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7. 2/21

7.1. There will be a test on Friday of next week (3/3). It will consist of 6–8
problems, the majority computation-based, not proof-based.

7.2. Let’s write out .Z=mZ/� for some small values of m, and in the cases
where a primitive root mod m exists, determine what they are. Recall that the
size of .Z=mZ/� is the Euler totient '.m/.

(1) .Z=2Z/� D f 1 g.
(2) .Z=3Z/� D f1; 2 g.
(3) .Z=4Z/� D f1; 3 g.
(4) .Z=5Z/� D f1; 2 ; 3 ; 4g.
(5) .Z=6Z/� D f1; 5 g.
(6) .Z=7Z/� D f1; 2; 3 ; 4; 5 ; 6g.
(7) .Z=8Z/� D f1; 3; 5; 7g. No primitive roots mod 8.
(8) .Z=9Z/� D f1; 2 ; 4; 5 ; 7; 8g.

Above, fa1; a2; : : :g is an abuse of notation for fa1 C mZ; a2 C mZ; : : :g, as
usual.

We conclude: For general a and m, it’s hard to tell whether or not a gives rise
to a primitive root mod m.

7.3. Artin’s conjecture on primitive roots The following conjecture was posed
in a letter by the number theorist Emil Artin on September 27, 1927, and remains
unsolved. Emil Artin was the father of Professor Mike Artin here at MIT.

Conjecture 7.1. Suppose a 2 Z is neither a perfect square nor �1. Then there
are infinitely many primes p such that aC pZ is a primitive root mod p.

7.4. We define the order of a mod m to be the smallest positive integer k 2 N
such that ak � 1 .mod m/. Equivalently, it is the number of distinct congruence
classes that appear as you take higher and higher powers of a. Thus a is a
primitive root mod m if and only if its order is '.m/.

What are the orders of the elements of .Z=7Z/�?

a 1 2 3 4 5 6

ord7.a/ 1 3 6 3 6 2

To build more intuition, here is the table for .Z=21Z/�.

a 1 2 4 5 8 10 11 13 16 17 19 20

ord21.a/ 1 6 3 6 2 6 6 2 3 6 6 2

We see that no element has order '.21/ D 12, so there are no primitive roots
mod 21.

The tables are related. Anything coprime to 21 must be coprime to 7, so there
is a well-defined map .Z=21Z/� ! .Z=7Z/� that sends a C 21Z 7! a C 7Z.
Similarly, there is a well-defined map .Z=21Z/� ! .Z=3Z/�.
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How do ord7.a/ and ord3.a/ compare to ord21.a/? A third table:

a 1 2 4 5 8 10 11 13 16 17 19 20

ord7.a/ 1 3 3 6 1 6 3 2 3 6 6 2

ord3.a/ 1 2 1 2 2 1 2 1 1 2 1 2

It looks like ord21.a/ is the least common multiple of ord7.a/ and ord3.a/.

7.5. In general, we are led to guess that the structure of .Z=mnZ/� is built up
from that of .Z=mZ/� and .Z=nZ/� in a certain precise way. However, the story
seems clearest when m and n coprime.

By contrast, consider the case where m D 6 and n D 3, so that mn D 18.
We see that ord18.7/ D 3, whereas ord6.7/ D 1 and ord3.7/ D 1. Certainly,
3 ¤ lcm.1; 1/.

7.6. Interlude on sets and functions For what follows, we need to review some
terminology from set theory.

If X and Y are sets, then X � Y is the set of ordered pairs .x; y/ with x 2 X
and y 2 Y .

A map f W X ! Y is injective iff it sends different elements in X to different
elements in Y . It is surjective iff every element in Y has a preimage in X .
It is bijective iff it has a two-sided inverse: This means we can find a map
f �1 W Y ! X such that .f �1ıf /.x/ D x for all x 2 X and .f ıf �1/.y/ D y

for all y 2 Y .

Theorem 7.2. f is bijective if and only if it is both injective and surjective.

Theorem 7.3. If X and Y are finite sets of the same size, then f is injective if
and only if it is surjective.

7.7. Chinese Remainder Theorem Fix natural numbers m; n 2 N. Let F W
Z=mnZ! Z=mZ � Z=nZ be defined by

F.aCmnZ/ D .aCmZ; aC nZ/:

Theorem 7.4. If m; n are coprime, then F is bijective.

Proof. Note that Z=mnZ and Z=mZ � Z=nZ are both of size mn. So by
Theorem 7.3, it is enough to show that F is surjective.

A general element of Z=mZ � Z=nZ looks like .b C mZ; c C nZ/. We
must exhibit some a C mnZ such that a � b .mod m/ and a � c .mod n/.
Since m; n are coprime, our theorem about linear Diophantine equations gives
x; y 2 Z such that mxC ny D 1. We claim that a � cmxC bny .mod mn/ is
our solution. Indeed,

a � bny � b.1 �mx/ � b .mod m/;

and the argument that a � c .mod n/ is analogous.

Tomorrow, we will discuss what this theorem implies about the subset of units
.Z=mnZ/� � Z=mnZ.
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8. 2/22

8.1. Review Yesterday, we introduced a map

F W Z=mnZ! Z=mZ � Z=nZ:

It sends a congruence class a C mnZ to the ordered pair .a C mZ; a C nZ/.
(We are writing out these congruence classes as explicit sets in order to avoid
ambiguity.)

The domain and range always have the same size,mn. The Chinese Remainder
Theorem says that in the special case where m and n are coprime, F is bijective.

Example 8.1. If m D 2 and n D 3, then mn D 6 and F looks like:

a 0 1 2 3 4 5

F.a/ .0; 0/ .1; 1/ .0; 2/ .1; 0/ .0; 1/ .1; 2/

The bijectivity of F means that we can always reconstruct a uniquely from the
knowledge of F.a/.

Example 8.2. If m D 2 and n D 4, then mn D 8 and F looks like:

a 0 1 2 3 4 5 6 7

F.a/ .0; 0/ .1; 1/ .0; 2/ .1; 3/ .0; 0/ .1; 1/ .0; 2/ .1; 3/

The map F fails to be injective because, e.g., F.0/ D F.4/; more generally,
F.a/ D F.aC 4/ for any a. It also fails to be surjective because, e.g., there is
no a such that F.a/ D .0; 1/.

8.2. Earlier, we observed that if a is invertible mod mn, then a is invertible
mod m and n separately. Therefore, F restricts to a well-defined map

F � W .Z=mnZ/� ! .Z=mZ/� � .Z=nZ/�:

Theorem 8.3. If m; n are coprime, then F � is bijective.

Proof. The restriction of an injective map to a smaller domain is still injective,
so F � remains injective. (The analogous statement with “surjective” in place of
“injective” is not true, so to prove surjectivity, we need more work.)

Suppose b, resp. c, is invertible mod m, resp. n. By the bijectivity of F , we
can at least find a such that a � b .mod m/ and a � c .mod n/. It remains to
show a is invertible mod mn.

We proved earlier that this happens precisely when gcd.a;mn/ D 1. So if
a is not invertible mod mn, then a and mn have some common divisor greater
than 1, which we can take to be a prime p. But then, by the prime divisor
property on Stillwell page 29, p divides either m or n. So either gcd.a;m/ > 1
or gcd.a; n/ > 1, contradicting either the invertibility of b mod m or that of c
mod n.

Corollary 8.4. If m; n are coprime, then '.mn/ D '.m/'.n/.
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Ultimately, we’d like to use Theorem 8.3 to prove our conjecture that if m; n
are coprime and a is invertible mod mn, then

ordmn.a/ D .ordm.a/; ordn.a//:

I would like to put statements like this in a somewhat broader context: namely,
that of group theory.

8.3. Groups A group is a set G together with a map ? W G �G ! G, called a
binary operation or group law, such that the following properties hold:

(1) Associativity. .x ? y/ ? z D x ? .y ? z/ for all x; y; z 2 G.
(2) Identity. There is some element e 2 G such that e ? x D x ? e D x for all

x 2 G.
(3) Inverses. For all x 2 G, there is some element y 2 G such that x ? y D

y ? x D e.

Lemma 8.5. The identity element is unique.

Proof. If e; e0 are identity elements of the same group, then e D e ? e0 D e0.

Lemma 8.6. For any x 2 G, the inverse of x is unique.

Proof. If y; z 2 G are both inverses of x, then x ? y D e D x ? z. Therefore,

.y ? x/ ? y D y ? .x ? y/ D y ? .x ? z/ D .y ? x/ ? z:

The left-hand side simplifies to e ? y D y, and the right-hand side to e ? z D z.
Thus y D z.

8.4. Going forward, we will use associativity wherever it is needed without
comment. In particular, we will drop the use of parentheses.

8.5. In this course, we are only interested in abelian groups. A group is abelian
iff it additionally satisfies:

(4) Commutativity. x ? y D y ? x for all x; y 2 G.

Example 8.7. The integers form an abelian group under addition. That is, if
we take G D Z and ? D C, then the axioms are satisfied: C is associative and
commutative, 0 is an identity element, and every integer n has an inverse under
C that is also an integer: namely, �n.

The integers do not form an abelian group under multiplication. What goes
wrong? The identity element is forced to be 1. But then most integers cannot
have an inverse that is also an integer.

Example 8.8. Similarly, for any m 2 Z, the set of congruence classes Z=mZ
forms an abelian group under addition. It does not form an abelian group under
multiplication, except when m D 1.

Example 8.9. For any m 2 Z, the set of invertible congruence classes .Z=mZ/�
forms an abelian group under multiplication. Indeed, the axiom about inverses is
satisfied precisely because of how we defined invertibility mod m.

However, .Z=mZ/� does not form a group under addition, because the sum of
two elements of .Z=mZ/� need not belong to .Z=mZ/�. (Example?)
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8.6. Products of groups If .G; ?/ and .H;�/ are groups, then we can form
a new group in which the underlying set is G � H and the group law is the
operation ˘ defined by

.x; y/ ˘ .x0; y 0/ D .x ? x0; y � y 0/:

If eG and eH are the respective identity elements of G and H , then the identity
element of the new group is .eG; eH /.

This is clearly relevant to the study of F and F �. We see that Z=mZ � Z=nZ
forms a group under coordinate-wise addition, and .Z=mZ/� � .Z=nZ/� forms
a group under coordinate-wise multiplication.

8.7. Orders of group elements If x 2 G, then the order of x is the smallest
positive integer k 2 N such that

k copies of x¹
x ? � � � ? x D e:

In the case where G D .Z=mZ/� and ? is multiplication, this recovers the
definition we gave yesterday.

We will prove later that if x 2 G has order k and y 2 H has order `, then
.x; y/ 2 G �H has order lcm.k; `/.

8.8. Homomorphisms A homomorphism (of groups) .G; ?/! .H;�/ is a map
f W G ! H such that for all x; y 2 G, we have

f .x ? y/ D f .x/ � f .y/:

Intuitively, this means f transforms the operation ? on G into the operation �
on H .

Lemma 8.10. If f W G ! H is a homomorphism, then f sends the identity of
G to the identity of H .

Proof. Writing eG and eH for the respective identity elements, we see f .eG/ D

f .eG ? eG/ D f .eG/ � f .eG/. Multiplying both sides by the inverse of f .eG/

in H , we get eH D f .eG/.

An isomorphism is a bijective homomorphism. When two groups are related
by an isomorphism, we say they are isomorphic. The isomorphism is like a
Rosetta stone that perfectly translates either group law into the other, allowing us
to treat the groups as the “same”.

Example 8.11. For any fixed constant c > 0, the exponential map f .x/ D cx

defines a homomorphism .R;C/ ! .R>0;�/. In fact, it is an isomorphism,
because it has the two-sided inverse f �1.x/ D logc.x/.

Example 8.12. F is an isomorphism .Z=mnZ;C/ ! .Z=mZ � Z=nZ;C/
(where the latter “C” is coordinate-wise addition). Similarly, the map F � is an
isomorphism ..Z=mnZ/�;�/! ..Z=mZ/� � .Z=nZ/�;�/.
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9. 2/24

9.1. Recall that a homomorphism .G; ?/! .H;�/ is a map f W G ! H such
that f .x ? y/ D f .x/ � f .y/.

We always have at least one: namely, the map that sends every element of G
to the identity element of H , which we call the trivial homomorphism. Decide
whether or not there is a nontrivial homomorphism. . .

(1) . . . .Z;C/! .Z=6Z;C/.
(2) . . . .Z=6Z;C/! .Z;C/.
(3) . . . from .G; ?/ into .G; ?/, for general .G; ?/.

(4) . . . .Z=15Z;C/! .Z=5Z;C/.
(5) . . . ..Z=15Z/�;�/! ..Z=5Z/�;�/.
(6) . . . .Z=4Z;C/! ..Z=5Z/�;�/.

9.2. The “mod 6” map .Z;C/! .Z=6Z;C/ is indeed a homomorphism: For
any integers a and b, the very definition of addition mod 6 gives us

.aC b/C 6Z D .aC 6Z/C .b C 6Z/;

so the map does preserve addition. And this homomorphism is nontrivial.

9.3. By contrast, we claim the only homomorphism f W .Z=6Z;C/! .Z;C/
is the trivial one.

We know that a general element of this group can be written aC 6Z for some
integer a. Adding this element to itself 6 times always results in 0C 6Z. Since
the homomorphism f must send the identity element 0 C 6Z 2 Z=6Z to the
identity element 0 2 Z, we get

6 times‚ …„ ƒ
f .aC 6Z/C � � � C f .aC 6Z/ D f .

6 times‚ …„ ƒ
.aC 6Z/C � � � C .aC 6Z//

D f .0C 6Z/
D 0:

That is, 6f .aC 6Z/ D 0. This can happen only if f .aC 6Z/ D 0.

9.4. The last example is the most interesting, because we aren’t used to seeing
addition and multiplication mixed together.

Yet nontrivial homomorphisms f W .Z=4Z;C/! ..Z=5Z/�;�/ do exist. For
any integer a, there is a homomorphism given by

f .nC 4Z/ D an
C 5Z;

and it is nontrivial when a 6� 1 .mod 5/.
Note that on the left-hand side, nC 4Z is a congruence class, while on the

right-hand side, the exponent n is an integer! So we are implicitly claimiing
that this formula doesn’t depend on how we choose the integer representing the
congruence class. Once you grant this, f is a homomorphism because

f .nC n0/ � anCn0

� anan0

� f .n/f .n0/:(9.1)
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It is an analogue, for modular or congruence arithmetic, of the exponential maps
that we study in precalculus.

We claim that if a is a primitive root mod 5, then f is also bijective, hence
an isomorphism. Since jZ=4Zj D 4 D j.Z=5Z/�j, it suffices to show that f is
surjective: in other words, that every element of .Z=5Z/� takes the form an. But
this is precisely what it means for a to be a primitive root.

Example 9.1. If a � 3 .mod 5/, then the table of values is:

a 0 1 2 3

f .a/ 1 3 4 2

The table shows that f .a/ determines a uniquely (injectivity), and that every
element mod 5 takes the form f .a/ (surjectivity). So f is bijective. Indeed, 3
gives a primitive root mod 5.

9.5. There is a slight generalization of the preceding setup. Let .G; ?/ be an
arbitrary group with identity e. For any a 2 G, write

a?n :D

n copies of a¹
a ? � � � ? a :

Lemma 9.2. If a?k D e, then there is a homomorphism:

.Z=kZ;C/ ! .G; ?/

nC kZ 7! a?n

Proof. We will check that the map is well-defined. Then the proof that it is a
homomorphism is basically (9.1).

Suppose n and n0 are representatives of the same congruence class mod k.
Then n0 D nC kd for some d 2 Z. But then

a?n0

D a?n ? a?kd
D a?n ? .a?k/?d

D a?n:

So a?n0

D a?n, meaning this element of G is independent of whether we used n
or n0 to define it.

9.6. By the way, note that any homomorphism f out of the group .Z=kZ;C/
is wholly determined by the value of f at 1C kZ. Indeed,

f .nC kZ/ D f .
n times‚ …„ ƒ

.1C kZ/C � � � C .1C kZ//

D

n times‚ …„ ƒ
f .1C kZ/C � � � C f .1C kZ/;

so f .nC kZ/ is determined by f .1C kZ/.


