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18. 3/20

18.1. Having discussed ZŒ
p
n� for squarefree n � 1, and the Gaussian integers

ZŒi �, we turn to the study of

ZŒ
p
�n� D fx C y

p
�n j x; y 2 Zg for squarefree n � 2:

We might expect ZŒ
p
�n� to behave exactly like ZŒi �. But in fact, various naive

analogies fail, starting with long division.

18.2. As motivation, let’s prove that long division works in ZŒi �. Recall the
statement from Theorem 16.7: For any ˛; ˇ 2 ZŒi � with ˇ ¤ 0, there are
�; � 2 ZŒi � such that ˛ D �ˇ C � and N.�/ < N.ˇ/.

Proof of Theorem 16.7. Consider the set of all multiples of ˇ in ZŒi �, i.e., the
products �ˇ as we run over all � 2 ZŒi �. Since ˇ ¤ 0, these form a square
lattice in the complex plane:

It is a tilted sublattice of ZŒi �. Thus, ˛ must live in (the closure of) one of these
squares. To finish the proof, we must show that the distance from ˛ to the nearest
multiple of ˇ is at most jˇj. Indeed, the farthest point in a square from any of
the vertices is the center. The distance from the center to any vertex isq

2.1
2
jˇj/2 D jˇj

q
1
2
< jˇj;

as needed.

18.3. Can we generalize this proof to ZŒ
p
�2�? Yes. In what follows, we define

the norm on ZŒ
p
�2� according to N.x C y

p
�2/ D x2 C 2y2.

Theorem 18.1. For any ˛; ˇ 2 ZŒ
p
�2� with ˇ ¤ 0, there are �; � 2 ZŒ

p
�2�

such that ˛ D �ˇ C � and N.�/ < N.ˇ/.

Proof. Imitate the preceding proof, but using the picture:
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Here, the distance from the center of the rectangle to any vertex isq
.1
2
jˇj/2 C .1

2
jˇ
p
�2j/2 D jˇj

q
3
4
< jˇj;

so we win again.

18.4. But this strategy of proof will break down for ZŒ
p
�3�, becauseq

.1
2
jˇj/2 C .1

2
jˇ
p
�3j/2 D jˇj:

It turns out that there is no reasonable notion of long division in ZŒ
p
�3�! One

can actually show that there are implications:

long division H) prime divisor property
H) uniqueness of prime factorization up to units:

So we should expect the uniqueness of prime factorization to fail in ZŒ
p
�3�.

Example 18.2. The number 4 has two distinct prime factorizations in ZŒ
p
�3�:

4 D 2 � 2 D .1C
p
�3/.1 �

p
�3/:

Here, “distinct” means “differing by more than just units”.
Why must 2 and 1˙

p
�3 be prime in ZŒ

p
�3�? They all have norm 4, whose

only divisors are 1; 2; 4. And there are no integers x; y with x2 C 3y2 D 2.

18.5. The Eisenstein integers We will fix this failure by replacing ZŒ
p
�3�

with a larger set. In what follows, let

! D �
1

2
C
1

2

p
�3:

Just as ZŒi � forms a square lattice in the complex plane, the set

ZŒ!� D fx C y! j x; y 2 Zg

forms a triangular lattice. Its elements are called Eisenstein integers.
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18.6. At first, this looks strange: The formula for ! involves the fraction 1
2
,

which is not an integer. Yet ZŒ!� still behaves very similarly to ZŒ
p
�3�. It

is closed under addition; more surprisingly, we claim it is also closed under
multiplication. We compute

.aC b!/.c C d!/ D ac C .ad C bc/! C bd!2;

so it is enough to show that !2 2 ZŒ!�. It turns out that

!2 D �
1

2
�
1

2

p
�3 D N!;

so !2 D �1 � ! 2 ZŒ!�, as needed.

18.7. What is the right notion of norm for ZŒ!�? It is tempting to use

N.x C y!/ Š
D x2 C y2!2;

but this is neither multiplicative nor produces an integer, in general.
If we look back at ZŒ

p
�n�, we notice that N.˛/ D ˛ N̨ for any ˛ 2 ZŒ

p
�n�.

This formula gives the right generalization. For any x; y 2 Z, we have

.x C y!/.x C y!/ D .x C y!/.x C y N!/

D x2 C xy.! C N!/C y2

D x2 � xy C y2;

so we define the norm on ZŒ!� by

N.x C y!/ D x2 � xy C y2:

This is multiplicative and produces integers—in fact, nonnegative integers.
(Why?)
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19. 3/22

19.1. Last time we introduced

ZŒ!3� D fx C y!3 j x; y 2 Zg;

where !3 D �12 C
1
2

p
�3.

Why don’t we study, e.g., the set of numbers x C y!2 where x; y 2 Z and
!2 D �

1
2
C

1
2

p
�2? This set isn’t closed under multiplication:

!22 D
1

4
�
1

2

p
�2 �

1

2
D
1

4
�
1

2

p
2:

More generally, if n 2 N is squarefree and !n D �12 C
1
2

p
�n, then

fx C y!n j x; y 2 Zg

is closed under multiplication when n � 3 .mod 4/, and otherwise not. The key
is whether !2n is a linear function of !n with integer coefficients.

19.2. In other words, we only want to write the definition

ZŒ!� D fx C y! j x; y 2 Zg

when we know that !2 C b! C c D 0 for some integers b; c 2 Z. In this case,

! D
�b ˙

p
b2 � 4c

2
:

Moreover, this is only interesting when ! is itself not an integer. That means the
discriminant b2 � 4c should not be a perfect square.

As it turns out, all of the cases we’ve studied so far fall into this pattern:

! b c b2 � 4c
p
n for squarefree n > 0 0 �n 4n

p
�n for squarefree n > 0 0 n �4n

�
1
2
C

1
2

p
�3 1 1 �3

�
1
2
C

1
2

p
�7 1 2 �7

Note that we have a choice of˙ in the definition of !, and above, we have been
choosing theC sign. We always let N! denote the other choice, so that

if ! D
�b C

p
b2 � 4c

2
; then N! D

�b �
p
b2 � 4c

2
:
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19.3. Quadratic integers Henceforth, we assume !2 C b! C c D 0 for some
integers b; c. Numbers that belong to ZŒ!� for some such ! are called quadratic
integers. The set ZŒ!� is:

(1) Closed under both addition and multiplication.
(2) Endowed with an operation called conjugation. The conjugate of ˛ D

x C y! is N̨ D x C y N!.
(3) Endowed with a function N W ZŒ!�! Z called its norm and defined by

N.˛/ D ˛ N̨ :

(4) Endowed with a notion of divisibility.
(5) Endowed with a notion of units: the elements u that divide 1. Equivalently,

N.u/ D ˙1.
Note that the text above Stillwell exercise 6.1.2 has a typo: It claims that

for squarefree n, the units of ZŒ
p
n� are the elements of norm 1, but when

n is positive, elements of norm �1 also exist.
(6) Endowed with a notion of primes: the non-unit elements ˛ such that if

˛ D ˇ
 for some ˇ; 
 2 ZŒ!�, then either ˇ or 
 must be a unit.

19.4. Note that ! determines the pair of integers .b; c/, hence determines
the discriminant D D b2 � 4c. It turns out that conversely, the discriminant
determines the set ZŒ!�, or equivalently, the unordered pair f!; N!g.

When D is positive, there are infinitely many units in ZŒ!�, and in fact,
infinitely many units u such that N.u/ D 1. Solving this equation for u is
equivalent to solving a Pell-like equation.

When D is negative, there are finitely many units in ZŒ!�. We saw that ZŒi �
has four, and ZŒ!3� has six. In the rest of these cases, there are only two units: 1
and �1.

19.5. The Heegner discriminants One of the big questions of 19th-century
number theory was:

Question 19.1. When does ZŒ!� have uniqueness of prime factorization?

In the case where D is negative, the problem is solved. By work of Baker,
Stark, and Heegner, there are exactly nine negative discriminants for which ZŒ!�
has unique prime factorization:

D D �3;�4;�7;�8;�11;�19;�43;�67;�163:(19.1)

Note that D D �4 corresponds to ZŒi �, and D D �8 to ZŒ
p
�2�.

It is not known whether there are infinitely many positive discriminants for
which ZŒ!� has unique prime factorization. Amazingly, it is conjectured to
happen for 76% of the possibilities, in some precise asymptotic sense.

19.6. The discriminants in the list (19.1) have some strange properties. As an
example, calculate e�

p
163 to a high number of decimal places.


