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18. 3/20

18.1. Having discussed Z[+/n] for squarefree n > 1, and the Gaussian integers
Z[i], we turn to the study of

Z[J—nl={x+y/—n|x,yel} for squarefree n > 2.

We might expect Z[,/—n] to behave exactly like Z[i]. But in fact, various naive
analogies fail, starting with long division.

18.2. As motivation, let’s prove that long division works in Z[i]. Recall the
statement from Theorem 16.7: For any o, B € Z[i] with B # 0, there are
W, p € Z[i] such that « = upf + p and N(p) < N(B).

Proof of Theorem 16.7. Consider the set of all multiples of 8 in Z[i], i.e., the
products uf as we run over all u € ZJ[i]. Since B # 0, these form a square
lattice in the complex plane:

It is a tilted sublattice of Z[i]. Thus, « must live in (the closure of) one of these
squares. To finish the proof, we must show that the distance from « to the nearest
multiple of B is at most |]. Indeed, the farthest point in a square from any of
the vertices is the center. The distance from the center to any vertex is

V201802 = 1811 < 18,

as needed. ]

18.3. Can we generalize this proof to Z[+/—2]? Yes. In what follows, we define
the norm on Z[+/—2] according to N(x + y~/—2) = x2 + 2y2.

Theorem 18.1. For any «, B € Z[~—2] with B # 0, there are |1, p € Z[v—2]
such that o = uf + p and N(p) < N(p).

Proof. Imitate the preceding proof, but using the picture:
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B(1+v-2)

V=2
\ﬁ

0

Here, the distance from the center of the rectangle to any vertex is

VB + GIBV=2)2 = 181,/2 < 18I

SO we win again. O

18.4. But this strategy of proof will break down for Z[+/—3], because

JAIBY + AIBV3)2 = 18I

It turns out that there is no reasonable notion of long division in Z[+/—3]! One
can actually show that there are implications:

long division = prime divisor property

= uniqueness of prime factorization up to units.

So we should expect the uniqueness of prime factorization to fail in Z[+/—3].
Example 18.2. The number 4 has two distinct prime factorizations in Z[+/—3]:
4=2-2=(1++v=-3)1—-+-3).

Here, “distinct” means “differing by more than just units”.
Why must 2 and 1 £ +/—3 be prime in Z[+/—3]? They all have norm 4, whose
only divisors are 1,2, 4. And there are no integers x, y with x2 + 3y? = 2.

18.5. The Eisenstein integers We will fix this failure by replacing Z[+/—3]
with a larger set. In what follows, let

I 1
=—=+ -+v-3.
©=T33
Just as Z[i] forms a square lattice in the complex plane, the set
Ziw]={x+yo|x.ycZ;

forms a triangular lattice. Its elements are called Eisenstein integers.
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18.6. At first, this looks strange: The formula for w involves the fraction %,

which is not an integer. Yet Z[w] still behaves very similarly to Z[+/—3]. It
is closed under addition; more surprisingly, we claim it is also closed under
multiplication. We compute

(a + bw)(c + dw) = ac + (ad + bc)w + bdw?,

so it is enough to show that w? € Z[w]. It turns out that

S1 1 _
W' =——=-vV-3=0,
2 2
so w? = —1 —w € Z[w], as needed.

18.7. What is the right notion of norm for Z[w]? It is tempting to use

N(x + yo) = x2 + y20?,

but this is neither multiplicative nor produces an integer, in general.
If we look back at Z[,/—n], we notice that N(«) = a«a for any o € Z[/—n].
This formula gives the right generalization. For any x, y € Z, we have

(x +yo)(x + yow) = (x + yo)(x + yo)
= x4+ xy(w + @) + y?
= x? — Xy + y2,

so we define the norm on Z[w] by
N(x + yo) = x* —xy + y2.

This is multiplicative and produces integers—in fact, nonnegative integers.
(Why?)
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19. 3/22

19.1. Last time we introduced
Zlws] = {x + yws | x,y € Z},

where w3 = —% + %\/—3.
Why don’t we study, e.g., the set of numbers x + yw, where x,y € Z and
Wy = —% + %«/—2? This set isn’t closed under multiplication:

1 1 1 1 1
wj=g 3V 2m5=373v2

More generally, if n € N is squarefree and w,, = —% + %«/ —n, then
{x+ywn|x,yeZ}

is closed under multiplication when n = 3 (mod 4), and otherwise not. The key
is whether ? is a linear function of w, with integer coefficients.

19.2. In other words, we only want to write the definition
Ziw]={x+yo |x,y €L}
when we know that w? + bw + ¢ = 0 for some integers b, ¢ € Z. In this case,

B —b £+ Vb2 —4c
— > )

w

Moreover, this is only interesting when w is itself not an integer. That means the
discriminant b2 — 4¢ should not be a perfect square.
As it turns out, all of the cases we’ve studied so far fall into this pattern:

w b ¢ b?>—4c
J/n forsquarefreen >0 0 —n 4n
/—n forsquarefreen >0 0 n —4n

—1+1J-3 11 -3
_l41y= 1 2 ~7

Note that we have a choice of + in the definition of w, and above, we have been
choosing the + sign. We always let @ denote the other choice, so that

—b + Vb% —4c - —b—+b%2—4c
5 :

, then o=
2

if w=
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19.3. Quadratic integers Henceforth, we assume w? + bw + ¢ = 0 for some
integers b, c. Numbers that belong to Z[w] for some such w are called quadratic
integers. The set Z[w] is:

(1) Closed under both addition and multiplication.

(2) Endowed with an operation called conjugation. The conjugate of @ =
X+ yoisa =x + yo.

(3) Endowed with a function N : Z[w] — Z called its norm and defined by

N(x) = aa.

(4) Endowed with a notion of divisibility.

(5) Endowed with a notion of units: the elements u that divide 1. Equivalently,
N(u) = £1.

Note that the text above Stillwell exercise 6.1.2 has a typo: It claims that

for squarefree n, the units of Z[+/n] are the elements of norm 1, but when
n is positive, elements of norm —1 also exist.

(6) Endowed with a notion of primes: the non-unit elements « such that if
a = By for some B,y € Z[w], then either B or y must be a unit.

19.4. Note that w determines the pair of integers (b, c¢), hence determines
the discriminant D = b? — 4c. It turns out that conversely, the discriminant
determines the set Z[w], or equivalently, the unordered pair {w, @}.

When D is positive, there are infinitely many units in Z[w], and in fact,
infinitely many units u such that N(u) = 1. Solving this equation for u is
equivalent to solving a Pell-like equation.

When D is negative, there are finitely many units in Z[w]. We saw that Z[i]
has four, and Z[ws] has six. In the rest of these cases, there are only two units: 1
and —1.

19.5. The Heegner discriminants One of the big questions of 19th-century
number theory was:

Question 19.1. When does Z[w] have uniqueness of prime factorization?

In the case where D is negative, the problem is solved. By work of Baker,
Stark, and Heegner, there are exactly nine negative discriminants for which Z[w]
has unique prime factorization:

(19.1) D =-3-4-7,-8,—-11,—-19,—-43,—-67, —163.

Note that D = —4 corresponds to Z[i], and D = —8 to Z[+/—2].

It is not known whether there are infinitely many positive discriminants for
which Z[w] has unique prime factorization. Amazingly, it is conjectured to
happen for 76% of the possibilities, in some precise asymptotic sense.

19.6. The discriminants in the list (19.1) have some strange properties. As an

example, calculate V193 to a high number of decimal places.



