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10. 2/27

10.1. Subgroups Let .G; ?/ be a group. A subgroup of .G; ?/ is a group of the
form .H; ?/, where H is a subset of G and the operation ? remains the same.
Explicitly, this means:

(1) H is closed under ?. That is, x; y 2 H implies x ? y 2 H .
(2) H contains the identity element.
(3) H is closed under inversion. That is, x 2 H implies x�1 2 H .

Note that if (1) holds, then ? is automatically associative as a binary operation on
H . Also note that if H is nonempty, then (1) and (3) together imply (2), because
x ? x�1 is always the identity.

We will often abuse notation by omitting the operation ? when we refer to the
subgroup.

Example 10.1. What are the subgroups of .Z;C/? They all take the form
.mZ;C/, where mZ D fmk j k 2 Zg. In particular, note that 0Z D f0g.

Example 10.2. What are the subgroups of .Z=mZ;C/? They all take the form
dZ=mZ. It turns out that we can always pick d so that it divides m.

Example 10.3. Endow R2 D R � R with coordinate-wise addition. Then it has
many different kinds of subgroups. For instance, the axes f.x; 0g j x 2 Rg and
f.0; y/ j y 2 Rg give us subgroups, but so does the line f.x; x/ j x 2 Rg. There
are also subgroups like .Z2;C/.

10.2. What are the subgroups of ..Z=mZ/�;�/?

Example 10.4. We saw earlier that ..Z=5Z/�;�/ is isomorphic to .Z=4Z;C/.
A choice of isomorphism f W Z=4Z ! .Z=5Z/� gives an explicit bijection
from the set of subgroups of Z=4Z to the set of subgroups of .Z=5Z/�: namely,
.H;C/ 7! .f .H/;�/.

Example 10.5. The elements of .Z=8Z/� are the congruence classes of 1; 3; 5; 7.
We saw earlier that 32 � 52 � 72 � 1 .mod 8/. So, with the usual abuse of
notation, f1; 3g and f1; 5g and f1; 7g all define subgroups of .Z=8Z/�. Note that
each of these subgroups is isomorphic to .Z=2Z;C/. We can view them as the
images of three different homomorphisms Z=2Z! .Z=8Z/�.

10.3. In general, if f W .G 0; ?0/ ! .G; ?/ is any homomorphism, then the
image f .G 0/ always forms a subgroup of G.

Note that f restricts to a surjective map G 0 ! f .G 0/. If f happens to be
injective, then the restricted map is both injective and surjective, so it is an
isomorphism from G 0 onto the subgroup f .G 0/.

Conversely, every subgroup of G is the image of an injective homomorphism:
namely, its inclusion into G.

Intuitively, this means subgroups of G carry the same information as injective
homomorphisms into G.



23

10.4. Last time, we proved that if a 2 G satisfies

a?k D e;

then there is a well-defined homomorphism:

.Z=kZ;C/ ! .G; ?/

nC kZ 7! a?n
(10.1)

When is it injective?

Lemma 10.6. If k is the order of a in G, then (10.1) is injective.

Proof. We must show that if a?n D a?n
0

, then n � n0 .mod k/. By long
division, n0 � n D kq C r for some q; r 2 Z with 0 � r < k. We see that

a?r D .a?k/?q ? a?r D a?.kqCr/ D a?.n�n
0/
D a?n ? .a�1/?n

0

D e:

So k being the order of a forces r D 0.

10.5. Below, we write ordG.a/ for the order of a in G.

Theorem 10.7. Let G;H be groups. Let a 2 G and b 2 H . Then

ordG�H .a; b/ D lcm.ordG.a/; ordH .b//:

Proof. Let k D ordG.a/ and ` D ordH .b/. By Lemma 10.6, there are injective
homomorphisms .Z=kZ;C/ ! .G; ?/ and .Z=`Z;C/ ! .H;�/. Together,
they define an injective homomorphism Z=kZ � Z=`Z ! G �H , where the
group laws on the domain and range are defined coordinate-wise.

By our earlier discussion, the image of this map is a subgroup of G � H
isomorphic to .Z=kZ � Z=`Z;C/. As it sends .1; 1/ 7! .a; b/, we deduce:

ordG�H .a; b/ D ordZ=kZ�Z=`Z.1; 1/:

The right-hand side is the smallest natural number n such that n � 0 .mod k/
and n � 0 .mod `/. This is the very definition of lcm.k; `/.

10.6. Let us calculate the multiplicative order of 23 mod 105, i.e., its order in
the group ..Z=105Z/�;�/.

Note that 105 D 3.5/.7/. Applying the Chinese Remainder Theorem twice,

.Z=105Z/� is isomorphic to .Z=3Z/� � .Z=5Z/� � .Z=7Z/�:

Applying Theorem 10.7 twice,

ord105.23/ D lcm.ord3.23/; ord5.23/; ord7.23//:

Finally, we calculate ord3.23/ D ord3.2/ D 2 and ord5.23/ D ord5.3/ D 4 and
ord7.23/ D ord7.2/ D 3. So the answer is ord105.23/ D lcm.2; 3; 4/ D 12.
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11. 3/1

11.1. What are the subgroups of .Z=14Z;C/?
(1) f0g.
(2) f0; 7g.
(3) f0; 2; 4; 6; 8; 10; 12g.
(4) Z=14Z itself.

(As usual, we are writing a to mean aC 14Z.)

11.2. How about ..Z=14Z/�;�/? Note that .Z=14Z/� D f1; 3; 5; 9; 11; 13g.
(1) f1g.
(2) f1; 13g.
(3) f1; 9; 11g.
(4) .Z=14Z/� itself.

11.3. Note that jZ=14Zj D 14 and j.Z=14Z/�j D 6. What do you notice about
the sizes of their subgroups?

Theorem 11.1 (Lagrange). If .G; ?/ is a finite group and H � G defines a
subgroup, then jH j divides jGj.

The idea of the proof is to study the subsets of G that look like g ? H D
fg ? x j x 2 H g. These are called the (left) cosets of H .

Proof. For any g; g0 2 G, we claim that g ?H and g0 ?H are either identical or
disjoint. This will imply that as we run over g 2 G, the cosets g ?H partition G
into pairwise-disjoint subsets. As they all have the same size as H , this in turn
will imply that jH j divides jGj.

So it remains to show that if g?H and g0?H intersect, then they are identical.
If they share an element a, then we can write a D g ? h D g0 ? h0 for some
h; h0 2 H . Since H is closed under ?, we see that

g ? H D g ? .h ? H/ D a ? H D g0 ? .h0 ? H/ D g0 ? H;

proving the claim.

Corollary 11.2. If G is finite and a 2 G, then ordG.a/ divides jGj.

Proof. The set of powers a?n, as we run over integers n, forms a subgroup of
G.

Corollary 11.3 (Euler). If m 2 N and a 2 Z is coprime to m, then ordm.a/
divides '.m/. In particular, a'.m/ � 1 .mod m/.

Proof. By definition, '.m/ D .Z=mZ/�. So the first statement follows from the
previous corollary by taking G D .Z=mZ/�. To get the second statement, write
a'.m/ D .aordm.a//'.m/=ordm.a/.

Corollary 11.4 (Fermat). If p is prime and does not divide a 2 Z, then ap�1 � 1
.mod p/.

Proof. Recall that '.p/ D p � 1.
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11.4. Bonus material to the lecture Below, we gather everything known about
..Z=mZ/�;�/.

11.4.1. First, if m D pe1

1 � � �p
er
r , then by repeated application of the Chinese

Remainder Theorem,

.Z=mZ/� is isomorphic to .Z=pe1

1 Z/� � � � � � .Z=per

r Z/�

In particular, ordm.a/ D lcm.ordpe1
1
.a/; : : : ; ordper

r
.a//.

11.4.2. By Legendre’s Theorem, the size of any subgroup of .Z=peZ/� must
divide '.pe/. The result below is exercise 3.6.3 in Stillwell, assigned on Problem
Set 3.

Theorem 11.5. For primes p and arbitrary e 2 N, we have

'.pe/ D pe�1.p � 1/:

11.4.3. Recall that if a is a primitive root mod pe, then

.Z='.pe/Z;C/ ! ..Z=peZ/�;�/
nC '.pe/Z 7! an C peZ

is an isomorphism. It turns out:

Theorem 11.6. For odd primes p and arbitrary e 2 N, there is always a primitive
root mod pe.

Theorem 11.7. There is no primitive root mod 2e when e � 3.

11.5. We sketch the e D 1 case of Theorem 11.6.
For any d 2 N, let  .d/ be the number of invertible congruence classes

aC pZ such that ordp.a/ D d . By Corollary 11.2, the order of any element of
.Z=pZ/� must divide '.p/ D p�1, so by partitioning the elements of .Z=pZ/�
according to their orders, we obtain

p � 1 D
X

d divides p � 1

 .d/:

At the same time, by counting the number of fractions a
p�1

with 1 � a � p � 1
and denominator d in lowest terms, we see that

p � 1 D
X

d divides p � 1

'.d/:

So we are done if we can show that  .d/ � '.d/ for all d . This is what Stillwell
does on page 62.


