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10. 2/27

10.1. Subgroups Let (G, %) be a group. A subgroup of (G, x) is a group of the
form (H, x), where H is a subset of G and the operation * remains the same.
Explicitly, this means:

(1) H is closed under . Thatis, x,y € H implies x x y € H.
(2) H contains the identity element.
(3) H is closed under inversion. That is, x € H implies x~! € H.

Note that if (1) holds, then » is automatically associative as a binary operation on
H . Also note that if H is nonempty, then (1) and (3) together imply (2), because
x » x~ ! is always the identity.

We will often abuse notation by omitting the operation » when we refer to the
subgroup.

Example 10.1. What are the subgroups of (Z, +)? They all take the form
(mZ, +), where mZ = {mk | k € Z}. In particular, note that 0Z = {0}.

Example 10.2. What are the subgroups of (Z/mZ, +)? They all take the form
dZ,/mZ. 1t turns out that we can always pick d so that it divides m.

Example 10.3. Endow R? = R x R with coordinate-wise addition. Then it has
many different kinds of subgroups. For instance, the axes {(x,0} | x € R} and
{(0,y) | vy € R} give us subgroups, but so does the line {(x, x) | x € R}. There
are also subgroups like (Z2, +).

10.2. What are the subgroups of ((Z/mZ)>, x)?

Example 10.4. We saw earlier that ((Z/5Z)*, x) is isomorphic to (Z/4Z, +).
A choice of isomorphism f : Z/4Z — (Z/5Z)* gives an explicit bijection
from the set of subgroups of Z/4Z to the set of subgroups of (Z/5Z)>: namely,
(H,+) = (f(H),x).

Example 10.5. The elements of (Z/8Z)> are the congruence classes of 1, 3,5, 7.
We saw earlier that 32 = 52 = 72 = 1 (mod 8). So, with the usual abuse of
notation, {1, 3} and {1, 5} and {1, 7} all define subgroups of (Z/8Z)*. Note that
each of these subgroups is isomorphic to (Z/2Z, +). We can view them as the
images of three different homomorphisms Z/2Z — (Z/8Z)*.

10.3. In general, if f : (G’,*’) — (G, %) is any homomorphism, then the
image f(G') always forms a subgroup of G.

Note that f restricts to a surjective map G’ — f(G’). If f happens to be
injective, then the restricted map is both injective and surjective, so it is an
isomorphism from G’ onto the subgroup f(G’).

Conversely, every subgroup of G is the image of an injective homomorphism:
namely, its inclusion into G.

Intuitively, this means subgroups of G carry the same information as injective
homomorphisms into G.



23

10.4. Last time, we proved that if a € G satisfies

a*k = e,

then there is a well-defined homomorphism:

(Z/kZ,4+) — (G,x)

10.1
( ) n+kZ — a*"

When is it injective?

Lemma 10.6. If k is the order of a in G, then (10.1) is injective.

Proof. We must show that if a*” = a*", then n = n’ (mod k). By long
division, n’ —n = kq + r for some g, r € Z with 0 < r < k. We see that

—n’ _ /
a*’ = (a*k)*q xa* = a*(kq—i—r) — a*(n n') _ a* (a 1)*n = e.

So k being the order of a forces r = 0. ]

10.5. Below, we write ordg (a) for the order of a in G.

Theorem 10.7. Let G, H be groups. Leta € G and b € H. Then
ordgxg(a,b) = lcm(ordg(a), ordg (b)).

Proof. Letk = ordg(a) and £ = ordg (b). By Lemma 10.6, there are injective
homomorphisms (Z/kZ,+) — (G, x) and (Z/{Z,+) — (H,x). Together,
they define an injective homomorphism Z/kZ x Z/{Z — G x H, where the
group laws on the domain and range are defined coordinate-wise.

By our earlier discussion, the image of this map is a subgroup of G x H
isomorphic to (Z/kZ x Z/{Z, +). As it sends (1, 1) — (a, b), we deduce:

ordgx g (a,b) = ordg,rzxz/ez(1,1).

The right-hand side is the smallest natural number n such thatn = 0 (mod k)
and n = 0 (mod £). This is the very definition of lcm(k, £). O]

10.6. Let us calculate the multiplicative order of 23 mod 105, i.e., its order in
the group ((Z/105Z)>, x).
Note that 105 = 3(5)(7). Applying the Chinese Remainder Theorem twice,
(Z/105Z)* is isomorphic to (Z/3Z)* x (Z/52)* x (Z]TZ)*.
Applying Theorem 10.7 twice,
ord;p5(23) = lem(ord;(23), ords(23), ord;(23)).

Finally, we calculate ord3(23) = ord3(2) = 2 and ords(23) = ords(3) = 4 and
ord;(23) = ord;(2) = 3. So the answer is ord;o5(23) = lem(2, 3,4) = 12.
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11. 311

11.1. What are the subgroups of (Z/14Z, +)?
(1) {0}.
(2) {0,7}.
(3) {0,2,4,6,8,10, 12}.
(4) Z/14Z itself.
(As usual, we are writing a to mean a + 147Z.)
11.2. How about ((Z/14Z)*, x)? Note that (Z/14Z)* = {1,3,5,9,11, 13}.
() {1}
(2) {1,13}.
(3) {1,9,113.
(4) (Z/14Z) itself.

11.3. Note that |Z/14Z| = 14 and |(Z/14Z)*| = 6. What do you notice about
the sizes of their subgroups?

Theorem 11.1 (Lagrange). If (G, ) is a finite group and H C G defines a
subgroup, then |H | divides |G |.

The idea of the proof is to study the subsets of G that look like g x H =
{g x x | x € H}. These are called the (left) cosets of H.

Proof. Forany g, g’ € G, we claim that g x H and g’ x H are either identical or
disjoint. This will imply that as we run over g € G, the cosets g » H partition G
into pairwise-disjoint subsets. As they all have the same size as H, this in turn
will imply that | H | divides |G]|.

So it remains to show that if g « H and g’ » H intersect, then they are identical.
If they share an element a, then we can write a = g x h = g’ x h’ for some
h,h' € H. Since H is closed under x, we see that

gxH=gxhxH)y=axH=g¢g x(W+xH)=g' *H,
proving the claim. O]
Corollary 11.2. If G is finite and a € G, then ordg (a) divides |G |.

Proof. The set of powers a*”, as we run over integers 7, forms a subgroup of
G. O

Corollary 11.3 (Euler). If m € N and a € Z is coprime to m, then ord,,(a)
divides ¢(m). In particular, a®™ =1 (mod m).

Proof. By definition, ¢(m) = (Z/mZ)*. So the first statement follows from the

previous corollary by taking G = (Z/mZ)*. To get the second statement, write
a9m — (gordn(@)yp(m)/ordy @), 2

Corollary 11.4 (Fermat). If p is prime and does not divide a € Z, then a?~! = 1
(mod p).

Proof. Recall that p(p) = p — 1. O
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11.4. Bonus material to the lecture Below, we gather everything known about
((Z/mZ)", x).

11.4.1. First, if m = p{'--- p?, then by repeated application of the Chinese
Remainder Theorem,

(Z/mZ)* isisomorphicto (Z/p{'Z)* x---x (Z/psZ)*
In particular, ord,,(a) = 1cm(0rdpf1 @),..., ord er (@)).

11.4.2. By Legendre’s Theorem, the size of any subgroup of (Z/ p¢Z)* must
divide ¢(p°). The result below is exercise 3.6.3 in Stillwell, assigned on Problem
Set 3.

Theorem 11.5. For primes p and arbitrary e € N, we have

e(p) =p(p -1
11.4.3. Recall that if a is a primitive root mod p¢, then
(Z/p(p)Z.+) — ((Z/p°L)". %)
n+oe(p9Z +— a"+ p°Z
is an isomorphism. It turns out:

Theorem 11.6. For odd primes p and arbitrary e € N, there is always a primitive
root mod p°.

Theorem 11.7. There is no primitive root mod 2° when e > 3.

11.5. We sketch the e = 1 case of Theorem 11.6.

For any d € N, let ¥/(d) be the number of invertible congruence classes
a + pZ such that ord,(a) = d. By Corollary 11.2, the order of any element of
(Z/ pZ)* must divide ¢(p) = p—1, so by partitioning the elements of (Z/ pZ)*
according to their orders, we obtain

p—l= > ¥(@.
d divides p — 1

At the same time, by counting the number of fractions ﬁ withl <a<p-1
and denominator d in lowest terms, we see that

p—1= > ¢@).

d divides p — 1

So we are done if we can show that ¥ (d) < ¢(d) for all d. This is what Stillwell
does on page 62.



