
& =\left\{x \star y \star h \star h^{\prime} \mid h, h^{\prime} \in H\right\} \\
& =x \star y \star H,
\end{aligned}
$$

by the abelian property and the closedness of H under multiplication. We say that ($G / H, \circ$) is the quotient of G by H.

Example 24.1. For any $m \in \mathbf{Z}$, the set $H=m \mathbf{Z}$ forms a subgroup of $G=$ $(\mathbf{Z},+)$. Here, the quotient group $(G / H, \circ)$ is precisely $(\mathbf{Z} / m \mathbf{Z},+)$.
24.3. Suppose G / H is finite. We say that $\left\{g_{1}, \ldots, g_{k}\right\} \subseteq G$ is a full set of coset representatives for H in G iff $g_{1} H, \ldots, g_{k} H$ are all the elements of G / H, without repetition. Note that in this case, k only depends on H. The following observation will be key to our proof of quadratic reciprocity.
Lemma 24.2. Suppose G / H is finite. If $\left\{g_{1}, \ldots, g_{k}\right\}$ and $\left\{g_{1}^{\prime}, \ldots, g_{k}^{\prime}\right\}$ are two full sets of coset representatives for H in G, then

$$
g_{1} \star \cdots \star g_{k} \star H=g_{1}^{\prime} \star \cdots \star g_{k}^{\prime} \star H
$$

as cosets. Thus, $g_{1} \star \cdots \star g_{k}$ and $g_{1}^{\prime} \star \cdots \star g_{k}^{\prime}$ only differ by (composing under \star with) an element of H.
24.4. Let p and q be distinct (positive) odd primes. Then

$$
G=(\mathbf{Z} / p \mathbf{Z})^{\times} \times(\mathbf{Z} / q \mathbf{Z})^{\times}
$$

forms a group under coordinate-wise multiplication, and

$$
H=\{(1+p \mathbf{Z}, 1+q \mathbf{Z}),(-1+p \mathbf{Z},-1+q \mathbf{Z})\}
$$

forms a subgroup of G.
It will be convenient to introduce the notation $(\bmod p, q)$, so that I can write

$$
(a, b) \quad(\bmod p, q) \text { to mean }(a+p \mathbf{Z}, b+q \mathbf{Z})
$$

going forward.
To give a full set of coset representatives for H in G, it suffices to give $|G / H|$ elements of G whose corresponding cosets are pairwise distinct: that is, elements $\left(a_{i}+p \mathbf{Z}, b_{i}+q \mathbf{Z}\right)$ for $1 \leq i \leq|G / H|$ such that

$$
\left(a_{i}, b_{i}\right) \not \equiv\left(a_{j}, b_{j}\right),\left(-a_{j},-b_{j}\right) \quad(\bmod (p, q)) \quad \text { for all } i \neq j
$$

Note that $|G|=(p-1)(q-1)$ and $|H|=2$, so

$$
|G / H|=\frac{1}{2}(p-1)(q-1)
$$

We'll generalize the following example:
Example 24.3. Take $p=3$ and $q=5$. Then

$$
\begin{aligned}
G & =\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)\}, \\
H & =\{(1,1),(2,4)\} .
\end{aligned}
$$

We claim that $(1,1),(1,2),(2,1),(2,2)$ is a full set of coset representatives for H in G. Indeed,

$$
\begin{array}{ll}
(1,1) \star H=\{(1,1),(2,4)\}=H, & (1,2) \star H=\{(1,2),(2,3)\}, \\
(2,1) \star H=\{(2,1),(1,4)\}, & (2,2) \star H=\{(2,2),(1,3)\} .
\end{array}
$$

Every element of G occurs in exactly one of these four sets.
25. $4 / 14$
25.1. We complete the proof of quadratic reciprocity. Like last time, we set $G=(\mathbf{Z} / p \mathbf{Z})^{\times} \times(\mathbf{Z} / q \mathbf{Z})^{\times}$and

$$
H=\{(1,1),(-1,-1) \quad(\bmod p, q)\} .
$$

We will exhibit two different full sets of coset representatives for H in G, then compare their products.

Lemma 25.1. The set

$$
X=\left\{(a+p \mathbf{Z}, b+q \mathbf{Z}) \in G \left\lvert\, 1 \leq b \leq \frac{q-1}{2}\right.\right\}
$$

is a full set of coset representatives for H in G.
Proof. We must show that if $(a+p \mathbf{Z}, b+q \mathbf{Z}),\left(a^{\prime}+p \mathbf{Z}, b^{\prime}+q \mathbf{Z}\right) \in X$ satisfy $(a, b) \equiv \pm\left(a^{\prime}, b^{\prime}\right)(\bmod p, q)$, then we must have $(a, b) \equiv\left(a^{\prime}, b^{\prime}\right)$. But since $1 \leq b, b^{\prime} \leq \frac{q-1}{2}$, we must have $b \equiv b^{\prime}$, which then forces $a \equiv a^{\prime}$. Finally, X has the right size $\frac{1}{2}(p-1)(q-1)$.
25.2. Let $G^{\prime}=(\mathbf{Z} / p q \mathbf{Z})^{\times}$as a group under multiplication. Recall that by the Chinese Remainder Theorem, the map

$$
\begin{aligned}
G^{\prime} & \stackrel{f}{\rightarrow} G \\
a+p q \mathbf{Z} & \mapsto \\
\mapsto & (a+p \mathbf{Z}, a+q \mathbf{Z})
\end{aligned}
$$

is an isomorphism of groups. Under this isomorphism, $H \subseteq G$ corresponds to

$$
H^{\prime}=\{(1+p q \mathbf{Z}),(-1+p q \mathbf{Z})\} \subseteq G^{\prime}
$$

To give a full set of coset representatives for H^{\prime} in G^{\prime}, it suffices to give elements $n_{i}+p q \mathbf{Z} \in G^{\prime}$ for $1 \leq i \leq\left|G^{\prime} / H^{\prime}\right|$ such that $n_{i} \not \equiv \pm n_{j}(\bmod p q)$ for all $i \neq j$. Note that $\left|G^{\prime} / H^{\prime}\right|=|G / H|$.

Lemma 25.2. The set

$$
Y^{\prime}=\left\{n+p q \mathbf{Z} \in(\mathbf{Z} / p q \mathbf{Z})^{\times} \left\lvert\, 1 \leq n \leq \frac{p q-1}{2}\right.\right\}
$$

is a full set of coset representatives for H^{\prime} in G^{\prime}.
Proof. We must show that if $n+p q \mathbf{Z}, n^{\prime}+p q \mathbf{Z} \in Y^{\prime}$ satisfy $n \equiv \pm n^{\prime}$, then we must have $n \equiv n^{\prime}$. This follows from the condition $1 \leq n, n^{\prime} \leq \frac{p q-1}{2}$. To show that Y has the right size, we must show that $\left|Y^{\prime}\right|=\frac{1}{2}\left|G^{\prime}\right|$. This follows from observing that G^{\prime} is the disjoint union of Y^{\prime} and $-Y^{\prime}=\left\{-y \mid y \in Y^{\prime}\right\}$.

Corollary 25.3. The set

$$
Y=f(Y)=\left\{(n+p \mathbf{Z}, n+q \mathbf{Z}) \in G \left\lvert\, 1 \leq n \leq \frac{p q-1}{2}\right. \text { and } \operatorname{gcd}(n, p q)=1\right\}
$$

is a full set of coset representatives for H in G.
25.3. Now we finish the proof of quadratic reciprocity. Let $x_{1}, \ldots, x_{|G / H|}$, resp. $y_{1}, \ldots, y_{|G / H|}$ be an ordering of the elements of X, resp. Y. By Lemma 24.2,

$$
x_{1} \star \cdots \star x_{|G / H|} \star H=y_{1} \star \cdots \star y_{|G / H|} \star H
$$

as cosets, where \star is the group law of G, i.e., coordinate-wise multiplication. What does this actually mean? We calculate both sides:

Lemma 25.4. We have

$$
x_{1} \star \cdots \star x_{|G / H|} \equiv\left((-1)^{\frac{q-1}{2}},(-1)^{\frac{p-1}{2}}(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}\right) \quad(\bmod p, q)
$$

Proof. Explicitly,

$$
\begin{aligned}
x_{1} \star \cdots \star x_{|G / H|} & \equiv \prod_{\substack{1 \leq a \leq p-1 \\
1 \leq b \leq(q-1) / 2}}(a, b) \quad(\bmod p, q) \\
& \equiv\left((p-1)!^{\frac{q-1}{2}},\left(\frac{q-1}{2}\right)!^{p-1}\right) \quad(\bmod p, q)
\end{aligned}
$$

We can simplify both entries using Wilson's theorem. The first entry becomes $(-1)^{\frac{q-1}{2}}(\bmod p)$. As for the second entry,

$$
-1 \equiv(q-1)!\equiv(-1)^{\frac{q-1}{2}}\left(\frac{q-1}{2}\right)!^{2} \quad(\bmod q)
$$

from which

$$
\begin{aligned}
\left(\frac{q-1}{2}\right)!^{p-1} & \equiv\left(\left(\frac{q-1}{2}\right)!^{2}\right)^{\frac{p-1}{2}} \quad(\bmod q) \\
& \equiv(-1)^{\frac{p-1}{2}}(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \quad(\bmod q)
\end{aligned}
$$

as claimed.
Lemma 25.5. We have

$$
y_{1} \star \cdots \star y_{|G / H|} \equiv\left((-1)^{\frac{q-1}{2}}\left(\frac{q}{p}\right),(-1)^{\frac{p-1}{2}}\left(\frac{p}{q}\right)\right) \quad(\bmod p, q) .
$$

Proof. Explicitly, $y_{1} \star \cdots \star y_{|G / H|}=(\Pi, \Pi)$, where

$$
\Pi=\prod_{\substack{1 \leq n \leq(p q-1) / 2 \\ \operatorname{gcd}(n, p q)=1}} n
$$

So we must show that

$$
\Pi \equiv(-1)^{\frac{q-1}{2}}\left(\frac{q}{p}\right) \quad(\bmod p), \quad \Pi \equiv(-1)^{\frac{p-1}{2}}\left(\frac{p}{q}\right) \quad(\bmod q)
$$

By symmetry, it suffices to show the first equality.
As we run over integers n such that $1 \leq n \leq(p q-1) / 2$, and reduce them modulo p, we get $\frac{q-1}{2}$ copies of the sequence $1,2, \ldots, p-1$, along with one
copy of the sequence $1,2, \ldots, \frac{p-1}{2}$. Restricting to n such that $\operatorname{gcd}(n, p q)=1$ means excluding the values $n=q, 2 q, \ldots,\left(\frac{p-1}{2}\right) q$. This argument shows

$$
\Pi \equiv \frac{(p-1)!^{\frac{q-1}{2}}\left(\frac{p-1}{2}\right)!}{q \cdot(2 q) \cdots\left(\frac{p-1}{2}\right) q} \equiv q^{-\frac{p-1}{2}}(p-1)!^{\frac{q-1}{2}} \quad(\bmod p)
$$

By Wilson's theorem, $(p-1)!\equiv-1(\bmod p)$, and by Euler's criterion, $q^{\frac{p-1}{2}} \equiv$ $\left(\frac{q}{p}\right)(\bmod p)$.

Example 25.6. If $p=5$ and $q=7$, then

$$
\left\{1 \leq n \leq \frac{p q-1}{2}\right\}=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, \quad 16,17\}
$$

Reducing modulo 5 , this becomes

$$
\left\{1 \leq n \leq \frac{p q-1}{2}\right\}=\{1,2,3,4,0,1,7,3,4,0,1,2,3,14,0,1,2\} .
$$

Therefore, $\Pi \equiv \frac{4!^{3} \cdot 2!}{7 \cdot 14}(\bmod 5)$.
25.4. Since $H=\{(1,1),(-1,-1)(\bmod p, q)\}$, the claim that

$$
x_{1} \star \cdots \star x_{|G / H|} \star H=y_{1} \star \cdots \star y_{|G / H|} \star H
$$

amounts to saying that either $x_{1} \star \cdots \star x_{|G / H|}$ and $y_{1} \star \cdots \star y_{|G / H|}$ are the same, or that they differ in both entries by a minus sign. So we have

$$
\begin{aligned}
(-1)^{q-1} & \equiv \epsilon \cdot(-1)^{q-1}\left(\frac{q}{p}\right)
\end{aligned}(\bmod p), ~(-1)^{p-1}(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \equiv \epsilon \cdot(-1)^{p-1}\left(\frac{p}{q}\right) \quad(\bmod q), ~ \$
$$

for some sign $\epsilon \in\{ \pm 1\}$.
Since $p, q>2$, and each sides of each congruence is either 1 or -1 , we can promote the congruences to equalities:

$$
\begin{aligned}
(-1)^{q-1} & =\epsilon \cdot(-1)^{q-1}\left(\frac{q}{p}\right), \\
(-1)^{p-1}(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} & =\epsilon \cdot(-1)^{p-1}\left(\frac{p}{q}\right)
\end{aligned}
$$

Multiplying these equalities together,

$$
(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}=\left(\frac{q}{p}\right)\left(\frac{p}{q}\right) .
$$

