1. 2/6
1.1. Syllabus. Do introductions.

1.2. What is number theory about?
(1) Integer solutions to polynomial equations (“Diophantine equations”)
(2) Prime numbers

1.3. Some notation:

N=1{1,2,3,...},
Z=1.,-3-2-1,01,2,3,..1,
Q = {3 | a,b € Z with b nonzeroj}.

1.4. Well-ordering principle Any nonempty subset of N contains a smallest
element. (Not true if we replace N with Z or Q or Q-¢!)

1.5. Eratosthenes’s sieve When we say “prime number”, we will always mean
a positive number. We exclude 1 from being prime.

4 [5] 6 8 9
10 [11] 12 [13] 14 15 16 [17] 18 [19]
20 21 22 [23] 24 25 26 27 28 [29]

Primes are simple to define yet hard to classify.

1.6. Euclid’s proof of the infinitude of primes Suppose that py,..., pr is a
finite list of prime numbers. It suffices to show that we can always find another
prime not on our list. Let

m=py---pr+ 1.

How to conclude the proof?

Informal. Since m > 1, it must be divisible by some prime number, but this
number can’t be any of the p;. O]

The problem is: How do we know that any integer > 1 must be divisible by
some prime?

Rigorous. Let S be the set of integers greater than 1 that divide m. Note that
S does not contain any of the p;. Yet it is a nonempty subset of N, because it
contains m. Thus, by well-ordering, S has a smallest element g.

We claim that ¢ is prime. For if it has a divisor ¢’ such that 1 < ¢’ < ¢, then
q' would also divide m, contradicting the minimality of g. ]

1.7. Warning: The above proof does not imply that m itself is prime.

241=3, 2B3)+1=7. ..., 2B3)G) (7)) + 1= 59(509).
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2.1.  Which of the following sets has an analogue of the well-ordering principle
for N?

(1) No = {0} UN.

(2) 2Z, the set of even integers.

(3) {5 la,b € Nand b < 100}.

4 {3 |n €N}

2.2. Prime factorization Another application of well-ordering:
Theorem 2.1. Any positive integer can be written as a product of prime numbers.

(Is 1 a product of primes? Yes: The so-called empty product.)

Proof. Suppose for the sake of contradiction that the set of counterexamples
C C Nis nonempty. By well-ordering, C contains a smallest element m.

Note that m can’t be prime itself. So there is some integer d such that d
divides m and 1 < d < m. But now, e = m/d is also an integer such that e
divides m and 1 < e < m. By the minimality of m in C, we know d and e
are both products of primes. But then, m = de is also a product of primes, a
contradiction. O

An expression for a € N as a product of primes is called a prime factorization
of n. There may be repeated primes, so in general, it will look like

— p€l €k
a _pl pk ,

where the p; are pairwise distinct primes and the e; are positive integers.
If the p; are ordered from smallest to largest, then this expression is unique.
That is: If we have another prime factorization

a=qi gl

where the g; are also ordered from smallest to largest, then k = £, and p; = ¢;
foralli,and e; = f; foralli.

2.3. Digression on uniqueness We often meet situations like this, where there
are separate claims of existence and uniqueness. To show that X exists, you use
sets and elements to build a mathematical object that satisfies the definition of X .
To show that X is unique, you must show that if Y is any other object that also
satisfies the definition, then X = Y.

Example 2.2. Let’s imagine that we are mathematicians in ancient India, trying
to invent the concept of zero. We define a zero to be a number z such that the
addition law on N extends to the rule n + z = n forany n € N.

We claim that such a number must be unique. Suppose z and z’ are both
zeroes. Then we have both z + z/ = z and z’ + z = z’. Therefore, z = Z’.



2.4. If ais very large, then computing its (unique) prime factorization can be
very hard, because finding divisors of n can be very hard. This is an important
principle behind much cryptography.

The fastest way to test whether b divides a is to use long division.

Even if b does not divide a, they will still have divisors in common: for
instance, because 1 divides both a and b. In particular, they have a greatest
common divisor, or gcd. The fastest way to compute gcd(a, b) is by using
repeated long division in a form called the Euclidean algorithm, or Euclid’s
ladder.

2.5. Long division Recall that the well-ordering principle applies just as well
with Ny in place of N.

Theorem 2.3. For all a € Ny and b € N, there exist q,r € Ng such that
a=qgb+r and r <b.
(In particular, b divides a if and only if r = 0.)

Proof. Intuition: When you do long division, you’re using a greedy algorithm
(“What’s the largest g such that gb < a?”). So let

S ={n €Ny |n=a—kbforsomek € Ny}.

Since a € Ng and a = a — 0b, we know that a € S. Thus, S is nonempty. By
well-ordering, it contains a smallest element: say, r = a — gb for some g € Np.
It remains to show r < b.

Indeed, if > b, thenr —b € Ngpandr —b = a — (¢ + 1)b, so we have
r —b € §. This contradicts the minimality of r. ]

2.6. Euclid’s ladder The reason long division can help us compute gcd(a, b)
is the following fact, whose proof I'll skip today:

Ifa = gb + r, then ged(a, b) = ged(b, r).

It shows that if we want to compute gcd(a, b), where a > b, then we can switch
to computing gcd(b, r), where b > r.

Let’s illustrate by computing gcd(462, 1071). Since 1071 > 462, we start
witha = 1071 and b = 462.

a b q gb r
1071 462 2 924 147
462 147 3 441 21
147 21 7 147 0

The last line has a remainder r = 0, so it shows that 21 divides 147. Altogether,
gcd(462,1071) = ged(147,462) = gcd(21, 147) = .

Why must the ladder eventually stop? Again, the reason is well-ordering. The
sequence of remainders r gives us a nonempty subset of Ny, so it must contain a
smallest element (which is, in fact, always 0).



2.7. Digression on induction Just as the well-ordering principle lets us “de-
scend” to the smallest case of something, the principle of induction lets us
“ascend” from a base case to infinitely many cases.

Example 2.4. We prove that for any k € N, the sum of the first k positive
integers is equal to %k(k +1).

Base case. If k = 1, then the sum is just 1. We know 1 = 2(1)(2).

Inductive step. Suppose the claim is true when k& = n. We will show it is true
for k = n + 1. To do this, we expand:

[3k(k +D)]|,_, 0 =30+ D(n+2)
=Inn+1)+@®m+1)
= [3k(k+D]|,_, + @ +1).
By the inductive hypothesis, the red term equals the sum of the first n positive

integers. Therefore, the whole last expression equals the sum of the first n + 1
positive integers.
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3.1.  Recall that a Diophantine equation is a polynomial equation with integer
(or rational) coefficients, which we are typically solving for integer (or rational)
solutions.

Which of the following linear equations can be solved for integer x and y?
For those, how many solutions are there?

(1) 6x +7y = 1.

(2) 6x + 7y = 2.

(3) 6x — 15y = 2.

(4) 6x — 15y = —99.

(5) 1071x + 462y = 42.

3.2. Last time, we began to discuss gcd’s in a loose way. Today, we do it more
systematically.

Firstly: When should gcd(a, b) exist? For instance, gcd(0, 0) does not exist.

For any a, b € Z, the set of common divisors of @ and b is nonempty, since it
contains 1. If at least one of a, b is nonzero, say a, then any common divisor can
be at most |a|. So by a flipped version of well-ordering, there is a greatest such
divisor.

Note that our reasoning showed gcd(a, b) > 1. Moreover, gcd(a, 0) = |a| for
all nonzero a.

3.3. It turns out that our study of linear Diophantine equations above leads to a
very natural characterization of gcd’s.

Theorem 3.1. For fixed a,b € Z, not both zero(!), let
S={ax+by|x,yeZ} CZ.
Then there exists d € N such that S = dZ, the set of integer multiples of d.

Proof. We can’t apply well-ordering directly to S. But consider S N N: This is a
subset of N by construction, and nonempty, since it contains |a| and |b|. We take
d to be the smallest element of S N N.

To show that S = dZ, we must show that each set is contained in the other. It
will be convenient to write d = axg + byg for some xq, yo € Z, which we can
do because d € S.

Any element of dZ takes the form md for some m € Z We see that md =
a(mxg) + b(mygy) € S. This proves dZ C S.

Conversely, suppose n € S. If —n is a multiple of d, then so is n, so it suffices
to assume n > 0. We must show that d divides n. By long division, n = gd + r
for some ¢, r € Ng withr < d. Butn = ax; + by, for some x, y € Z, so

r=n-—qd =a(x; —qxo) +b(y1 —qyo) €S.

Since d is the smallest positive element of S, this forces r = 0, whence d
divides n. This proves S € dZ. O



Theorem 3.2. The d resulting from the previous theorem is precisely gcd(a, b).

Proof. We must prove two things: (1) That d divides both a and b. (2) That if
d’ € N is any other common divisor of @ and b, then d’ < d.

(1) We know that d divides every element of S. But we certainly have
a=a(l)+b(0) € S, and similarly, b € S.

(2) It suffices to show that d’ divides d. (Here it would be tempting to try
long division, but ultimately, we only need the defining properties of d’ and d.)
We know thata = d’a’ and b = d’'b’ and d = axoy + by for some integers
a’,b’, xg, yo, from which

d = (da)xy~+ (d'b)yy=d'(a'xo+ b yp),
as needed. []
3.4. We return to linear Diophantine equations.

Corollary 3.3 (Bézout). For fixed a, b, c € Z, where a and b are not both zero,
ax +by =c
admits a solution with x, y € Z if and only if ¢ is a multiple of gcd(a, b).

Proof. Let S be as in Theorem 3.1. By definition, we can solve the equation
for x,y € Z if and only if ¢ € §, and the two previous theorems show S =
gcd(a, b)Z. ]

3.5.  We can also prove a claim left unproved on Wednesday, which we needed
to run the Euclidean algorithm.

Corollary 3.4. If a = bq + r for some a,b,q,r € Z with b nonzero, then
gcd(a,b) = ged(b, r).

Proof. Let S = {ax +by | x,y € Z}and T = {bx +ry | x,y € Z}. Then
ac€Tandr =a—bg € S, sowe get

ged(a,b)Z =S =T = ged(b,r)Z

How to finish? Intersect both sides with N; compare smallest elements. ]

3.6. There is a generalization of everything above to the case of three or more
integers. One can define gcd(ay, ..., ax) as long as some a; is nonzero. Then

aixy+---+agxg =c

has a solution with x1, ..., x; € Zif and only if ¢ € ged(ay, ..., ax)Z.

3.7. All of this differs, however, from the Chicken McN*gget problem, because
there, we are seeking solutions in nonnegative integers—not arbitrary integers.

3.8. We’ve now covered some version of §1.1-1.4, 2.1-2.6 in Stillwell.



