
18.704 SPRING 2022 WEEK 1

MINH-TÂM TRINH

1. Monday (1/31)

1.1. Welcome & Syllabus. Itinerary:

• Learn everyone’s names, year at MIT, and major
• Discuss syllabus
• Discuss textbook & supplements
• Discuss tentative schedule
• Begin sign-ups for block 1 (at least through week 2)

1.2. Classical Fourier Analysis. What is Fourier analysis? It begins with the
observation that if a function f : R → R is periodic, and sufficiently tame, then it
can be decomposed as a sum of rescaled cosine and/or sine functions, whose periods
are integer subdivisions of the period of f .

For instance, let ⌊x⌋ be the largest integer less than or equal to x, and let
s(x) = x − ⌊x⌋. This is a sawtooth function that satisfies s(x + 1) = s(x). It turns
out that for any x /∈ Z, we have

s(x) = 1
2 −

∞∑
m=1

1
πm

sin(2πmx).

The right-hand side is called the Fourier series of s. In general, the sense in which a
Fourier series converges to the original function may be more delicate.

Why would we want to decompose a function into trigonometric functions? One
reason is our intuition that trigonometric functions are simpler than many other
periodic functions. And one way to justify the word “simpler” is to observe that
cosine and sine are eigenfunctions of the differential operator D2, where D = d

dx .
That is, the set of all (smooth) real-valued functions forms a vector space, D2

forms a linear operator on this vector space, and cos(αx) and sin(αx) belong to the
(−α2)-eigenspace of D2.

Due to this property, trigonometric functions occupy an important role in the
theory of linear differential equations. Joseph Fourier (1768–1830) developed the
series expansion bearing his name to solve the 1-dimensional heat equation, which
governs the flow of heat in a thin conductive rod. Fourier expansion allows us
to write the general solution to the heat equation as a superposition of separable
solutions, each having an essentially trigonometric form.

But it would be cleaner to use eigenfunctions of D rather than D2. For instance,
if we allow complex-valued functions, then eiαx is a natural choice. This is no loss
of richness because cos(αx) = 1

2 (eiαx + e−iαx) and sin(αx) = 1
2i (eiαx − e−iαx).
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Moreover, after rescaling, we may assume that the functions we are studying
have period 1. Then, instead of working with periodic functions on the real line R,
we can work with functions on the quotient group R/Z.

With these replacements, we arrive at the following version of the Fourier series
expansion. For any α ∈ R, let

eα(x) = e2πiαx.

If f : R/Z → C is absolutely integrable, then there are complex numbers f̂(n),
indexed by n ∈ Z, such that

f(x) =
∑

n

f̂(n)en(x)

at any point x where f is continuous, where
∑

n = limN→∞
∑

|n|≤N . It turns out
there is an explicit formula for the f̂(n): namely,

f̂(n) =
∫ 1

0
f(x)en(−x) dx.

The absolute integrability of f ensures the convergence of the right-hand side. This
formula, together with some more analysis, leads to an essentially constructive proof
of the expansion.

Example 1.1. For the sawtooth function s, we compute:

ŝ(n) =
∫ 1

0
xe−2πinx dx =


1
2 n = 0

i
2πn n ̸= 0

So the Fourier series is∑
n

ŝ(n)e2πinx = ŝ(0) +
∞∑

m=1

(
ŝ(m)e2πimx + ŝ(−m)e−2πimx

)
= 1

2 +
∞∑

m=1

(
i

2πm
e2πimx − i

2πm
e−2πimx

)

= 1
2 −

∞∑
m=1

1
πm

sin(2πmx),

as we claimed before.

This entire story admits an analogue for non-periodic functions on the real line.
If f : R → C is integrable, then we define its Fourier transform f̂ : R → C by:

f̂(α) =
∫ ∞

−∞
f(x)eα(−x) dx.

It turns out that if f and f̂ are both absolutely integrable, then we have

f(x) =
∫ ∞

−∞
f̂(α)eα(x) dα

at any point x where f is continuous. This so-called Fourier inversion formula is
the analogue of the Fourier series expansion.
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1.3. General Groups. We will be interested in the algebraic structure of Fourier
analysis. In particular, we want to generalize it beyond R/Z and R.

To motivate what follows, note that there is another class of operators for which
the eα are eigenfunctions. If Tβ is the translation-by-β operator Tβf(x) = f(x − β),
then Tβeα = e−2πiαβeα. This just reformulates the fact that eα turns addition into
multiplication, or in other words, that eα defines a group homomorphism from the
additive group R into the multiplicative circle group

T := exp(2πi(R/Z))

= {z ∈ C | |z| = 1}.

The homomorphism factors through R/Z if and only if α is an integer.
Going somewhat beyond the scope of the course, let us give the big picture,

following Chapter 3 of the book [1] by Ramakrishnan and Valenza.
Let G be a locally-compact, Hausdorff topological abelian group. (If you don’t

know topology, just ignore the first three adjectives.) There is another topological
group called the dual of G and denoted Ĝ. The elements of Ĝ are the continuous
homomorphisms χ : G → T, also known as the (degree-1, unitary) characters of
G. The group operation on Ĝ is pointwise composition, meaning (χ1 · χ2)(x) =
χ1(x)χ2(x), and the identity element is the constant map 1 : G → T.

A deep theorem states that G admits a nonzero, translation-invariant measure,
known as a Haar measure. It induces a corresponding Haar measure on Ĝ. It
moreover lets us define the vector space L1(G) of (absolutely) integrable functions
f : G → C. The Fourier transform of f is the function f̂ : Ĝ → C given by

f̂(χ) =
∫

G

f(x)χ(x−1) dx.(1.1)

If f̂ ∈ L1(Ĝ), then we have a Fourier inversion formula

f(x) =
∫

Ĝ

f̂(χ)χ(x) dχ

at any element x where f is continuous. This formalism does indeed generalize our
earlier discussion:

Example 1.2. If G = R/Z, then the dual group Ĝ consists of the exponential
functions en(x) = e2πinx for n ∈ Z. The map n 7→ en is an isomorphism Z ∼−→ R̂/Z.
In this way, we recover classical Fourier series.

Example 1.3. If instead, G = R, then the dual group Ĝ consists of the functions
eα(x) = e2πiαx for arbitrary α ∈ R. The map α 7→ eα is an isomorphism R ∼−→ R̂.
In this way, we recover the classical Fourier transform.

Sometimes it is more useful to work with square-integrable, rather than integrable,
functions. The vector space L2(G) of square-integrable functions f : G → C forms
a Hilbert space, equipped with the inner product

⟨f, g⟩ =
∫

G

f(x)g(x) dx.
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We can use (1.1) to define the Fourier transform on L1(G) ∩ L2(G) ⊆ L2(G); then,
by a density argument, it extends to a linear map

F : L2(G) → L2(Ĝ).

A result called the Parseval–Plancherel theorem states that this map is an isometry
with respect to ⟨−, −⟩, meaning ⟨Ff, Fg⟩ = ⟨f, g⟩.

As this is an algebra course, we want to avoid the technicalities of integration
as much as possible. So we will stick to the case where G is finite (and hence
discrete). We will be interested in what Fourier a.k.a. harmonic analysis on G can
tell us about other branches of mathematics. For instance, if p is a prime, then
the Parseval–Plancherel theorem on Z/pZ can be used to compute the magnitude
of the Gauss sum associated with p in number theory. We will also study how
harmonic analysis can be extended to nonabelian groups: a subject better known as
representation theory.

2. Wednesday (2/2)

2.1. Anatomy of a Talk. Susan Ruff came to this class to speak about the
components of a good talk. She discussed the findings of education research about
the relative effectiveness of different methods of instruction. Lecturing is relatively
ineffective, and “discovery-based learning” has mixed outcomes, but lecturing with
a significant interactive component (e.g., clicker questions) does much better.

On the chalkboards, we brainstormed different ways that teachers could keep
their students engaged during class time. We then discussed ways for a speaker to
handle questions met with silence, like breaking the question into simpler pieces, or
backing up slightly in the material.

Finally, Susan presented an outline of the steps involved in preparing a talk:

(1) Learning the content.
(2) Deciding what the audience needs.
(3) Deciding what is hard or subtle, and how to help.
(4) Structuring the talk.
(5) Planning board space.
(6) Practicing.
(7) Revising.

This outline is only meant as a guide. The key takeaway is that “learning the
content” is merely the first step of many.

2.2. The Space of Functions. We now follow Terras, Chapter 2, pages 31-37.
Let X be a finite set. (Terras starts out with a group G in place of X, but we

won’t use any group structure on X today.) We write L2(X) for the vector space of
all complex-valued functions on S. For all f, g ∈ L2(X), we set

⟨f, g⟩ =
∑
x∈X

f(x)g(x),

where (−) means complex conjugation. Then ⟨−, −⟩ is a hermitian inner product
on L2(X). This means:
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(1) ⟨af1 + f2, g⟩ = a⟨f1, g⟩ + ⟨f2, g⟩ for any a ∈ C.
(2) ⟨f, g⟩ = ⟨g, f⟩.
(3) ⟨f, f⟩ ≥ 0, with equality if and only if f is the zero function.

In particular, we can define a norm on L2(X) by setting

∥f∥ =
√

⟨f, f⟩.

This means:

(1) ∥af∥ = |a|∥f∥ for any a ∈ C.
(2) ∥f∥ ≥ 0, with equality if and only if f is the zero function.
(3) Triangle inequality. ∥f + g∥ ≤ ∥f∥ + ∥g∥.

One can also derive the Cauchy–Schwarz inequality |⟨f, g⟩| ≤ ∥f∥∥g∥.

Exercise 2.1. Fix f, g ∈ L2(X) and let P (t) = ∥tf + g∥2. This is a quadratic
polynomial in t. Using the nonnegativity of P (t) for real t, together with the
quadratic formula, deduce the Cauchy–Schwarz and triangle inequalities.

There is an obvious basis for L2(X): namely, the collection of delta functions δa

as we run over all a ∈ X. By definition, δa(x) equals 1 when x = a, and equals 0
otherwise. Tautologically, this basis is orthonormal with respect to ⟨−, −⟩, meaning
⟨δa, δb⟩ equals 1 when a = b, and equals 0 otherwise.

Now set X = Z/nZ. There is a less obvious orthogonal basis for L2(Z/nZ).
Namely, for all a ∈ Z/nZ, let

ea(x) = e2πiax/n,

modifying our notation from Monday. We can view ea as a homomorphism from
Z/nZ into the circle group T = {z ∈ C | |z| = 1}. In particular, ea(x) = ea(−x).

Lemma 2.2 ([2, 38]). The functions ea, as a runs over Z/nZ, form a basis for
L2(Z/nZ) such that

⟨ea, eb⟩ =
{

n a ≡ b

0 else

In particular, the functions 1√
n

ea are orthonormal with respect to ⟨−, −⟩.

In fact, the linear independence of the functions ea is a consequence of the
orthogonality identity above.

3. Friday (2/4)

3.1. The Fourier Transform. The discrete Fourier transform (DFT) of a function
f ∈ L2(Z/nZ) is the function Ff ∈ L2(Z/nZ) defined by

Ff(a) := ⟨f, ea⟩ =
∑

x∈Z/nZ

f(x)ea(−x).

This can be viewed as a linear operator on L2(Z/nZ).
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For instance, if n = 4, then the matrix of F with respect to the ordered basis
(δ0, δ1, δ2, δ3) is given (in column notation) by

1 1 1 1
1 −i −1 i

1 −1 1 −1
1 i −1 −i


because i = e4(1). In general, we find:

• Fδb = ēb, because eb(−a) = ea(−b).
• Feb = nδb, by Lemma 2.2.

Above, we are implicitly using the notation ēb(x) := eb(x).

3.2. Convolution. One big motivation for F is that it intertwines two natural
notions of multiplication on Z/nZ.

More generally, let G be a finite group with binary operation ◦. We already know
that L2(G) forms a ring via pointwise addition and multiplication:

(f + g)(x) = f(x) + g(x),

(f · g)(x) = f(x) · g(x).

That is, L2(G) inherits a ring structure from C. But at the same time, L2(G)
inherits a different multiplication from G. For all f, g ∈ L2(G), we define the
convolution of f and g to be the function f ∗ g ∈ L2(G) such that

(f ∗ g)(x) =
∑

y,z∈G
y◦z=x

f(y)g(z).

The associativity of ◦ implies the associativity of ∗:

((f ∗ g) ∗ h)(x) =
∑

y,z,w∈G
y◦z◦w=x

f(y)g(z)h(w) = (f ∗ (g ∗ h))(x).

If e is the identity of G, then δe is the identity of L2(G) with respect to convolution.
By contrast, the constant function 1 ∈ L2(G) is the identity of L2(G) with respect
to pointwise multiplication.

Lastly, note that convolution is both left- and right-distributive over pointwise
addition of functions. This means L2(G) forms a ring under convolution. If G is
not abelian, then ∗ is not commutative.

In the case where G = Z/nZ, convolution looks like

(f ∗ g)(x) =
∑

y∈Z/nZ

f(y)g(x − y).

For the special functions δa and ea discussed earlier, we find:

• (f ∗ δa)(x) = f(x − a). In particular, δa ∗ δb = δa+b.
• (f ∗ ea)(0) = Ff(a).

There is no simple formula for f ∗ ea itself.



18.704 SPRING 2022 WEEK 1 7

3.3. Properties of the DFT. We follow Terras, Chapter 2, pages 37-44.

Theorem 3.1 ([2, 36]). The linear operator F : L2(Z/nZ) → L2(Z/nZ) satisfies
these properties:

(1) F(f ∗ g)(x) = Ff(x) · Fg(x). That is, F turns convolution into pointwise
multiplication.

(2) Fourier inversion. f(x) = 1
nF2f(−x).

(3) Parseval–Plancherel identity. ⟨Ff, Fg⟩ = n⟨f, g⟩.
In particular, (2) implies that F is invertible, hence bijective.

Proof of part (1). For all a, b ∈ Z/nZ, we compute

F(δa ∗ δb) = Fδa+b = ēa+b = ēa · ēb = Fδa · Fδb.

But the δa span L2(Z/nZ), so by the linearity of ∗ and · and F, we’re done. □

Let us sketch an application. Fix a prime number p. Given a residue a ∈ Z/pZ,
the Gauss sum Γ(a) is defined by

Γ(a) =
∑

x∈Z/pZ

χ(x)e2πiax/p,

where χ is the Legendre symbol defined by:

χ(x) =


0 x ≡ 0
1 x is a nonzero square mod p

−1 else

One of Gauss’s proofs of the quadratic reciprocity law relies on an exact calculation
of Γ(a). Here, we prove a weaker result that Gauss discovered earlier:

Theorem 3.2. If a ∈ Z/pZ is nonzero, then |Γ(a)| = √
p.

Lemma 3.3. As a runs over nonzero residues, the values of Γ(a) only differ up to
sign. In particular, they all have the same magnitude.

Proof of Theorem 3.2. Observe that Γ(a) = Fχ(−a). By Parseval–Plancherel,∑
a∈Z/pZ

Γ(a)2 = ∥Fχ∥2 = p∥χ∥2 = p(p − 1).

But Γ(0) =
∑

x χ(x) = 0, so in the sum on the left, only terms where a is nonzero
contribute. There are p − 1 such terms, and by Lemma 3.3, they all have the same
magnitude. □
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