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1. Introduction

The Heisenberg group, named after the physicist Werner Heisenberg, has its
profound implications in applied mathematics and quantum mechanics. We first
start with the discretized version of the Heisenberg group:

Definition 1.1. The finite Heisenberg group is the group of 3 × 3 upper triangular
matrices of the following form:

Heis(q) =
{ 1 x z

0 1 y

0 0 1

 ∣∣∣∣∣x, y, z ∈ Fq

}
(1.1)

Note that we adopt the convention q = pr, where p is prime. The continuous
version of the Heisenberg group, also known as the real Heisenberg group, can be
obtained when entries are taken to be real numbers. The real Heisenberg group
is closely related to the formulation of the Heisenberg’s uncertainty principle and
fundamental aspects of quantum mechanics, which we summarize in Sec. 5. In the
rest of this paper, we will be mainly focused on the discussion of the finite Heisenberg
group and its irreducible representations and characters. We will first revisit the
idea of the induced representation in Sec. 2. Then, we derive the conjugacy classes
of Heis(q) in Sec. 3. The characters and irreducible representations will be discussed
in Sec. 4. Lastly, we link it to its importance in modern quantum mechanics in
Sec. 5.

2. Induced representation

Induced representations are a way to construct a representation of the group
from the representation of its subgroup by "extending" the subgroup representation
[T, Chapter 16].

Definition 2.1. Suppose that H is a subgroup of the finite group G and σ : H →
GL(W) is a representation of H. The induced representation from H up to G, denoted
as π = IndG

Hσ is a group homomorphism π : G → GL(V ), where

V = {f : G → W | f(hg) = σ(h)f(g), for all h ∈ H, g ∈ G}(2.1)

The representation π(g) of G is defined by

[π(g)f ](x) = f(xg), for all x, g ∈ G(2.2)

The Frobenius formula gives the characters for the induced representation of G.
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Theorem 2.2 (Frobenius formula). Using the above notation, we have

χπ(g) = 1
|H|

∑
x∈G

χ̃σ(xgx−1) =
∑

a∈H\G

χ̃σ(aga−1)

where

χ̃σ(x) =

χσ(x), if x ∈ H

0, if x ̸∈ H

3. Conjugacy classes of the Heisenberg group

We now turn to the main discussion of the finite Heisenberg group, following the
construction in [T, Chapter 18]. To begin with, we compute the conjugacy classes
of Heis(q). Notice that

1 x z

0 1 y

0 0 1


1 a c

0 1 b

0 0 1


1 x z

0 1 y

0 0 1


−1

=

1 a c+ (bx− ay)
0 1 b

0 0 1


(3.1)

Thus, the a and b entries remain unchanged after the conjugation. For a = b = 0,
the conjugacy class has only one element since bx − ay = 0 and the upper right
entry remains unchanged as well. Since c can be taken to be any values in Fq, there
are q conjugacy classes of this type. If (a, b) ̸= (0, 0), then the matrix

( 1 a c
0 1 b
0 0 1

)
is

conjugate to all matrices with the same a, b entries. In other words, there are q
elements in this conjugacy class, and there are q2 − 1 conjugacy classes of this type
for different choices of a and b. The class equation of Heis(q) then can be written as

|Heis(q)| = q3 = q × 1 + (q2 − 1) × q(3.2)

4. Irreducible Representations and their characters of Heis(q)

From the discussion on conjugacy classes in Heis(q) and the well-known fact that
the number of conjugacy classes corresponds to the number of irreducible represen-
tations, we can infer that there are in total q + q2 − 1 irreducible representations of
Heis(q).

4.1. One-dimensional representations. We first try to find the one-dimensional
characters of Heis(q). Let ρ be a one-dimensional representation and χ be the
character of ρ. Since representations are homomorphic by definition, the following
equation must be satisfied:

χ(gh) = ρgh = ρgρh = χ(g)χ(h)(4.1)
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The exact formula of the character χ can be motivated by observing the multiplication
of two matrices:1 x z

0 1 y

0 0 1


1 m n

0 1 r

0 0 1

 =

1 x+m n+ xr + y

0 1 y + r

0 0 1

(4.2)

Focusing our attention to the e1,2 and e2,3 entries, we can define the character χa,b

so that Eqn. 4.1 is satisfied.

Definition 4.1. The one-dimensional representations (and characters) of Heis(q)
are

χa,b

1 x z

0 1 y

0 0 1

 = exp (2πiTr (ax + by)
p

)(4.3)

where a, b ∈ Fq

One can check that χa,b indeed satisfy Eqn. 4.1:

χa,b(g)χa,b(h) = e
2πi

p (ax+by) e
2πi

p (am+br)

= e
2πi

p [a(x+m)+b(y+r)]

= χa,b(gh)

(4.4)

Therefore, we have found q2 one-dimensional representations of Heis(q) for different
choices of a and b, and their corresponding characters can be directly calculated.

4.2. Induced representations of Heis(q). The next irreducible representation of
Heis(q) cannot be seen readily, instead, it has to be constructed using the induced
representation from the following subgroup H of Heis(q):

H =
{ 1 0 z

0 1 y

0 0 1

 ∣∣∣∣∣ y, z ∈ Fq

}
(4.5)

To obtain the induced representation of Heis(q), we define the representations on
this subgroup:

Definition 4.2. The one-dimensional representations of the subgroup H of Heis(q)
are

σs

1 0 z

0 1 y

0 0 1

 = exp (2πiTr(sz)
p

), for all s ̸= 0(4.6)

Using the idea of the induced representation, we obtain q − 1 representations
πs = IndG

Hσs of Heis(q) for each σs as discussed in Sec. 2. The following proposition
gives the characters of this representation:

Proposition 4.3. Let g =
( 1 x z

0 1 y
0 0 1

)
∈ Heis(q). The characters of the representation

πs are:

χπs(g) =

q exp( 2πiTr(sz)
p ), if (x,y)=(0,0)

0, otherwise
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Character table for Heis(q){ 
1 0 z

0 1 0
0 0 1


} { 

1 x ∗
0 1 y

0 0 1


}

# Classes q q2 − 1
# Elements in class 1 q

χa,b 1 exp ( 2πiTr(ax+by)
p )

χπs
, s ∈ Fq, s ̸= 0 q exp ( 2πiTr(sz)

p ) 0

Table 1. The character table of Heis(q).

Proof. To get the character values of elements in G, we first determine the repre-
sentatives of the quotient group H\G to be

H\G =
{ 1 c 0

0 1 0
0 0 1

 ∣∣∣∣∣ c ∈ Fq

}
(4.7)

Then, apply Thm 2.2 for g =
(

1 0 z
0 1 0
0 0 1

)
χπs(g) =

∑
a∈H\G

χ̃σs(aga−1)

=
∑

a∈H\G

χ̃σs
(g)

=
∑

a∈H\G

σs(g)

= q exp(2πiTr (sz)
p

)

(4.8)

We have used the fact g ∈ H in the third equality and Def. 4.2 in the last equality.
Repeating the same calculation for g =

( 1 x z
0 1 y
0 0 1

)
, we obtain

χπ(g) =
∑

a∈H\G

χ̃σ(aga−1)

= 0
(4.9)

since aga−1 ̸∈ H, for all a ∈ H\G. □

Applying Prop. 4.2 on the identity matrix, we immediately know that the
dimension of the induced representation is q. Furthermore, the representations
above are all irreducible as can be verified by taking the Hermitian product. Finally,
since the following dimension formula is satisfied, we have found all the irreducible
representations of Heis(q):

|Heis(q)| = q3 = q2 × 12 + q2 × (q − 1)(4.10)

Our work can be summarized in the character table 1.



CONJUGACY CLASSES AND IRREDUCIBLE REPRESENTATIONS OF HEIS(q) 5

5. Relation to quantum mechanics

In this last section, we discuss the key application of Heis(q) in quantum mechanics.
The main reference for this section is [W, Chapter 13].

5.1. Heisenberg Lie algebra. Consider the Lie algebra η3 with basis (X,Y,Z) and
the Lie bracket operation defined by its values on the basis (X,Y, Z):

[X,Y ] = Z, [Y, Z] = 0, [X,Z] = 0.(5.1)

This is called the Heisenberg Lie Algebra η3. The Lie bracket operation resembles
the canonical commutator relation in quantum mechanics:

[x̂, p̂] = iℏI, [x̂, iℏI] = 0, [p̂, iℏI] = 0.(5.2)

where I is the identity and x̂, p̂ are the operators of position and momentum,
respectively. The Heisenberg Lie algebra is isomorphic to the Lie algebra of 3 × 3
strictly upper triangular real matrices when we take the X,Y,Z to be the following
3 × 3 matrices and the Lie brackets to be the usual matrix commutator:

X =

0 1 0
0 0 0
0 0 0

 , Y =

0 0 0
0 0 1
0 0 0

 , Z =

0 0 1
0 0 0
0 0 0

 .(5.3)

This is related to the real Heisenberg group by the isomorphism generated by the
following exponential map:

exp

0 x z

0 0 y

0 0 0

 =

1 x z + 1
2xy

0 1 y

0 0 1

(5.4)

5.2. Schrödinger representation.

Definition 5.1. The Schrödinger representation is another representation (ΓS , L
2(R))

of the Heisenberg Lie algebra η3 satisfying:

ΓS(X)ψ(q) = −iqψ(q),ΓS(Y )ψ(q) = − d

dq
ψ(q),ΓS(Z)ψ(q) = −iψ(q)

where ψ(q) ∈ L2(R). This representation encodes the essence of the Schrodinger
equation, the differential equation that governs the evolution of quantum states. In
1932, Marshall Stone and John von Neumann proved the following theorem about
the uniqueness of the representation of the Heisenberg group.

Theorem 5.2 (Stone-von Neumann). There is a unique irreducible unitary repre-
sentation (up to isomorphism) of the Heisenberg group on finitely many generators.

This implies that the Schrödinger representation is the unique (up to isomorphism)
irreducible representation of the Heisenberg group in finite dimensions. In particular,
Schrödinger’s formulation of quantum mechanics using the Schrodinger equation
is the only equivalent formulation of Heisenberg’s matrix mechanics, where the
position and momentum operators are taken to be matrices that satisfy certain
commutation relations.
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The importance of the real Heisenberg group lies in the fact that the formulation
of the Stone-von Neumann theorem is based on the Heisenberg group representations
instead of the Heisenberg Lie algebra representations. In addition, the Stone-von
Neumann theorem is only valid in finite dimensional cases. In quantum field theory,
where infinite degrees of freedom are present, it is no longer true that only one
irreducible representation can be found.
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