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Abstract. Many continuous spaces have well-studied finite analogues, the
most obvious example being the finite fields Fn

q for the hyperspace Rn. These
finite analogues often pave the way for new discoveries, both in the continuous
realm and in other areas of study. This paper will define a finite version of the
Poincaré half plane model using finite fields, and examine a few noteworthy
constructions involving the finite upper half plane.

1. The Poincaré Half Plane

Before we discuss the finite upper half plane, we first define the Poincaré half
plane model, also simply the upper half plane, to explain what we are discretizing.

Definition 1.1. The Poincaré half plane is the set H = {x + iy ∈ C | y > 0} of
complex numbers with positive imaginary part, equipped with the distance metric
(ds)2 = (dx)2+(dy)2

y2 .

This metric defines a hyperbolic, non-Euclidean space. The geodesics, or curves
minimizing arc length, are either vertical rays or open half-circles centered on the
real axis. This paper will not prove why these curves minimize distance. However,
we offer some intuition from the metric itself for why this is the case. As we move
closer to the real axis, distances stretch longer; two vertical rays become infinitely
far apart as the imaginary part goes to 0. Thus, the shortest path between two
points is not a straight line, but rather an arc.

For those unfamiliar with non-Euclidean metrics, it may be difficult to visualize
exactly how this space behaves. Hyperbolic spaces are defined by their constant
negative curvature; if we were to imagine this space with a Euclidean metric, this
would result in every point being a saddle point, with two principal curves with
opposite curvatures. The right diagram shows the pseudosphere, the surface of
revolution of the curve parametrized by (t − tanh t, sech t), which has constant
negative curvature everywhere except the cusp.

(a) The geodesics of the half plane.
(b) An example of hyperbolic space
in Euclidean R3.
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2. The Finite Upper Half Plane

We now define the finite upper half plane as follows. Let Fq be a field of odd
characteristic p with q = pr, and let δ ∈ Fq be a nonsquare. Note that we need q to
be odd in order for such a nonsquare element to exist.

Definition 2.1. The finite upper half plane is the set

Hq = {x+ y
√
δ | x, y ∈ Fq, y 6= 0}.(2.1)

Since we are working with Fq, the condition y > 0 translates to the condition
y 6= 0; thus, this might be considered the union of two finite half-planes. However,
this is not a meaningful distinction in the finite case, as we can simply translate the
points as needed.

We define a few terms from complex analysis in the way one would expect. For
a point z ∈ Hq with z = x + y

√
δ, we define the real part Re(z) = x and the

imaginary part Im(z) = y. The conjugate z is defined as x − y
√
δ, and we define

the norm by N(z) = zz and the trace by Tr(z) = z + z.

Now, given a matrix g ∈ GL(2,Fq) with nonzero determinant with entries
g =

(
a b
c d

)
, we can define a corresponding action on Hq. Specifically, for any z ∈ Hq,

we write

gz = az + b

cz + d
.

We can explicitly see that this forms a bijective map from Hq onto itself. Letting
z = x+ y

√
δ, we have

Im(gz) = Im
(
az + b

cz + d
· cz + d

cz + d

)
= 1
N(cz + d) Im

(
(az + b)(cz + d)

)
= 1
N(cz + d)

[
Re(az + b)Im(cz + d) + Im(az + b)Re(cz + d)

]
= 1
N(cz + d) [(ax+ b)(−cy) + (ay)(cx+ d)]

= (ad− bc)y
N(cz + d) ,

which gives us

Im(gz) = Im(z) det g
N(cz + d) .(2.2)

This must be nonzero, as neither det g nor the imaginary part of z are 0. Note also
that, since the imaginary part of cz + d is not zero, it has nonzero norm as well.

Remark 2.2. For those familiar with complex analysis, this construction is analogous
to Möbius transformations on the complex plane with real coefficients, which are
the maps z → az+b

cz+d with a, b, c, d ∈ R and ad − bc 6= 0. These maps preserve the
metric of the Poincaré half plane, and therefore preserve the geodesics as well.
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3. Graphs on the finite half-plane

One interesting construction on the finite upper half plane is the finite upper half
plane graph, which is a type of Cayley graph involving a specific subset of Hq. To
do so, we define a kind of “distance” between two points in Hq as follows.

Definition 3.1. The distance between two points z, w ∈ Hq is defined by

d(z, w) = N(z − w)
Im(z)Im(w) .(3.1)

This definition of distance is similar to the Poincaré metric, where we divide by
the square of the imaginary part. Just as the Möbius transformations preserved the
distance metric in the Poincaré half plane, we can show that the action of GL(2,Fq)
on Hq preserves this notion of distance.

Theorem 3.2. For all g ∈ GL(2,Fq), and for all z, w ∈ Hq, d(gz, gw) = d(z, w).

Proof. Let g =
(
a b
c d

)
. We have that

N(gz − gw) = N

(
az + b

cz + d
− aw + b

cw + d

)
= N (det(g)(z − w))
N(cz + d)N(cw + d)

= det(g)2N (z − w)
N(cz + d)N(cw + d)

Combining this with (2.2), the conclusion follows. �

Now that we have defined a distance function, we can define a graph on the finite
half-plane.

Definition 3.3. For a ∈ Fq, the finite upper half plane graph Xq(δ, a) is the graph
with vertices in Hq and two vertices z, w ∈ Hq are adjacent if and only if d(z, w) = a.

The graph X3(−1, 1) is an octahedron, a diagram of which can be found in Terras
[T, page 313].

We conclude this paper by explore some other interesting constructions involving
the finite upper half plane. These analyses closely follow Shaheen [S, page 14].

4. Lines and Circles On the Finite Upper Half Plane

We do not have any meaningful sense of geodesics in the finite half plane; in
particular, F∗q has no clear ordering, and so it doesn’t make sense to discuss paths of
minimal distance. Nevertheless, it is still interesting to wonder how the Euclidean
definitions of lines and circles behave in this finite half plane. More precisely, let
x = Re(z) and let y = Im(z). We can consider the solutions to the equation
ax + by + c = 0, with a, b, c ∈ Fq, to be the analogs of lines, and solutions to
(x− h)2 − δ(y − k)2 = r, with h, k, r ∈ Fq, to be the analogs of circles. Note that in
the complex case with δ = −1, the second equation matches our usual definition.
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Using the above notation, we know that x = 1
2 (z + z) and y =

√
δ

2δ (z − z). We
can therefore simplify the equation for a line as follows:

0 = ax+ by + c

= (a2 + b

2δ
√
δ)z + (a2 −

b

2δ
√
δ)z + c

= βz + βz + c,

where β = a
2 + b

2δ
√
δ is another element of Fq(

√
δ). We can also rewrite the equation

for a circle. Let z0 = h+ k
√
δ. Then, the equation for a circle becomes

r = (x− h)2 − δ(y − k)2

= (x2 − 2xh+ h2) + δ(−y2 + 2yk − k2)

= zz + z0z0 − z0z − zz0.

This further simplifies to r = N(z − z0), showing how this agrees with our usual
idea of a circle. Finally, looking at both of these formulas, we see that both can be
written in the follow way:

αzz + βz + βz + γ = 0,

with α, γ ∈ Fq and β ∈ Fq(
√
δ). When α = 0, we recover the equation for a line, and

when α 6= 0, we recover the equation for a circle. Thus, this expression encompasses
both lines and circles in the finite upper half plane. This agrees with the equation
for lines and circles in the complex plane; in fact, most of the same analysis holds
when working in C.

5. Extending the Finite Half Plane

As Hq can be thought of a subset of Fq(
√
δ), with δ being a nonsquare element

of Fq, we can also ask whether or not we can continue extending the field and create
a half-plane using Fq(

√
δ) as the base field. In this section, we will show that there

exists a sequence of finite fields

Fq ⊂ Fq(
√
δ0) ⊂ Fq(

√
δ0)(

√
δ1) ⊂ Fq(

√
δ0)(

√
δ1)(

√
δ2) ⊂ . . .

such that each δi is a multiplicative generator of Fq(
√
δ0) . . . (

√
δi−1) and the norm

map N from Fq(
√
δ0) . . . (

√
δi) to Fq(

√
δ0) . . . (

√
δi−1) maps δi to δi−1. We will

prove this in two parts.

Lemma 5.1. Given u ∈ Fq(
√
δ)∗ is a multiplicative generator of Fq(

√
δ)∗, then

N(u) is a multiplicative generator of F∗q .

Proof. The norm map for Fq(
√
δ)∗ is N(x) = xxq for all x ∈ Fq(

√
δ)∗. Now, since

u is a generator, uk = 1 if and only if k is a multiple of q2 − 1. As a result,
N(u)l = u(q+1)l = 1 if and only if l is a multiple of q− 1. Thus, N(u) is a generator
for F∗q . �

We use this lemma to show that for a generator α of F∗q , there always exists some
generator of Fq(

√
δ)∗ whose norm is α.
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Lemma 5.2. Given α ∈ F∗q is a multiplicative generator of F∗q, there exists some
multiplicative generator β of Fq(

√
δ)∗ with N(β) = α.

Proof. Let γ be a multiplicative generator of Fq(
√
δ)∗. By the previous lemma,

u = N(γ) is a generator of F∗q . Any other generator of Fq(
√
δ)∗ takes the form of

γc, where gcd(c, q2− 1) = 1; similarly, all generators of F∗q are of the form ub, where
gcd(b, q− 1) = 1. Thus, it is enough to show that, for every b with gcd(b, q− 1) = 1,
there exists some c with gcd(c, q2−1) = 1 such that N(γc) = uc = ub. This happens
if and only if

c ≡ b mod (q − 1) and gcd(c, q2 − 1) = 1.(5.1)

Since gcd(c, q − 1) = gcd(b, q − 1) = 1, we can simplify the LHS of (4.1) further, to

c ≡ b mod (q − 1) and gcd(c, q + 1) = 1.(5.2)

Now, since q is odd, we further know that gcd(q− 1, q+ 1) = 2; thus, by the Chinese
Remainder Theorem we can take the c that solves the system

c ≡ b mod (q − 1)

c ≡ 1 mod (q + 1
2 ).

Thus, we have shown that each generator in F∗q is the norm of at least one generator
of Fq(

√
δ)∗. �

Using the above, we see that we can iteratively construct the desired sequence
of fields by selecting the appropriate generator at each stage. Thus, we can keep
extending the finite to higher dimensions in this fashion.
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