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1. 2/6

1.1. Syllabus. Do introductions.

1.2. What is number theory about?
(1) Integer solutions to polynomial equations (“Diophantine equations”)
(2) Prime numbers

1.3. Some notation:

N D f1; 2; 3; : : :g;

Z D f: : : ;�3;�2;�1; 0; 1; 2; 3; : : :g;

Q D fa
b
j a; b 2 Z with b nonzerog:

1.4. Well-ordering principle Any nonempty subset of N contains a smallest
element. (Not true if we replace N with Z or Q or Q>0!)

1.5. Eratosthenes’s sieve When we say “prime number”, we will always mean
a positive number. We exclude 1 from being prime.

2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

Primes are simple to define yet hard to classify.

1.6. Euclid’s proof of the infinitude of primes Suppose that p1; : : : ; pk is a
finite list of prime numbers. It suffices to show that we can always find another
prime not on our list. Let

m D p1 � � �pk C 1:

How to conclude the proof?

Informal. Since m > 1, it must be divisible by some prime number, but this
number can’t be any of the pi .

The problem is: How do we know that any integer > 1 must be divisible by
some prime?

Rigorous. Let S be the set of integers greater than 1 that divide m. Note that
S does not contain any of the pi . Yet it is a nonempty subset of N, because it
contains m. Thus, by well-ordering, S has a smallest element q.

We claim that q is prime. For if it has a divisor q0 such that 1 < q0 < q, then
q0 would also divide m, contradicting the minimality of q.

1.7. Warning: The above proof does not imply that m itself is prime.

2C 1 D 3; 2.3/C 1 D 7; : : : ; 2.3/.5/.7/.11/C 1 D 59.509/:
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2. 2/8

2.1. Which of the following sets has an analogue of the well-ordering principle
for N?

(1) N0 D f0g [ N.
(2) 2Z, the set of even integers.
(3) fa

b
j a; b 2 N and b < 100g.

(4) f 1
2n j n 2 Ng.

2.2. Prime factorization Another application of well-ordering:

Theorem 2.1. Any positive integer can be written as a product of prime numbers.

(Is 1 a product of primes? Yes: The so-called empty product.)

Proof. Suppose for the sake of contradiction that the set of counterexamples
C � N is nonempty. By well-ordering, C contains a smallest element m.

Note that m can’t be prime itself. So there is some integer d such that d

divides m and 1 < d < m. But now, e D m=d is also an integer such that e

divides m and 1 < e < m. By the minimality of m in C , we know d and e

are both products of primes. But then, m D de is also a product of primes, a
contradiction.

An expression for a 2 N as a product of primes is called a prime factorization
of n. There may be repeated primes, so in general, it will look like

a D p
e1

1 � � �p
ek

k
;

where the pi are pairwise distinct primes and the ei are positive integers.
If the pi are ordered from smallest to largest, then this expression is unique.

That is: If we have another prime factorization

a D q
f1

1 � � � q
fk

`
;

where the qi are also ordered from smallest to largest, then k D `, and pi D qi

for all i , and ei D fi for all i .

2.3. Digression on uniqueness We often meet situations like this, where there
are separate claims of existence and uniqueness. To show that X exists, you use
sets and elements to build a mathematical object that satisfies the definition of X .
To show that X is unique, you must show that if Y is any other object that also
satisfies the definition, then X D Y .

Example 2.2. Let’s imagine that we are mathematicians in ancient India, trying
to invent the concept of zero. We define a zero to be a number z such that the
addition law on N extends to the rule nC z D n for any n 2 N.

We claim that such a number must be unique. Suppose z and z0 are both
zeroes. Then we have both z C z0 D z and z0 C z D z0. Therefore, z D z0.
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2.4. If a is very large, then computing its (unique) prime factorization can be
very hard, because finding divisors of n can be very hard. This is an important
principle behind much cryptography.

The fastest way to test whether b divides a is to use long division.
Even if b does not divide a, they will still have divisors in common: for

instance, because 1 divides both a and b. In particular, they have a greatest
common divisor, or gcd. The fastest way to compute gcd.a; b/ is by using
repeated long division in a form called the Euclidean algorithm, or Euclid’s
ladder.

2.5. Long division Recall that the well-ordering principle applies just as well
with N0 in place of N.

Theorem 2.3. For all a 2 N0 and b 2 N, there exist q; r 2 N0 such that

a D qb C r and r < b:

(In particular, b divides a if and only if r D 0.)

Proof. Intuition: When you do long division, you’re using a greedy algorithm
(“What’s the largest q such that qb � a?”). So let

S D fn 2 N0 j n D a � kb for some k 2 N0g:

Since a 2 N0 and a D a � 0b, we know that a 2 S . Thus, S is nonempty. By
well-ordering, it contains a smallest element: say, r D a � qb for some q 2 N0.
It remains to show r < b.

Indeed, if r � b, then r � b 2 N0 and r � b D a � .q C 1/b, so we have
r � b 2 S . This contradicts the minimality of r .

2.6. Euclid’s ladder The reason long division can help us compute gcd.a; b/

is the following fact, whose proof I’ll skip today:

If a D qb C r , then gcd.a; b/ D gcd.b; r/:

It shows that if we want to compute gcd.a; b/, where a > b, then we can switch
to computing gcd.b; r/, where b > r .

Let’s illustrate by computing gcd.462; 1071/. Since 1071 > 462, we start
with a D 1071 and b D 462.

a b q qb r

1071 462 2 924 147

462 147 3 441 21

147 21 7 147 0

The last line has a remainder r D 0, so it shows that 21 divides 147. Altogether,
gcd.462; 1071/ D gcd.147; 462/ D gcd.21; 147/ D 21 .

Why must the ladder eventually stop? Again, the reason is well-ordering. The
sequence of remainders r gives us a nonempty subset of N0, so it must contain a
smallest element (which is, in fact, always 0).
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2.7. Digression on induction Just as the well-ordering principle lets us “de-
scend” to the smallest case of something, the principle of induction lets us
“ascend” from a base case to infinitely many cases.

Example 2.4. We prove that for any k 2 N, the sum of the first k positive
integers is equal to 1

2
k.k C 1/.

Base case. If k D 1, then the sum is just 1. We know 1 D 1
2
.1/.2/.

Inductive step. Suppose the claim is true when k D n. We will show it is true
for k D nC 1. To do this, we expand:�

1
2
k.k C 1/

�ˇ̌
kDnC1

D
1
2
.nC 1/.nC 2/

D
1
2
n.nC 1/C .nC 1/

D
�

1
2
k.k C 1/

�ˇ̌
kDn
C .nC 1/:

By the inductive hypothesis, the red term equals the sum of the first n positive
integers. Therefore, the whole last expression equals the sum of the first nC 1

positive integers.
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3.1. Recall that a Diophantine equation is a polynomial equation with integer
(or rational) coefficients, which we are typically solving for integer (or rational)
solutions.

Which of the following linear equations can be solved for integer x and y?
For those, how many solutions are there?

(1) 6x C 7y D 1.
(2) 6x C 7y D 2.
(3) 6x � 15y D 2.
(4) 6x � 15y D �99.
(5) 1071x C 462y D 42.

3.2. Last time, we began to discuss gcd’s in a loose way. Today, we do it more
systematically.

Firstly: When should gcd.a; b/ exist? For instance, gcd.0; 0/ does not exist.
For any a; b 2 Z, the set of common divisors of a and b is nonempty, since it

contains 1. If at least one of a; b is nonzero, say a, then any common divisor can
be at most jaj. So by a flipped version of well-ordering, there is a greatest such
divisor.

Note that our reasoning showed gcd.a; b/ � 1. Moreover, gcd.a; 0/ D jaj for
all nonzero a.

3.3. It turns out that our study of linear Diophantine equations above leads to a
very natural characterization of gcd’s.

Theorem 3.1. For fixed a; b 2 Z, not both zero(!), let

S D fax C by j x; y 2 Zg � Z:

Then there exists d 2 N such that S D dZ, the set of integer multiples of d .

Proof. We can’t apply well-ordering directly to S . But consider S \N: This is a
subset of N by construction, and nonempty, since it contains jaj and jbj. We take
d to be the smallest element of S \ N.

To show that S D dZ, we must show that each set is contained in the other. It
will be convenient to write d D ax0 C by0 for some x0; y0 2 Z, which we can
do because d 2 S .

Any element of dZ takes the form md for some m 2 Z We see that md D

a.mx0/C b.my0/ 2 S . This proves dZ � S .
Conversely, suppose n 2 S . If �n is a multiple of d , then so is n, so it suffices

to assume n � 0. We must show that d divides n. By long division, n D qd C r

for some q; r 2 N0 with r < d . But n D ax1 C by1 for some x; y 2 Z, so

r D n � qd D a.x1 � qx0/C b.y1 � qy0/ 2 S:

Since d is the smallest positive element of S , this forces r D 0, whence d

divides n. This proves S � dZ.
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Theorem 3.2. The d resulting from the previous theorem is precisely gcd.a; b/.

Proof. We must prove two things: (1) That d divides both a and b. (2) That if
d 0 2 N is any other common divisor of a and b, then d 0 � d .

(1) We know that d divides every element of S . But we certainly have
a D a.1/C b.0/ 2 S , and similarly, b 2 S .

(2) It suffices to show that d 0 divides d . (Here it would be tempting to try
long division, but ultimately, we only need the defining properties of d 0 and d .)
We know that a D d 0a0 and b D d 0b0 and d D ax0 C by0 for some integers
a0; b0; x0; y0, from which

d D .d 0a0/x0 C .d 0b0/y0 D d 0.a0x0 C b0y0/;

as needed.

3.4. We return to linear Diophantine equations.

Corollary 3.3 (Bézout). For fixed a; b; c 2 Z, where a and b are not both zero,

ax C by D c

admits a solution with x; y 2 Z if and only if c is a multiple of gcd.a; b/.

Proof. Let S be as in Theorem 3.1. By definition, we can solve the equation
for x; y 2 Z if and only if c 2 S , and the two previous theorems show S D

gcd.a; b/Z.

3.5. We can also prove a claim left unproved on Wednesday, which we needed
to run the Euclidean algorithm.

Corollary 3.4. If a D bq C r for some a; b; q; r 2 Z with b nonzero, then
gcd.a; b/ D gcd.b; r/.

Proof. Let S D fax C by j x; y 2 Zg and T D fbx C ry j x; y 2 Zg. Then
a 2 T and r D a � bq 2 S , so we get

gcd.a; b/Z D S D T D gcd.b; r/Z

How to finish? Intersect both sides with N; compare smallest elements.

3.6. There is a generalization of everything above to the case of three or more
integers. One can define gcd.a1; : : : ; ak/ as long as some ai is nonzero. Then

a1x1 C � � � C akxk D c

has a solution with x1; : : : ; xk 2 Z if and only if c 2 gcd.a1; : : : ; ak/Z.

3.7. All of this differs, however, from the Chicken McN�gget problem, because
there, we are seeking solutions in nonnegative integers—not arbitrary integers.

3.8. We’ve now covered some version of §1.1–1.4, 2.1–2.6 in Stillwell.


