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12. 3/6

12.1. Test 1 was out of 150 points. Scores � 120 are A-range, scores � 100
are B-range, and scores � 80 are C-range. You are welcome to reach out to me if
you’re worried about how you’re doing, and/or deciding whether or not to drop
the course.

12.2. A comment on Non-Book Problem 1 from Problem Set 2. Many people
tried to apply the well-ordering principle to the set N2 of ordered pairs of natural
numbers. However, the principle only applies to N.

The point is that a priori, it isn’t clear what it means for an ordered pair of
numbers to be “smallest”. In order to do that, we need to measure an ordered pair
.x1; x2/ by a single number. There are a couple of ways to do so. One option that
helps with Non–Book Problem 1 is x1x2. That is, the well-ordering principle
can be applied to the set

fn 2 N j n D x1x2 for some pair .x1; x2/ 2 N2 that solves x2
1 D 2x

2
2g:

12.3. Lattice-point problems One of our initial topics was linear Diophantine
equations: that is, solving ax C by D c for integers x; y.

The name comes from the fact that ax C by D c determines a line in the
.x; y/-plane. If a lattice point is a point whose coordinates are integers, then the
problem can be restated geometrically as the problem of finding all lattice points
on the line.

So next we ask: Given c, which lattice points live on the circle x2 C y2 D c?
Given a; b; c, which lattice points live on the curve ax2 C by2 D c?

12.4. A composition law Apparently, Fermat got interested in integers of the
form x2 C y2 after learning, from Diophantus’ Arithmetica, that the set of such
numbers is stable under multiplication. That is:

Proposition 12.1. IfM;N 2 Z are each a sum of two perfect squares, thenMN
is a sum of two perfect squares.

The proof is to stare at the magic identity:

.a2
C b2/.c2

C d 2/ D .ac � bd/2 C .ad C bc/2:

But how would you guess that this identity is true?

12.5. We will explain the proof in two ways, both anachronistic.

12.5.1. The first way involves linear algebra. Observe that

det
�
x y

�y x

�
D x2

C y2:

Next, observe that�
a b

�b a

��
c d

�d c

�
D

�
ac � bd ad C bc

�.ad C bc/ ac � bd

�
:
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Finally, recall that the determinant of a product of matrices is the product of their
determinants.

Viewing 2 � 2 matrices as linear transformations of a 2-dimensional vector
space, or plane, we can view this proof as a interpretation of the magic identity
via the geometry of the Euclidean plane. But how do you come up with these
matrices in the first place?

12.5.2. The second way gives a simpler interpretation of the matrices. Observe
that if z D xC iy, where i D

p
�1, then the absolute value of z is its magnitude

as a vector in the complex plane, which is

jzj D x2
C y2:

Next, observe that

.aC ib/.c C id/ D .ac � bd/C i.ad C bc/

as complex numbers. Finally, recall that the absolute value of a product of two
complex numbers is the product of their absolute values.

12.6. Note that the magic identity was discovered in ancient times, whereas
complex numbers were not accepted until the Renaissance at earliest (e.g., by
Cardano), and matrix multiplication was not introduced until the 19th century
(by Grassmann).

The best use of abstraction is not to make things more sophisticated, but to
make things simpler.

12.7. More general composition laws From his book, we can infer that Dio-
phantus, in the 3rd century, knew the magic identity.

Brahmagupta, in the 6th century, discovered the following generalization:

.a2
C nb2/.c2

C nd 2/ D .ac � nbd/2 C n.ad C bc/2:(12.1)

Fermat knew this identity as well. It led him to study not just integers of the form
x2 C y2, but of the forms x2 C 2y2 and x2 C 3y2.

In the 19th century, Gauss discovered an even more general composition law
for integers of the form Ax2CBxyCCy2. These polynomials are called binary
quadratic forms.

In the early 2000s, in his PhD thesis, the Fields Medalist Manjul Bhargava
discovered at least thirteen other phenomena that could be called composition
laws for other polynomial expressions of higher degree.

12.8. We will stick to the forms that interested Brahmagupta, namely, x2˙ny2

for various n 2 N.
Note that it’s enough to study the case where n is squarefree, meaning it has

no perfect-square divisors. For if n D k2n0, then x2 ˙ ny2 D x2 ˙ n0.ky/2.
The curve x2˙ny2 D c is an ellipse when the sign is positive, and a hyperbola

when it is negative. There is a huge difference between these cases. We will
study the negative case first.
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12.9. To motivate this case: First, observe that since n is squarefree, a general-
ization of Non-Book Problem 1 on Problem Set 2 shows that

p
n is not rational.

The lattice points on the hyperbola

x2
� ny2

D 1

are closely related to the problem of approximating
p
n by rational numbers.

Indeed, rearranging gives

x

y
D

s
nC

1

y2
D
p
nCO

�
1

y2

�
;

where O
�

1
y2

�
means an error term that decays quadratically in the size of y.

12.10. The curve x2�ny2 D 1 is called Pell’s equation. Here is another reason
it is interesting: If .x; y/ D .a; b/ and .x; y/ D .c; d/ are two points on the
curve, then by substituting �n for n in (12.1), we see that

.x; y/ D .ac C nbd; ad C bc/

lives on the curve as well.
In fact, under the operation

.a; b/ ? .c; d/ :D .ac C nbd; ad C bc/;

the points on Pell’s curve (for fixed squarefree n 2 N) form an infinite group.
We will return to this fact later this week.
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13. 3/8

13.1. Fix squarefree n 2 N. We’ve discussed the lattice points on the curve

x2
� ny2

D 1:

It always contains the lattice points .˙1; 0/. Can we find another latttice point
when n D 2? When n D 3? When n D 5? Our next goal is to answer this
question.

13.2. Recall that after we insert some minus signs, Brahmagupta’s identity is

.a2
� nb2/.c2

� nd 2/ D .ac C nbd/2 � n.ad C bc/2:(13.1)

We described this as a composition law.
More simply, the set of numbers that take the form x2�ny2 for some x; y 2 Z

is closed under multiplication.
If we allow ourselves to use

p
n as well as integers, then we can factor both

sides of (13.1). Thus it follows from the simpler identities

.aC b
p
n/.c C d

p
n/ D .ac C nbd/C .ad C bc/

p
n;

.a � b
p
n/.c � d

p
n/ D .ac C nbd/ � .ad C bc/

p
n:

13.3. Norms That is, the following set (pronounced: “Z-adjoin-
p
n”) is also

closed under multiplication:

ZŒ
p
n� D fx C y

p
n 2 R j x; y 2 Zg:

Brahmagupta implies that the map N W ZŒ
p
n�! Z defined by

N.x C y
p
n/ D x2

� ny2

preserves multiplication:

N..aC b
p
n/.c C d

p
n// D N.aC b

p
n/N.c C d

p
n/:

It is called the norm map.

13.4. We also see that ZŒ
p
n� is closed under addition and subtraction:

.aC b
p
n/˙ .c C d

p
n/ D .a˙ c/C .b ˙ d/

p
n:

It can’t be closed under division, because it contains 0. What if we exclude 0?
Does every nonzero element of ZŒ

p
n� have a multiplicative inverse?

No: because ZŒ
p
n� contains Z, and most nonzero elements of Z do not have

a multiplicative inverse. Indeed, if a > 1, then 0 < 1
a
< 1, but there are no

integers in this interval.
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13.5. The funny thing is, ZŒ
p
n� does have elements strictly between 0 and 1.

Lemma 13.1. Distinct pairs .x; y/ 2 Z2 give distinct numbers x C y
p
n (as

long as n is squarefree).

Theorem 13.2. For any M 2 N, there is a pair .x; y/ 2 Z2 such that

jx � y
p
nj <

1

M
:

In fact, we can simultaneously ensure jx C y
p
nj < 3M

p
n.

Proof. By the pigeonhole principle. For each k 2 N, let

ak D dk
p
ne;

�k D ak � k
p
n 2 Œ0; 1/:

By the lemma, the numbers �0; �1; : : : ; �M must be pairwise distinct. But there
are M C 1 of them. So two of them, say �k and �`, must differ by a value strictly
between 0 and 1

M
. Now, taking x D a` � ak and y D ` � k gives

jx � y
p
nj D j�` � �kj <

1

M
:

Note that y D ` � k �M . Therefore

jx C y
p
nj � jx � y

p
nj C j2y

p
nj <

1

M
C 2M

p
n � 3M

p
n:

Corollary 13.3. There are infinitely many pairs .x; y/ 2 Z2 such that

jx2
� ny2

j < 3
p
n:

Proof. The theorem shows that for any M 2 N, we can pick x; y 2 Z such that

jx � y
p
nj <

1

M
;

jx2
� ny2

j <
1

M
.3M
p
n/ D 3

p
n:

In general, suppose we’ve found M D Mi and .x; y/ D .xi ; yi/ satisfying
these inequalities. Pick MiC1 so that 1

MiC1
< jxi � yi

p
nj. Then we can find

xiC1; yiC1 2 Z such that M DMiC1 and .x; y/ D .xiC1; yiC1/ also satisfy the
inequalities. But now,

jxiC1 � yiC1

p
nj <

1

MiC1

< jxi � yi

p
nj:

So by induction, we get an infinite sequence of pairwise-distinct solutions .x; y/
to the inequality in the original statement.
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14. 3/10

14.1. Last time, we showed that for a fixed squarefree n 2 N, there are infinitely
many lattice points .x; y/ such that

�3
p
n < x2

� ny2 < 3
p
n:

So by the pigeonhole principle, there is some integer

�3
p
n < N < 3

p
n

such that x2 � ny2 D N for infinitely many pairs .x; y/ 2 Z2.
Applying the principle again, there is some integer 0 � A < N such that

infinitely many of these pairs also satisfy x � A .mod N/.
Applying the principle yet again, there is some integer 0 � B < N such that

infinitely many of the latter pairs also satisfy y � B .mod N/.
So in particular, there are distinct lattice points .a; b/ ¤ ˙.u; v/ such that

a2
� nb2

D u2
� nv2

D N;

a � u � A .mod N/;
b � v � B .mod N/

simultaneously. Since
p
n is irrational, N ¤ 0. Hence uC v

p
n ¤ 0.

Lemma 14.1. In the situation above,

a � b
p
n

u � v
p
n
2 ZŒ
p
n�:

Proof. Expand:

a � b
p
n

u � v
p
n
D
.a � b

p
n/.uC v

p
n/

u2 � nv2
D
.au � nbv/C .av � bu/

p
n

u2 � nv2
:

The last denominator is ˙N . So we must show that N divides au � nbv and
av�bu. Indeed, a � u .mod N/ and b � v .mod N/ together imply av � bu
.mod N/, and also, au � nbv � a2 � nb2 � 0 .mod N/.

Theorem 14.2. For squarefree n 2 N, the Pell equation x2 � ny2 D 1 has a
solution .x; y/ 2 Z2 distinct from .˙1; 0/.

Proof. In the situation above, we can write

a � b
p
n

u � v
p
n
D x � y

p
n

for some x; y 2 Z. Therefore,

x2
� ny2

D N.x � y
p
n/ D

N.a � b
p
n/

N.u � v
p
n/
D
N

N
D 1:

Finally, .a; b/ ¤ ˙.u; v/ implies a � b
p
n ¤ ˙.u � v

p
n/. Thus .x; y/ ¤

.˙1; 0/.
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14.2. The “Pell group” In particular, the set of elements�
x C y

p
n

ˇ̌̌̌
x; y 2 Z;
x2 � ny2 D 1

�
� ZŒ
p
n�

forms an infinite group under multiplication: for, if it contains x C y
p
n ¤ ˙1,

then it also contains the powers .x C y
p
n/k for all k 2 Z, and these will be

pairwise distinct. Note that in this case, .x C y
p
n/�1 D x � y

p
n.

Corollary 14.3. For squarefree n 2 N, the Pell equation x2 � ny2 D 1 has
infinitely many solutions.

14.3. The topograph of a quadratic form We mentioned earlier that x2 � ny2

is a special case of a broader class of polynomials, the binary quadratic forms
Ax2 C Bxy C Cy2.

John Horton Conway found a beautiful way to visualize the structure among
the values of a binary quadratic form on integers x; y. First draw an infinite
binary tree in the plane. It divides the plane into regions, which we label by pairs
.x; y/ 2 Z2. The rules are:

(1) We start with .0; 1/ and .1; 0/ at the far left.
(2) If a region touches two regions we’ve labeled .x; y 0/ and .x0; y 0/, then the

new region is labeled .x C x0; y C y 0/.
Thus:

Now in each region, replace the label .x; y/ with the value Ax2 C Bxy C Cy2.
The result is the map (in Conway’s lingo, topograph) of the quadratic form. For
example, Stillwell Figure 5.7 is the map of the quadratic form x2 � 3y2.

Theorem 14.4 (Conway). There is a unique “river” that divides the negative
values from the positive values. Moreover, the values along both “riverbanks”
are periodic.


