1. $2 / 6$

1.1. Syllabus. Do introductions.
1.2. What is number theory about?
(1) Integer solutions to polynomial equations ("Diophantine equations")
(2) Prime numbers
1.3. Some notation:

$$
\begin{aligned}
& \mathbf{N}=\{1,2,3, \ldots\}, \\
& \mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}, \\
& \mathbf{Q}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbf{Z} \text { with } b \text { nonzero }\right\} .
\end{aligned}
$$

1.4. Well-ordering principle Any nonempty subset of \mathbf{N} contains a smallest element. (Not true if we replace \mathbf{N} with \mathbf{Z} or \mathbf{Q} or $\mathbf{Q}_{>0}$!)
1.5. Eratosthenes's sieve When we say "prime number", we will always mean a positive number. We exclude 1 from being prime.

| | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10 | 11 | 12 | 13 | 14 | 15 | 16 | $\boxed{17}$ | 18 | 19 |
| 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | $\boxed{29}$ |

Primes are simple to define yet hard to classify.
1.6. Euclid's proof of the infinitude of primes Suppose that p_{1}, \ldots, p_{k} is a finite list of prime numbers. It suffices to show that we can always find another prime not on our list. Let

$$
m=p_{1} \cdots p_{k}+1
$$

How to conclude the proof?
Informal. Since $m>1$, it must be divisible by some prime number, but this number can't be any of the p_{i}.

The problem is: How do we know that any integer >1 must be divisible by some prime?

Rigorous. Let S be the set of integers greater than 1 that divide m. Note that S does not contain any of the p_{i}. Yet it is a nonempty subset of \mathbf{N}, because it contains m. Thus, by well-ordering, S has a smallest element q.

We claim that q is prime. For if it has a divisor q^{\prime} such that $1<q^{\prime}<q$, then q^{\prime} would also divide m, contradicting the minimality of q.
1.7. Warning: The above proof does not imply that m itself is prime.

$$
2+1=3, \quad 2(3)+1=7, \quad \ldots, \quad 2(3)(5)(7)(11)+1=59(509) .
$$

2. 2/8

2.1. Which of the following sets has an analogue of the well-ordering principle for \mathbf{N} ?
(1) $\mathbf{N}_{0}=\{0\} \cup \mathbf{N}$.
(2) $2 \mathbf{Z}$, the set of even integers.
(3) $\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbf{N}\right.$ and $\left.b<100\right\}$.
(4) $\left\{\left.\frac{1}{2^{n}} \right\rvert\, n \in \mathbf{N}\right\}$.
2.2. Prime factorization Another application of well-ordering:

Theorem 2.1. Any positive integer can be written as a product of prime numbers.
(Is 1 a product of primes? Yes: The so-called empty product.)
Proof. Suppose for the sake of contradiction that the set of counterexamples $C \subseteq \mathbf{N}$ is nonempty. By well-ordering, C contains a smallest element m.

Note that m can't be prime itself. So there is some integer d such that d divides m and $1<d<m$. But now, $e=m / d$ is also an integer such that e divides m and $1<e<m$. By the minimality of m in C, we know d and e are both products of primes. But then, $m=d e$ is also a product of primes, a contradiction.

An expression for $a \in \mathbf{N}$ as a product of primes is called a prime factorization of n. There may be repeated primes, so in general, it will look like

$$
a=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}},
$$

where the p_{i} are pairwise distinct primes and the e_{i} are positive integers.
If the p_{i} are ordered from smallest to largest, then this expression is unique. That is: If we have another prime factorization

$$
a=q_{1}^{f_{1}} \cdots q_{\ell}^{f_{k}},
$$

where the q_{i} are also ordered from smallest to largest, then $k=\ell$, and $p_{i}=q_{i}$ for all i, and $e_{i}=f_{i}$ for all i.
2.3. Digression on uniqueness We often meet situations like this, where there are separate claims of existence and uniqueness. To show that X exists, you use sets and elements to build a mathematical object that satisfies the definition of X. To show that X is unique, you must show that if Y is any other object that also satisfies the definition, then $X=Y$.

Example 2.2. Let's imagine that we are mathematicians in ancient India, trying to invent the concept of zero. We define a zero to be a number z such that the addition law on \mathbf{N} extends to the rule $n+z=n$ for any $n \in \mathbf{N}$.

We claim that such a number must be unique. Suppose z and z^{\prime} are both zeroes. Then we have both $z+z^{\prime}=z$ and $z^{\prime}+z=z^{\prime}$. Therefore, $z=z^{\prime}$.
2.4. If a is very large, then computing its (unique) prime factorization can be very hard, because finding divisors of n can be very hard. This is an important principle behind much cryptography.

The fastest way to test whether b divides a is to use long division.
Even if b does not divide a, they will still have divisors in common: for instance, because 1 divides both a and b. In particular, they have a greatest common divisor, or gcd. The fastest way to compute $\operatorname{gcd}(a, b)$ is by using repeated long division in a form called the Euclidean algorithm, or Euclid's ladder.
2.5. Long division Recall that the well-ordering principle applies just as well with \mathbf{N}_{0} in place of \mathbf{N}.

Theorem 2.3. For all $a \in \mathbf{N}_{0}$ and $b \in \mathbf{N}$, there exist $q, r \in \mathbf{N}_{0}$ such that

$$
a=q b+r \quad \text { and } \quad r<b .
$$

(In particular, b divides a if and only if $r=0$.)
Proof. Intuition: When you do long division, you're using a greedy algorithm ("What's the largest q such that $q b \leq a$?"). So let

$$
S=\left\{n \in \mathbf{N}_{0} \mid n=a-k b \text { for some } k \in \mathbf{N}_{0}\right\}
$$

Since $a \in \mathbf{N}_{0}$ and $a=a-0 b$, we know that $a \in S$. Thus, S is nonempty. By well-ordering, it contains a smallest element: say, $r=a-q b$ for some $q \in \mathbf{N}_{0}$. It remains to show $r<b$.

Indeed, if $r \geq b$, then $r-b \in \mathbf{N}_{0}$ and $r-b=a-(q+1) b$, so we have $r-b \in S$. This contradicts the minimality of r.
2.6. Euclid's ladder The reason long division can help us compute $\operatorname{gcd}(a, b)$ is the following fact, whose proof I'll skip today:

$$
\text { If } a=q b+r \text {, then } \operatorname{gcd}(a, b)=\operatorname{gcd}(b, r) \text {. }
$$

It shows that if we want to compute $\operatorname{gcd}(a, b)$, where $a>b$, then we can switch to computing $\operatorname{gcd}(b, r)$, where $b>r$.

Let's illustrate by computing $\operatorname{gcd}(462,1071)$. Since $1071>462$, we start with $a=1071$ and $b=462$.

a	b	q	$q b$	r
1071	462	2	924	147
462	147	3	441	21
147	21	7	147	0

The last line has a remainder $r=0$, so it shows that 21 divides 147. Altogether, $\operatorname{gcd}(462,1071)=\operatorname{gcd}(147,462)=\operatorname{gcd}(21,147)=21$.

Why must the ladder eventually stop? Again, the reason is well-ordering. The sequence of remainders r gives us a nonempty subset of \mathbf{N}_{0}, so it must contain a smallest element (which is, in fact, always 0).
2.7. Digression on induction Just as the well-ordering principle lets us "descend" to the smallest case of something, the principle of induction lets us "ascend" from a base case to infinitely many cases.

Example 2.4. We prove that for any $k \in \mathbf{N}$, the sum of the first k positive integers is equal to $\frac{1}{2} k(k+1)$.

Base case. If $k=1$, then the sum is just 1 . We know $1=\frac{1}{2}(1)(2)$.
Inductive step. Suppose the claim is true when $k=n$. We will show it is true for $k=n+1$. To do this, we expand:

$$
\begin{aligned}
{\left.\left[\frac{1}{2} k(k+1)\right]\right|_{k=n+1} } & =\frac{1}{2}(n+1)(n+2) \\
& =\frac{1}{2} n(n+1)+(n+1) \\
& =\left.\left[\frac{1}{2} k(k+1)\right]\right|_{k=n}+(n+1)
\end{aligned}
$$

By the inductive hypothesis, the red term equals the sum of the first n positive integers. Therefore, the whole last expression equals the sum of the first $n+1$ positive integers.

3. $2 / 10$

3.1. Recall that a Diophantine equation is a polynomial equation with integer (or rational) coefficients, which we are typically solving for integer (or rational) solutions.

Which of the following linear equations can be solved for integer x and y ? For those, how many solutions are there?
(1) $6 x+7 y=1$.
(2) $6 x+7 y=2$.
(3) $6 x-15 y=2$.
(4) $6 x-15 y=-99$.
(5) $1071 x+462 y=42$.
3.2. Last time, we began to discuss gcd's in a loose way. Today, we do it more systematically.

Firstly: When should $\operatorname{gcd}(a, b)$ exist? For instance, $\operatorname{gcd}(0,0)$ does not exist.
For any $a, b \in \mathbf{Z}$, the set of common divisors of a and b is nonempty, since it contains 1. If at least one of a, b is nonzero, say a, then any common divisor can be at most $|a|$. So by a flipped version of well-ordering, there is a greatest such divisor.

Note that our reasoning showed $\operatorname{gcd}(a, b) \geq 1$. Moreover, $\operatorname{gcd}(a, 0)=|a|$ for all nonzero a.
3.3. It turns out that our study of linear Diophantine equations above leads to a very natural characterization of gcd's.

Theorem 3.1. For fixed $a, b \in \mathbf{Z}$, not both zero(!), let

$$
S=\{a x+b y \mid x, y \in \mathbf{Z}\} \subseteq \mathbf{Z}
$$

Then there exists $d \in \mathbf{N}$ such that $S=d \mathbf{Z}$, the set of integer multiples of d.
Proof. We can't apply well-ordering directly to S. But consider $S \cap \mathbf{N}$: This is a subset of \mathbf{N} by construction, and nonempty, since it contains $|a|$ and $|b|$. We take d to be the smallest element of $S \cap \mathbf{N}$.

To show that $S=d \mathbf{Z}$, we must show that each set is contained in the other. It will be convenient to write $d=a x_{0}+b y_{0}$ for some $x_{0}, y_{0} \in \mathbf{Z}$, which we can do because $d \in S$.

Any element of $d \mathbf{Z}$ takes the form $m d$ for some $m \in \mathbf{Z}$ We see that $m d=$ $a\left(m x_{0}\right)+b\left(m y_{0}\right) \in S$. This proves $d \mathbf{Z} \subseteq S$.

Conversely, suppose $n \in S$. If $-n$ is a multiple of d, then so is n, so it suffices to assume $n \geq 0$. We must show that d divides n. By long division, $n=q d+r$ for some $q, r \in \mathbf{N}_{0}$ with $r<d$. But $n=a x_{1}+b y_{1}$ for some $x, y \in \mathbf{Z}$, so

$$
r=n-q d=a\left(x_{1}-q x_{0}\right)+b\left(y_{1}-q y_{0}\right) \in S .
$$

Since d is the smallest positive element of S, this forces $r=0$, whence d divides n. This proves $S \subseteq d \mathbf{Z}$.

Theorem 3.2. The d resulting from the previous theorem is precisely $\operatorname{gcd}(a, b)$.
Proof. We must prove two things: (1) That d divides both a and b. (2) That if $d^{\prime} \in \mathbf{N}$ is any other common divisor of a and b, then $d^{\prime} \leq d$.
(1) We know that d divides every element of S. But we certainly have $a=a(1)+b(0) \in S$, and similarly, $b \in S$.
(2) It suffices to show that d^{\prime} divides d. (Here it would be tempting to try long division, but ultimately, we only need the defining properties of d^{\prime} and d.) We know that $a=d^{\prime} a^{\prime}$ and $b=d^{\prime} b^{\prime}$ and $d=a x_{0}+b y_{0}$ for some integers $a^{\prime}, b^{\prime}, x_{0}, y_{0}$, from which

$$
d=\left(d^{\prime} a^{\prime}\right) x_{0}+\left(d^{\prime} b^{\prime}\right) y_{0}=d^{\prime}\left(a^{\prime} x_{0}+b^{\prime} y_{0}\right)
$$

as needed.
3.4. We return to linear Diophantine equations.

Corollary 3.3 (Bézout). For fixed $a, b, c \in \mathbf{Z}$, where a and b are not both zero,

$$
a x+b y=c
$$

admits a solution with $x, y \in \mathbf{Z}$ if and only if c is a multiple of $\operatorname{gcd}(a, b)$.
Proof. Let S be as in Theorem 3.1. By definition, we can solve the equation for $x, y \in \mathbf{Z}$ if and only if $c \in S$, and the two previous theorems show $S=$ $\operatorname{gcd}(a, b) \mathbf{Z}$.
3.5. We can also prove a claim left unproved on Wednesday, which we needed to run the Euclidean algorithm.

Corollary 3.4. If $a=b q+r$ for some $a, b, q, r \in \mathbf{Z}$ with b nonzero, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

Proof. Let $S=\{a x+b y \mid x, y \in \mathbf{Z}\}$ and $T=\{b x+r y \mid x, y \in \mathbf{Z}\}$. Then $a \in T$ and $r=a-b q \in S$, so we get

$$
\operatorname{gcd}(a, b) \mathbf{Z}=S=T=\operatorname{gcd}(b, r) \mathbf{Z}
$$

How to finish? Intersect both sides with \mathbf{N}; compare smallest elements.
3.6. There is a generalization of everything above to the case of three or more integers. One can define $\operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right)$ as long as some a_{i} is nonzero. Then

$$
a_{1} x_{1}+\cdots+a_{k} x_{k}=c
$$

has a solution with $x_{1}, \ldots, x_{k} \in \mathbf{Z}$ if and only if $c \in \operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right) \mathbf{Z}$.
3.7. All of this differs, however, from the Chicken McN^{*} gget problem, because there, we are seeking solutions in nonnegative integers-not arbitrary integers.
3.8. We've now covered some version of §1.1-1.4, 2.1-2.6 in Stillwell.

