18. $\mathbf{3 / 2 0}$
18.1. Having discussed $\mathbf{Z}[\sqrt{n}]$ for squarefree $n \geq 1$, and the Gaussian integers $\mathbf{Z}[i]$, we turn to the study of

$$
\mathbf{Z}[\sqrt{-n}]=\{x+y \sqrt{-n} \mid x, y \in \mathbf{Z}\} \quad \text { for squarefree } n \geq 2 .
$$

We might expect $\mathbf{Z}[\sqrt{-n}]$ to behave exactly like $\mathbf{Z}[i]$. But in fact, various naive analogies fail, starting with long division.
18.2. As motivation, let's prove that long division works in $\mathbf{Z}[i]$. Recall the statement from Theorem 16.7: For any $\alpha, \beta \in \mathbf{Z}[i]$ with $\beta \neq 0$, there are $\mu, \rho \in \mathbf{Z}[i]$ such that $\alpha=\mu \beta+\rho$ and $\mathbf{N}(\rho)<\mathbf{N}(\beta)$.

Proof of Theorem 16.7. Consider the set of all multiples of β in $\mathbf{Z}[i]$, i.e., the products $\mu \beta$ as we run over all $\mu \in \mathbf{Z}[i]$. Since $\beta \neq 0$, these form a square lattice in the complex plane:

It is a tilted sublattice of $\mathbf{Z}[i]$. Thus, α must live in (the closure of) one of these squares. To finish the proof, we must show that the distance from α to the nearest multiple of β is at most $|\beta|$. Indeed, the farthest point in a square from any of the vertices is the center. The distance from the center to any vertex is

$$
\sqrt{2\left(\frac{1}{2}|\beta|\right)^{2}}=|\beta| \sqrt{\frac{1}{2}}<|\beta|
$$

as needed.
18.3. Can we generalize this proof to $\mathbf{Z}[\sqrt{-2}]$? Yes. In what follows, we define the norm on $\mathbf{Z}[\sqrt{-2}]$ according to $\mathbf{N}(x+y \sqrt{-2})=x^{2}+2 y^{2}$.

Theorem 18.1. For any $\alpha, \beta \in \mathbf{Z}[\sqrt{-2}]$ with $\beta \neq 0$, there are $\mu, \rho \in \mathbf{Z}[\sqrt{-2}]$ such that $\alpha=\mu \beta+\rho$ and $\mathbf{N}(\rho)<\mathbf{N}(\beta)$.

Proof. Imitate the preceding proof, but using the picture:

Here, the distance from the center of the rectangle to any vertex is

$$
\sqrt{\left(\frac{1}{2}|\beta|\right)^{2}+\left(\frac{1}{2}|\beta \sqrt{-2}|\right)^{2}}=|\beta| \sqrt{\frac{3}{4}}<|\beta|,
$$

so we win again.
18.4. But this strategy of proof will break down for $\mathbf{Z}[\sqrt{-3}]$, because

$$
\sqrt{\left(\frac{1}{2}|\beta|\right)^{2}+\left(\frac{1}{2}|\beta \sqrt{-3}|\right)^{2}}=|\beta| .
$$

It turns out that there is no reasonable notion of long division in $\mathbf{Z}[\sqrt{-3}]$! One can actually show that there are implications:

$$
\begin{aligned}
\text { long division } & \Longrightarrow \text { prime divisor property } \\
& \Longrightarrow \text { uniqueness of prime factorization up to units. }
\end{aligned}
$$

So we should expect the uniqueness of prime factorization to fail in $\mathbf{Z}[\sqrt{-3}]$.
Example 18.2. The number 4 has two distinct prime factorizations in $\mathbf{Z}[\sqrt{-3}]$:

$$
4=2 \cdot 2=(1+\sqrt{-3})(1-\sqrt{-3})
$$

Here, "distinct" means "differing by more than just units".
Why must 2 and $1 \pm \sqrt{-3}$ be prime in $\mathbf{Z}[\sqrt{-3}]$? They all have norm 4 , whose only divisors are $1,2,4$. And there are no integers x, y with $x^{2}+3 y^{2}=2$.
18.5. The Eisenstein integers We will fix this failure by replacing $\mathbf{Z}[\sqrt{-3}]$ with a larger set. In what follows, let

$$
\omega=-\frac{1}{2}+\frac{1}{2} \sqrt{-3} .
$$

Just as $\mathbf{Z}[i]$ forms a square lattice in the complex plane, the set

$$
\mathbf{Z}[\omega]=\{x+y \omega \mid x, y \in \mathbf{Z}\}
$$

forms a triangular lattice. Its elements are called Eisenstein integers.
18.6. At first, this looks strange: The formula for ω involves the fraction $\frac{1}{2}$, which is not an integer. Yet $\mathbf{Z}[\omega]$ still behaves very similarly to $\mathbf{Z}[\sqrt{-3}]$. It is closed under addition; more surprisingly, we claim it is also closed under multiplication. We compute

$$
(a+b \omega)(c+d \omega)=a c+(a d+b c) \omega+b d \omega^{2}
$$

so it is enough to show that $\omega^{2} \in \mathbf{Z}[\omega]$. It turns out that

$$
\omega^{2}=-\frac{1}{2}-\frac{1}{2} \sqrt{-3}=\bar{\omega},
$$

so $\omega^{2}=-1-\omega \in \mathbf{Z}[\omega]$, as needed.
18.7. What is the right notion of norm for $\mathbf{Z}[\omega]$? It is tempting to use

$$
\mathbf{N}(x+y \omega) \stackrel{!}{=} x^{2}+y^{2} \omega^{2}
$$

but this is neither multiplicative nor produces an integer, in general.
If we look back at $\mathbf{Z}[\sqrt{-n}]$, we notice that $\mathbf{N}(\alpha)=\alpha \bar{\alpha}$ for any $\alpha \in \mathbf{Z}[\sqrt{-n}]$. This formula gives the right generalization. For any $x, y \in \mathbf{Z}$, we have

$$
\begin{aligned}
(x+y \omega) \overline{(x+y \omega)} & =(x+y \omega)(x+y \bar{\omega}) \\
& =x^{2}+x y(\omega+\bar{\omega})+y^{2} \\
& =x^{2}-x y+y^{2},
\end{aligned}
$$

so we define the norm on $\mathbf{Z}[\omega]$ by

$$
\mathbf{N}(x+y \omega)=x^{2}-x y+y^{2} .
$$

This is multiplicative and produces integers-in fact, nonnegative integers. (Why?)
19. $3 / 22$
19.1. Last time we introduced

$$
\mathbf{Z}\left[\omega_{3}\right]=\left\{x+y \omega_{3} \mid x, y \in \mathbf{Z}\right\}
$$

where $\omega_{3}=-\frac{1}{2}+\frac{1}{2} \sqrt{-3}$.
Why don't we study, e.g., the set of numbers $x+y \omega_{2}$ where $x, y \in \mathbf{Z}$ and $\omega_{2}=-\frac{1}{2}+\frac{1}{2} \sqrt{-2}$? This set isn't closed under multiplication:

$$
\omega_{2}^{2}=\frac{1}{4}-\frac{1}{2} \sqrt{-2}-\frac{1}{2}=\frac{1}{4}-\frac{1}{2} \sqrt{2} .
$$

More generally, if $n \in \mathbf{N}$ is squarefree and $\omega_{n}=-\frac{1}{2}+\frac{1}{2} \sqrt{-n}$, then

$$
\left\{x+y \omega_{n} \mid x, y \in \mathbf{Z}\right\}
$$

is closed under multiplication when $n \equiv 3(\bmod 4)$, and otherwise not. The key is whether ω_{n}^{2} is a linear function of ω_{n} with integer coefficients.
19.2. In other words, we only want to write the definition

$$
\mathbf{Z}[\omega]=\{x+y \omega \mid x, y \in \mathbf{Z}\}
$$

when we know that $\omega^{2}+b \omega+c=0$ for some integers $b, c \in \mathbf{Z}$. In this case,

$$
\omega=\frac{-b \pm \sqrt{b^{2}-4 c}}{2}
$$

Moreover, this is only interesting when ω is itself not an integer. That means the discriminant $b^{2}-4 c$ should not be a perfect square.

As it turns out, all of the cases we've studied so far fall into this pattern:

ω	b	c	$b^{2}-4 c$	
\sqrt{n}	for squarefree $n>0$	0	$-n$	$4 n$
$\sqrt{-n}$	for squarefree $n>0$	0	n	$-4 n$
$-\frac{1}{2}+\frac{1}{2} \sqrt{-3}$		1	1	-3
$-\frac{1}{2}+\frac{1}{2} \sqrt{-7}$		1	2	-7

Note that we have a choice of \pm in the definition of ω, and above, we have been choosing the + sign. We always let $\bar{\omega}$ denote the other choice, so that

$$
\text { if } \omega=\frac{-b+\sqrt{b^{2}-4 c}}{2}, \quad \text { then } \quad \bar{\omega}=\frac{-b-\sqrt{b^{2}-4 c}}{2} \text {. }
$$

19.3. Quadratic integers Henceforth, we assume $\omega^{2}+b \omega+c=0$ for some integers b, c. Numbers that belong to $\mathbf{Z}[\omega]$ for some such ω are called quadratic integers. The set $\mathbf{Z}[\omega]$ is:
(1) Closed under both addition and multiplication.
(2) Endowed with an operation called conjugation. The conjugate of $\alpha=$ $x+y \omega$ is $\bar{\alpha}=x+y \bar{\omega}$.
(3) Endowed with a function $\mathbf{N}: \mathbf{Z}[\omega] \rightarrow \mathbf{Z}$ called its norm and defined by

$$
\mathbf{N}(\alpha)=\alpha \bar{\alpha}
$$

(4) Endowed with a notion of divisibility.
(5) Endowed with a notion of units: the elements u that divide 1. Equivalently, $\mathbf{N}(u)= \pm 1$.

Note that the text above Stillwell exercise 6.1.2 has a typo: It claims that for squarefree n, the units of $\mathbf{Z}[\sqrt{n}]$ are the elements of norm 1 , but when n is positive, elements of norm -1 also exist.
(6) Endowed with a notion of primes: the non-unit elements α such that if $\alpha=\beta \gamma$ for some $\beta, \gamma \in \mathbf{Z}[\omega]$, then either β or γ must be a unit.
19.4. Note that ω determines the pair of integers (b, c), hence determines the discriminant $D=b^{2}-4 c$. It turns out that conversely, the discriminant determines the set $\mathbf{Z}[\omega]$, or equivalently, the unordered pair $\{\omega, \bar{\omega}\}$.

When D is positive, there are infinitely many units in $\mathbf{Z}[\omega]$, and in fact, infinitely many units u such that $\mathbf{N}(u)=1$. Solving this equation for u is equivalent to solving a Pell-like equation.

When D is negative, there are finitely many units in $\mathbf{Z}[\omega]$. We saw that $\mathbf{Z}[i]$ has four, and $\mathbf{Z}\left[\omega_{3}\right]$ has six. In the rest of these cases, there are only two units: 1 and -1 .
19.5. The Heegner discriminants One of the big questions of 19th-century number theory was:

Question 19.1. When does $\mathbf{Z}[\omega]$ have uniqueness of prime factorization?
In the case where D is negative, the problem is solved. By work of Baker, Stark, and Heegner, there are exactly nine negative discriminants for which $\mathbf{Z}[\omega]$ has unique prime factorization:

$$
\begin{equation*}
D=-3,-4,-7,-8,-11,-19,-43,-67,-163 . \tag{19.1}
\end{equation*}
$$

Note that $D=-4$ corresponds to $\mathbf{Z}[i]$, and $D=-8$ to $\mathbf{Z}[\sqrt{-2}]$.
It is not known whether there are infinitely many positive discriminants for which $\mathbf{Z}[\omega]$ has unique prime factorization. Amazingly, it is conjectured to happen for 76% of the possibilities, in some precise asymptotic sense.
19.6. The discriminants in the list (19.1) have some strange properties. As an example, calculate $e^{\pi \sqrt{163}}$ to a high number of decimal places.

