18.704: SEMINAR IN ALGEBRA

SPRING 2022 SCHEDULE

Setup & Background.

1/31		Welcome & syllabus;
		classical Fourier analysis
2/2	Ch. 2 , 30-37	Anatomy of a talk (<i>with</i> Susan Ruff); the discrete Fourier transform (DFT)
2/4	37-44	Properties of the DFT

Block 1. Spectral graph theory, finite Euclidean geometry, random walks.

2/7	1	Ch. 3 , 52-54	The spectral theorem for self-adjoint operators
	2	49-51, 54-55	Graphs, adjacency matrices, graph spectra (Thm. 1)
2/9	3	58-61	Spectra of Cayley graphs on $\mathbb{Z}/n\mathbb{Z}$ (Thm. 2)
	4	55-56; Ch. 4, 70-72	Ramanujan graphs; the Cayley graph $X(\mathbb{Z}/n\mathbb{Z},\pm 1)$
2/11	5	Ch. 3 , 61-64	Classification of finite fields (Thm. 3)
	6	64-67	Galois theory of finite fields (Thm. 4), trace and norm; Winnie Li's graph (Ex. 1-2)
2/14	7	Ch. 4 , 74-76	Winnie Li's graphs are Ramanujan (Ex. 3); Kloosterman sums
	8	77-78	Fan Chung's diameter estimate (Thm. 1)
2/16	9	Ch. 5 , 83-86	Finite Euclidean spaces and graphs
	10	89-92	Generalized Kloosterman sums, Weil's bound (Thm. 1); Prove (13) and (17)
2/18	11	Ch. 6 , 98-100	Markov chains, transition matrices; the random walk on a circle (Q. 1-2)
	12	102-104	The limiting distribution is uniform (Thm. 1)
2/21			Buffer Day (Presidents' Day)
2/23	13	104-106	An effective version of the limit theorem (Thm. 2)
	14	106-108	Ex. 1-4
2/25	15	Ch. 7 , 114-116	Spectra of Laplacians
	16	116-119	The heat equation (Finite Heat Kernel #1)
			Choice of talk 4 topic due

2/28	1	Ch. 10 , 167-168	Characters of finite abelian groups, dual groups; the DFT on finite abelian groups (Thm. 2)
	2	172-175	Hadamard matrices, Walsh functions
3/2	3	175-177	Hamming graphs, weights, and distance $(Ex. 1)$
	4	178-181	Krawtchouk polynomials; symmetric spaces, spherical functions (Ex. 2)
3/4	5	S , 231, 233-236.	Association schemes, the Bose–Mesner algebra
	6	S , 238, 241-244.	Hamming and Johnson association schemes
3/7			Buffer Day
3/9	7	Ch. 11 , 188-190	Binary codes, $[n, k]$ - and $[n, k, d]$ -codes, cyclic codes; polynomial rings and their ideals
	8	190-193	Examples of codes (Ex. 1-3)
3/11	9	193-195	Lloyd's theorem on perfect error-correcting codes; the classification of binary perfect $[n, k, d]$ -codes
	10	Ch. 12, 197-199	Duality between subgroups and quotients (Lem. 1); classical Poisson summation
3/14	11	199-201	Discrete Poisson summation (Thm. 1, Cor., Lem. 2)
	12	202-204	Code form of Poisson summation; weight enumerators, the MacWilliams identity (Thm. 2)
3/16	13	Ch. 13, 215-217	Dynamics of vibrating springs
	14	218-219	Benzene
3/18	15	213-214	Ehrenfest's urn model of heat diffusion
	16	Ch. 14 , 223-226	The discrete uncertainty principle (Thm. 1)
			Outline of paper sections due

Block 2. Finite abelian groups, binary codes, error correction, physics. **S** stands for the article by Sloane.

Block 3. Nonabelian harmonic analysis, *i.e.*, representation theory of finite groups. **E** stands for the book by Etingof *et al.*

3/28			Buffer Day
			Anatomy of written exposition (with Susan Ruff) $% \left(\left({{{\rm{A}}_{{\rm{B}}}} \right)_{{\rm{A}}}} \right)$
3/30	1	Ch. 15 , 240-241	The groups $\mathrm{GL}(n,\mathbb{F}_q),\mathrm{Aff}(q),\mathrm{Heis}(q),\mathrm{SL}(n,\mathbb{F}_q)$
	2	242-243, 250 also E , §2.3, 4.4	Representations, their equivalence, subreps, irreps; sums, tensor products, duals
4/1	3	244-245	Unitarizability (Prop. 1)

18.704 SPRING 2022 SCHEDULE

		also \mathbf{E} , §4.6	
	4	247-248	Maschke's theorem (Prop. 2)
		also \mathbf{E} , §4.1	
4/4	5	248-249	Schur's lemma (Lem. 1);
		also \mathbf{E} , §2.3	1-dimensionality of irreps of abelian groups
	6	251-254	Schur orthogonality (Thm. 1, Cor.);
		also \mathbf{E} , §4.5	multiplicity of an irrep
4/6	7	254-255	Character tables
		also \mathbf{E} , §4.8	
	8	246-247, 256	The group algebra, the regular representation (Lem. 2) $$
4/8	9	257-258	The Peter–Weyl theorem (Thm. $2(1)$)
		also \mathbf{E} , §4.7	
	10	258-261	Class functions (Lem. 3), properties of characters (Thm. 3)
		also \mathbf{E} , §4.2	
4/11	11	258, 261-263	Properties of the Fourier transform (Thm. $2(3), 4$)
	12	263-266	More examples, e.g., S_3 , S_4 , A_4 , Dih_4 , Q_8
		also \mathbf{E} , §4.3, 4.8	
4/13	13	Ch. 16 , 267-270	Induced representations (Ex. 1-2)
	14	267-272	Frobenius's formula for induced characters (Prop. 1, Cor.)
4/15	15	272-275	Conjugacy classes and irreps of $\operatorname{Aff}(q)$ (Prop. 2, Table II.3)
	16	277-279	Frobenius reciprocity (Thm. 1);
			transitivity of induction (Prop. 4)
			Rough draft due to classmate and instructor

Block 4.	$\operatorname{GL}(2,\mathbb{F}_q)$ and its subgroups.	${\bf PS}$ stands for the book by Piatetski-Shapiro.

4/18			Buffer Day
4/20	1	Ch. 17, 282-283	Mackey–Wigner's "method of little groups"; application to $Aff(q)$
	2	283-286	Cayley graphs of $Aff(q)$
4/22	3	288-291	Classical and discrete wavelets (Thm. 2 and/or 3) $$
	4	Ch. 18, 294-297	Conjugacy classes and irreps of $\operatorname{Heis}(q)$ (Table II.4)
4/25	5	299-300	The Schrödinger representation; radar cross-ambguity
	6	Ch. 19 , 302-305	The real upper half-plane and its Laplacian
4/27	7	305-307	The finite upper half-plane
	8	307-310	Finite symmetric spaces; Gelfand's and Selberg's criteria (Thm. 1, Ex., Cor. 1)

3

18.704 SPRING 2022 SCHEDULE

4/29	9	Ch. 8 , 132-136	Gauss sums as gamma functions; quadratic reciprocity(?)
	10	Ch. 20, 330-333	$k\mbox{-}{\rm Bessel}$ functions as eigenfunctions of the Laplacian
			Feedback on classmate's draft due
5/2	11	Ch. 21, 363	Exceptional isomorphisms for SL, PSL in rank 2
	12	364-366	Maximal tori; conjugacy classes in $\operatorname{GL}(2, \mathbb{F}_q)$ (Table II.11)
5/4	13	366-369	Construction of the principal series representations
	14	369-373 also PS , 33-34	Construction of the discrete series representations
5/6	15	373-374 also PS , 35-38	Characters of the discrete series representations; character table of $\operatorname{GL}(2, \mathbb{F}_q)$
	16	381-384	Character table of $\operatorname{GL}(3, \mathbb{F}_q)$ (sketch only)

Coda.

5/9 Buffer Day
Special bonus talk?
Final draft of paper due

4