10. $2 / 27$
10.1. Subgroups Let (G, \star) be a group. A subgroup of (G, \star) is a group of the form (H, \star), where H is a subset of G and the operation \star remains the same. Explicitly, this means:
(1) H is closed under \star. That is, $x, y \in H$ implies $x \star y \in H$.
(2) H contains the identity element.
(3) H is closed under inversion. That is, $x \in H$ implies $x^{-1} \in H$.

Note that if (1) holds, then \star is automatically associative as a binary operation on H. Also note that if H is nonempty, then (1) and (3) together imply (2), because $x \star x^{-1}$ is always the identity.

We will often abuse notation by omitting the operation \star when we refer to the subgroup.

Example 10.1. What are the subgroups of $(\mathbf{Z},+)$? They all take the form $(m \mathbf{Z},+)$, where $m \mathbf{Z}=\{m k \mid k \in \mathbf{Z}\}$. In particular, note that $0 \mathbf{Z}=\{0\}$.

Example 10.2. What are the subgroups of $(\mathbf{Z} / m \mathbf{Z},+)$? They all take the form $d \mathbf{Z} / m \mathbf{Z}$. It turns out that we can always pick d so that it divides m.

Example 10.3. Endow $\mathbf{R}^{2}=\mathbf{R} \times \mathbf{R}$ with coordinate-wise addition. Then it has many different kinds of subgroups. For instance, the axes $\{(x, 0\} \mid x \in \mathbf{R}\}$ and $\{(0, y) \mid y \in \mathbf{R}\}$ give us subgroups, but so does the line $\{(x, x) \mid x \in \mathbf{R}\}$. There are also subgroups like $\left(\mathbf{Z}^{2},+\right)$.
10.2. What are the subgroups of $\left((\mathbf{Z} / m \mathbf{Z})^{\times}, \times\right)$?

Example 10.4. We saw earlier that $\left((\mathbf{Z} / 5 \mathbf{Z})^{\times}, \times\right)$is isomorphic to $(\mathbf{Z} / 4 \mathbf{Z},+)$. A choice of isomorphism $f: \mathbf{Z} / 4 \mathbf{Z} \rightarrow(\mathbf{Z} / 5 \mathbf{Z})^{\times}$gives an explicit bijection from the set of subgroups of $\mathbf{Z} / 4 \mathbf{Z}$ to the set of subgroups of $(\mathbf{Z} / 5 \mathbf{Z})^{\times}$: namely, $(H,+) \mapsto(f(H), \times)$.

Example 10.5. The elements of $(\mathbf{Z} / 8 \mathbf{Z})^{\times}$are the congruence classes of 1, 3, 5, 7 . We saw earlier that $3^{2} \equiv 5^{2} \equiv 7^{2} \equiv 1(\bmod 8)$. So, with the usual abuse of notation, $\{1,3\}$ and $\{1,5\}$ and $\{1,7\}$ all define subgroups of $(\mathbf{Z} / 8 \mathbf{Z})^{\times}$. Note that each of these subgroups is isomorphic to $(\mathbf{Z} / 2 \mathbf{Z},+)$. We can view them as the images of three different homomorphisms $\mathbf{Z} / 2 \mathbf{Z} \rightarrow(\mathbf{Z} / 8 \mathbf{Z})^{\times}$.
10.3. In general, if $f:\left(G^{\prime}, \star^{\prime}\right) \rightarrow(G, \star)$ is any homomorphism, then the image $f\left(G^{\prime}\right)$ always forms a subgroup of G.

Note that f restricts to a surjective map $G^{\prime} \rightarrow f\left(G^{\prime}\right)$. If f happens to be injective, then the restricted map is both injective and surjective, so it is an isomorphism from G^{\prime} onto the subgroup $f\left(G^{\prime}\right)$.

Conversely, every subgroup of G is the image of an injective homomorphism: namely, its inclusion into G.

Intuitively, this means subgroups of G carry the same information as injective homomorphisms into G.

10.4. Last time, we proved that if $a \in G$ satisfies

$$
a^{\star k}=e,
$$

then there is a well-defined homomorphism:

$$
\begin{align*}
(\mathbf{Z} / k \mathbf{Z},+) & \rightarrow(G, \star) \tag{10.1}\\
n+k \mathbf{Z} & \mapsto a^{\star n}
\end{align*}
$$

When is it injective?
Lemma 10.6. If k is the order of a in G, then (10.1) is injective.
Proof. We must show that if $a^{\star n}=a^{\star n^{\prime}}$, then $n \equiv n^{\prime}(\bmod k)$. By long division, $n^{\prime}-n=k q+r$ for some $q, r \in \mathbf{Z}$ with $0 \leq r<k$. We see that

$$
a^{\star r}=\left(a^{\star k}\right)^{\star q} \star a^{\star r}=a^{\star(k q+r)}=a^{\star\left(n-n^{\prime}\right)}=a^{\star n} \star\left(a^{-1}\right)^{\star n^{\prime}}=e .
$$

So k being the order of a forces $r=0$.
10.5. Below, we write $\operatorname{ord}_{G}(a)$ for the order of a in G.

Theorem 10.7. Let G, H be groups. Let $a \in G$ and $b \in H$. Then

$$
\operatorname{ord}_{G \times H}(a, b)=\operatorname{lcm}\left(\operatorname{ord}_{G}(a), \operatorname{ord}_{H}(b)\right) .
$$

Proof. Let $k=\operatorname{ord}_{G}(a)$ and $\ell=\operatorname{ord}_{H}(b)$. By Lemma 10.6, there are injective homomorphisms $(\mathbf{Z} / k \mathbf{Z},+) \rightarrow(G, \star)$ and $(\mathbf{Z} / \ell \mathbf{Z},+) \rightarrow(H, *)$. Together, they define an injective homomorphism $\mathbf{Z} / k \mathbf{Z} \times \mathbf{Z} / \ell \mathbf{Z} \rightarrow G \times H$, where the group laws on the domain and range are defined coordinate-wise.

By our earlier discussion, the image of this map is a subgroup of $G \times H$ isomorphic to $(\mathbf{Z} / k \mathbf{Z} \times \mathbf{Z} / \ell \mathbf{Z},+)$. As it sends $(1,1) \mapsto(a, b)$, we deduce:

$$
\operatorname{ord}_{G \times H}(a, b)=\operatorname{ord}_{\mathbf{Z} / k \mathbf{Z} \times \mathbf{Z} / \ell \mathbf{Z}}(1,1) .
$$

The right-hand side is the smallest natural number n such that $n \equiv 0(\bmod k)$ and $n \equiv 0(\bmod \ell)$. This is the very definition of $\operatorname{lcm}(k, \ell)$.
10.6. Let us calculate the multiplicative order of $23 \bmod 105$, i.e., its order in the group $\left((\mathbf{Z} / 105 \mathbf{Z})^{\times}, \times\right)$.

Note that $105=3(5)(7)$. Applying the Chinese Remainder Theorem twice,

$$
(\mathbf{Z} / 105 \mathbf{Z})^{\times} \quad \text { is isomorphic to } \quad(\mathbf{Z} / 3 \mathbf{Z})^{\times} \times(\mathbf{Z} / 5 \mathbf{Z})^{\times} \times(\mathbf{Z} / 7 \mathbf{Z})^{\times} .
$$

Applying Theorem 10.7 twice,

$$
\operatorname{ord}_{105}(23)=\operatorname{lcm}\left(\operatorname{ord}_{3}(23), \operatorname{ord}_{5}(23), \operatorname{ord}_{7}(23)\right) .
$$

Finally, we calculate $\operatorname{ord}_{3}(23)=\operatorname{ord}_{3}(2)=2$ and $\operatorname{ord}_{5}(23)=\operatorname{ord}_{5}(3)=4$ and $\operatorname{ord}_{7}(23)=\operatorname{ord}_{7}(2)=3$. So the answer is $\operatorname{ord}_{105}(23)=\operatorname{lcm}(2,3,4)=12$.
11. $3 / 1$
11.1. What are the subgroups of $(\mathbf{Z} / 14 \mathbf{Z},+)$?
(1) $\{0\}$.
(2) $\{0,7\}$.
(3) $\{0,2,4,6,8,10,12\}$.
(4) $\mathbf{Z} / 14 \mathbf{Z}$ itself.
(As usual, we are writing a to mean $a+14 \mathbf{Z}$.)
11.2. How about $\left((\mathbf{Z} / 14 \mathbf{Z})^{\times}, \times\right)$? Note that $(\mathbf{Z} / 14 \mathbf{Z})^{\times}=\{1,3,5,9,11,13\}$.
(1) $\{1\}$.
(2) $\{1,13\}$.
(3) $\{1,9,11\}$.
(4) $(\mathbf{Z} / 14 \mathbf{Z})^{\times}$itself.
11.3. Note that $|\mathbf{Z} / 14 \mathbf{Z}|=14$ and $\left|(\mathbf{Z} / 14 \mathbf{Z})^{\times}\right|=6$. What do you notice about the sizes of their subgroups?

Theorem 11.1 (Lagrange). If (G, \star) is a finite group and $H \subseteq G$ defines a subgroup, then $|H|$ divides $|G|$.

The idea of the proof is to study the subsets of G that look like $g \star H=$ $\{g \star x \mid x \in H\}$. These are called the (left) cosets of H.

Proof. For any $g, g^{\prime} \in G$, we claim that $g \star H$ and $g^{\prime} \star H$ are either identical or disjoint. This will imply that as we run over $g \in G$, the cosets $g \star H$ partition G into pairwise-disjoint subsets. As they all have the same size as H, this in turn will imply that $|H|$ divides $|G|$.

So it remains to show that if $g \star H$ and $g^{\prime} \star H$ intersect, then they are identical. If they share an element a, then we can write $a=g \star h=g^{\prime} \star h^{\prime}$ for some $h, h^{\prime} \in H$. Since H is closed under \star, we see that

$$
g \star H=g \star(h \star H)=a \star H=g^{\prime} \star\left(h^{\prime} \star H\right)=g^{\prime} \star H,
$$

proving the claim.
Corollary 11.2. If G is finite and $a \in G$, then $\operatorname{ord}_{G}(a)$ divides $|G|$.
Proof. The set of powers $a^{\star n}$, as we run over integers n, forms a subgroup of G.

Corollary 11.3 (Euler). If $m \in \mathbf{N}$ and $a \in \mathbf{Z}$ is coprime to m, then $\operatorname{ord}_{m}(a)$ divides $\varphi(m)$. In particular, $a^{\varphi(m)} \equiv 1(\bmod m)$.

Proof. By definition, $\varphi(m)=(\mathbf{Z} / m \mathbf{Z})^{\times}$. So the first statement follows from the previous corollary by taking $G=(\mathbf{Z} / m \mathbf{Z})^{\times}$. To get the second statement, write $a^{\varphi(m)}=\left(a^{\operatorname{ord}_{m}(a)}\right)^{\varphi(m) / \operatorname{rrd}_{m}(a)}$.

Corollary 11.4 (Fermat). If p is prime and does not divide $a \in \mathbf{Z}$, then $a^{p-1} \equiv 1$ $(\bmod p)$.

Proof. Recall that $\varphi(p)=p-1$.
11.4. Bonus material to the lecture Below, we gather everything known about $\left((\mathbf{Z} / m \mathbf{Z})^{\times}, \times\right)$.
11.4.1. First, if $m=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$, then by repeated application of the Chinese Remainder Theorem,

$$
(\mathbf{Z} / m \mathbf{Z})^{\times} \quad \text { is isomorphic to } \quad\left(\mathbf{Z} / p_{1}^{e_{1}} \mathbf{Z}\right)^{\times} \times \cdots \times\left(\mathbf{Z} / p_{r}^{e_{r}} \mathbf{Z}\right)^{\times}
$$

In particular, $\operatorname{ord}_{m}(a)=\operatorname{lcm}\left(\operatorname{ord}_{p_{1}^{e_{1}}}(a), \ldots, \operatorname{ord}_{p_{r}^{e_{r}}}(a)\right)$.
11.4.2. By Legendre's Theorem, the size of any subgroup of $\left(\mathbf{Z} / p^{e} \mathbf{Z}\right)^{\times}$must divide $\varphi\left(p^{e}\right)$. The result below is exercise 3.6.3 in Stillwell, assigned on Problem Set 3.

Theorem 11.5. For primes p and arbitrary $e \in \mathbf{N}$, we have

$$
\varphi\left(p^{e}\right)=p^{e-1}(p-1) .
$$

11.4.3. Recall that if a is a primitive root $\bmod p^{e}$, then

$$
\begin{aligned}
\left(\mathbf{Z} / \varphi\left(p^{e}\right) \mathbf{Z},+\right) & \rightarrow\left(\left(\mathbf{Z} / p^{e} \mathbf{Z}\right)^{\times}, \times\right) \\
n+\varphi\left(p^{e}\right) \mathbf{Z} & \mapsto a^{n}+p^{e} \mathbf{Z}
\end{aligned}
$$

is an isomorphism. It turns out:
Theorem 11.6. For odd primes p and arbitrary $e \in \mathbf{N}$, there is always a primitive root mod p^{e}.

Theorem 11.7. There is no primitive root mod 2^{e} when $e \geq 3$.
11.5. We sketch the $e=1$ case of Theorem 11.6.

For any $d \in \mathbf{N}$, let $\psi(d)$ be the number of invertible congruence classes $a+p \mathbf{Z}$ such that $\operatorname{ord}_{p}(a)=d$. By Corollary 11.2, the order of any element of $(\mathbf{Z} / p \mathbf{Z})^{\times}$must divide $\varphi(p)=p-1$, so by partitioning the elements of $(\mathbf{Z} / p \mathbf{Z})^{\times}$ according to their orders, we obtain

$$
p-1=\sum_{d \text { divides } p-1} \psi(d) .
$$

At the same time, by counting the number of fractions $\frac{a}{p-1}$ with $1 \leq a \leq p-1$ and denominator d in lowest terms, we see that

$$
p-1=\sum_{d \text { divides } p-1} \varphi(d) .
$$

So we are done if we can show that $\psi(d) \leq \varphi(d)$ for all d. This is what Stillwell does on page 62.

