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1. Introduction

Symmetric spaces have been widely studied in the context of differential geometry
and representation theory. This concept is motivated by how to define convolution
of functions on a space. It turns out that if the space is a quotient space G/K,
where G is a finite group and K is a subgroup of G, the functions on the space are
symmetric under group actions of K, and the group convolution is commutative,
then we can extend the definition of convolution on groups to symmetric spaces.
In this paper, we will study the finite symmetric spaces. To determine whether
G and K can form a symmetric space, we introduce two criteria, Gelfand’s crite-
rion and Selberg’s criterion, that are sufficient for G/K to be a finite symmetric
space. We will also show that the finite upper half plane is a finite symmetric space.

2. Definition of finite symmetric spaces

For a finite group G and a subgroup K of G, we first define the set of double
cosets of G, denoted by K\G/K.

Definition 2.1. Given a finite group G and a subgroup K, the K-double coset of
x ∈ G is the set

(2.1) KxK = {hxk : h, k ∈ K}.

The set of all K-double cosets is denoted by K\G/K.

For double cosets K\G/K, we want to assign a convolution operation on the
function space defined on double cosets.

Definition 2.2. A K-bi-invariant function f ∈ L2(G) is a function such that
f(x) = f(hxk) for any h, k ∈ K and x ∈ G. We use L2(K\G/K) to denote the set
of all K-bi-invariant function.

We can define the convolution on L2(K\G/K) by extending the convolution on
L2(G).

Definition 2.3. Suppose that K is a subgroup of a finite group G. Then the
convolution on L2(K\G/K) is an operation:

∗ : L2(K\G/K) × L2(K\G/K) →L2(K\G/K)

(f ∗ g)(KxK) =
∑
y∈G

f(Kxy−1K)g(KyK)

∀f, g ∈ L2(K\G/K), x ∈ G.

(2.2)
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It is necessary to show that this is well-defined, i.e., it is independent of the choice
of representative x, so that the convolution of two functions f, g ∈ L2(K\G/K),
f ∗ g, is also in L2(K\G/K).

Let x1, x2 be two representatives of a coset, so there exists k1, k2 ∈ K such that
x1 = k1x2k2. Then

(f ∗ g)(x1) =
∑
y∈G

f(x1y−1)g(y)

=
∑
y∈G

f(k1x2k2y−1)g(y)

=
∑

yk−1
2 ∈G

f(x2(yk−1
2 )−1)g(yk−1

2 )

= (f ∗ g)(x2).

(2.3)

Hence this is a well-defined operation.
In this paper, we will only study finite groups. Here we define the (finite) sym-

metric spaces. The word “finite” is implied unless specified.

Definition 2.4. Suppose that K is a subgroup of G. Then (G, K) is a Gelfand
pair if the convolution on L2(K\G/K) is commutative. The quotient space, G/K,
is a symmetric space.

3. Criteria of symmetric spaces

In this section, we give two criteria for G/K to be a symmetric space. We start
with Gelfand’s criterion.

Definition 3.1. A group G and a subgroup K of G satisfy Gelfand’s criterion if
and only if there is a group isomorphism τ : G → G such that s−1 ∈ Kτ(s)K, or
Ks−1K = Kτ(s)K, for all s ∈ G.

To show that Gelfand’s criterion implies that (G, K) is a Gelfand pair, we first
prove a lemma.

Lemma 3.2. If τ : G → G is a group isomorphism, then

(3.1) (f ∗ g)τ = fτ ∗ gτ

where fτ (x) = f(τ(x)) for all x ∈ G.

Proof. Let z = τ(y). Since τ is an isomorphism, z−1 = τ(y−1). We start with
writing down the formula of convolution for the left hand side. For any x ∈ G,

(f ∗ g)τ (x) =
∑
z∈G

f(τ(x)z−1)g(z)

=
∑
y∈G

f(τ(xy−1))g(τ(y))

=
∑
y∈G

fτ (xy−1)gτ (y)

= (fτ ∗ gτ )(x).

(3.2)

□
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Theorem 3.3. If (G, K) satisfies Gelfand’s criterion, then (G, K) is a Gelfand
pair, i.e. the convolution on L2(K\G/K) is commutative.

Proof. For f ∈ L2(K\G/K), denote f̌(x) = f(x−1) for all x ∈ G. Since there exists
an isomorphism τ such that for all x ∈ G we have x−1 ∈ Kτ(x)K, then

(3.3) f̌(x) = f(τ(x)) = fτ (x).

By Lemma 3.2, (f ∗ g)̌ = (f ∗ g)τ = fτ ∗ gτ = f̌ ∗ ǧ. Since

(f̌ ∗ ǧ)(t) = (f ∗ g)̌(t)

=
∑
s∈G

f(t−1s−1)g(s)

=
∑
b∈G

f(b−1)g(bt−1)

=
∑
b∈G

f̌(b)ǧ(tb−1) = (ǧ ∗ f̌)(t),

(3.4)

we can derive the commutation relation of the convolution:

(3.5) f ∗ g = ˇ̌
f ∗ ˇ̌g = ˇ̌g ∗ ˇ̌

f = g ∗ f.

Thus, the convolution on L2(K\G/K) is commutative. □

As a special case of Gelfand’s criterion, if τ is the identity, then we get this useful
following corollary.

Corollary 3.4. If (KsK)−1 = KsK for all s ∈ G, then (G, K) is a Gelfand pair.

Another sufficient condition for (G, K) to be a Gelfand pair is Selberg’s criterion.

Definition 3.5. We say that X = G/K satisfies Selberg’s criterion if there is an
one-to-one map µ : X → X such that µ(eK) = eK, and for every x, y ∈ X there is
an m ∈ G such that mx = µy and my = µx.

By definition, to show that (G, K) forms a Gelfand pair, we only need to show
that the convolution is commutative on L2(K\G/K) under Selberg’s criterion.

Theorem 3.6. If (G, K) satisfies Selberg’s criterion, then (G, K) is a Gelfand pair,
i.e. the convolution on L2(K\G/K) is commutative.

Proof. We want to show that the setup of the Selberg criterion is similar to that
of the Gelfand criterion. To do this, we define a point-pair invariant Kf (a, b) =
f(b−1a) for a, b ∈ G/K and f ∈ L2(K\G/K) which has the property that for all
g ∈ G, Kf (ga, gb) = Kf (a, b) = Kf̌ (b, a). By Selberg’s criterion, we know that
there exists µ such that Kf (µx, µy) = Kf (my, mx) = Kf (y, x) = Kf̌ (x, y) for all
x, y ∈ G. Here µx is a short-hand of µ(xK), for both µ and Kf are defined with
G/K. It follows that f((µy)−1µx) = f(x−1y).

Now we take y = K. Then we get f(K−1µx) = f(x−1K). Recall that f ∈
L2(K\G/K), this naturally implies that

(3.6) f(µx) = f(x−1),
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i.e. for any x ∈ G, x−1 ∈ Kµ(x)K. This looks similar to the Gelfand’s criterion.
In addition,

(3.7) f((µy)−1µx) = f(x−1y) = f(µ(y−1x)).

Notice that 3.6 and 3.7 are identical to 3.3 and 3.2 if µ is replaced with τ , which
are derived from the Gelfand’s criterion, this statement can be proved following the
same procedure as before.

□

Besides the theorem that quotient spaces satisfying either criterion is a symmetric
space, we feel obliged to mention that the converse of the statement is not true.
That is, a symmetric space does not necessarily satisfy either Gelfand’s or Selberg’s
criterion. Consider the quotient space given by G = GL(2,Fq) and K = Aff(q).
The quotient space is a symmetric space, yet (G, K) does not satisfy Gelfand’s
criterion [K].

There a stricter but more useful criterion when K is a normal subgroup of G.

Theorem 3.7. Let K be a normal subgroup of G. If G/K is an abelian group,
then G/K is a symmetric space.

Proof. We will first show that G/K = K\G/K. First, any element gk for some
g ∈ G and k ∈ K in coset gK is also in the double coset KgK. Thus gK ⊂ KgK.
Next, since K is a normal subgroup, for any k1gk2 ∈ KgK for some k1, k2 ∈ K,

(3.8) k1gk2 = g(g−1k1g)k2 = gk′

where k′ ∈ K. Thus KgK ⊂ gK. Combining both statements, we see that
gK = KgK for all g ∈ G.

If G/K is an abelian group, then for any f, g ∈ L2(K\G/K) and x ∈ G/K,

(f ∗ g)(x) =
∑
y∈G

f(xy−1)g(y)

=
∑

z∈G/K

∑
k∈K

f(xz−1k−1)g(kg)

=
∑

z∈G/K

∑
k∈K

g(z)f(z−1x)

=
∑
w∈G

g(w)f(w−1x)

= (g ∗ f)(x).

(3.9)

This means that the convolution is commutative on L2(K\G/K). □

4. Finite upper half plane is a finite symmetric space

An example of symmetric space is the finite upper half plane, which is a “finite
version” of the real Poincaré upper half plane [T].

Definition 4.1. The finite upper half plane is

(4.1) Hq = {z = x + y
√

δ : x ∈ Fq, y ∈ Fq\{0}}
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where q = pr for some odd prime p and δ ∈ Fq is a nonsquare.

To show that the finite upper half plane is a finite symmetric space, we first
express Hq as a quotient space of two groups.

Theorem 4.2. Let G = GL(2,Fq) where q = pr for some odd prime p and

K =

{(
a bδ

b a

)
: a, b ∈ Fq, a2 − δb2 ̸= 0

}
.

The finite upper half plane Hq is isomorphic to G/K.

Before proving the theorem, we first show that there is an isomorphism between
K and the multiplicative group F×

q (
√

δ),(
a bδ

b a

)
7→ a + b

√
δ.

This follows from the matrix multiplication, where(
a bδ

b a

)(
c dδ

d c

)
=

(
ac + bdδ (ad + bc)δ
ad + bc ac + bdδ

)
.

Also, we have (a + b
√

δ)(c + d
√

δ) = (ac + bdδ) + (ad + bc)
√

δ. Thus, the group K

has order q2 − 1 and it is cyclic.

Definition 4.3. The affine group over field Fq is

A = Aff(q) =

{(
a b

0 1

)
: a ∈ Fq\{0}, b ∈ Fq

}
.

We denote the matrix above as (a b) for simplicity.

The affine group has order q(q − 1).

Proof. (Proof of Theorem 4.2) We first define the group action of G on Hq as

(4.2) gz =

(
a b

c d

)
z = az + b

cz + d
.

First, we want to show that K contains all elements that fix
√

δ, so K is the
stabilizer subgroup with respect to

√
δ.

Suppose that

g =

(
a b

c d

)
fixes

√
δ. Then

g
√

δ = a
√

δ + b

c
√

δ + d
=

√
δ ⇒ a = d, b = cδ.

Thus, for any g, h ∈ G that are in the same coset aK for some a ∈ G, g
√

δ = h
√

δ.
Since G acts transitively on Hq, and |G/K| = q(q−1) = |Hq|, there is a bijection

between Hq and G/K.
□
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Moreover, The orbit of
√

δ moved by the affine group A is the whole set Hq, for
z = x + y

√
δ = (y x)

√
δ. Thus there is a bijection

A ↔ Hq ↔ G/K

g 7→ g
√

δ 7→ gK.
(4.3)

It turns out that the orbit-stabilizer formula, |G| = q(q + 1)(q − 1)2 = |A||K|,
is satisfied. It follows that we can select a representative gi ∈ A for any coset
giK ∈ G/K. From now on, the notation for a coset giK = (y x)K can be gi

√
δ or

just its representative gi ∈ A, depending on the context.
To show that Hq is a symmetric space, we will prove that Hq satisfies corollary

3.4.

Remark 4.4. The finite upper half plane G/K also satisfies Selberg criterion [T].

Theorem 4.5. (G, K) satisfies corollary 3.4, so Hq is a finite symmetric space.

To prove this theorem, we need to introduce a distance function.

Definition 4.6. The imaginary part of z = x+y
√

δ ∈ Hq is denoted as Im(z) = y.
The conjugate of z = x + y

√
δ is z̄ = x − y

√
δ.

The norm of z is denoted as N(z) = zz̄.

Definition 4.7. The distance function on Hq is a map d : Hq × Hq → Fq:

(4.4) d(z, w) = N(z − w)
Im(z)Im(w)

.

Remark 4.8. This is an analogue of the Poincaré distance on the real upper half
plane, where we replace

√
δ with complex number i. The length element on the

real Poincaré upper half plane is ds2 = y−2(dx2 + dy2).

It is easy to verify that d(gz, gw) = d(z, w) for all z, w ∈ Hq and g ∈ G. Com-
bined with the fact that K fixes

√
δ, K fixes the distance between gi

√
δ and

√
δ.

Lemma 4.9. For gi ∈ A, d(kgi

√
δ,

√
δ) = d(kgi

√
δ, k

√
δ) = d(gi

√
δ,

√
δ) for all

k ∈ K.

Let Sq(
√

δ, a) ⊂ Hq denote the set of all elements g such that d(g,
√

δ) = a,
which can be interpreted as a sphere of radius a centered at

√
δ. Then for each

a ∈ Fq, Sq(
√

δ, a) is a union of left K−orbits.

Proof. (Theorem 4.5) It suffices to show that g−1 ∈ KgK for all g ∈ G. We will
prove this in two steps. First we will show that the orbit of g

√
δ under K equals

the set Sq(
√

δ, a) to which it belongs. Second, we will show that if g
√

δ ∈ Sq(
√

δ, a),
then g−1

√
δ ∈ Sq(

√
δ, a). [P]

We start with the first statement. First we count the number of elements in the
set Sq(

√
δ, a).

Lemma 4.10. |Sq(
√

δ, a)| = 1 when a = 0, 4δ and q + 1 otherwise.
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Proof. This can be done by counting the number of elements (y x) that satisfy
x2 = ay + δ(y − 1)2. Rearranging this yields

x2 − δ
(

y + a

2δ
− 1
)2

= a(4δ − a)
4δ

.

Redefine t := y + a
2δ − 1 and r = a(4δ−a)

4δ , we want to find the number of elements
z = x + t

√
δ that satisfy N(z) = r. When r = 0, i.e. a = 0, 4δ, there exists a

single solution z =
√

δ. Since N(z) = zq+1 = r has q + 1 solutions when r ̸= 0,
|Sq(

√
δ, a)| = q + 1 if a ̸= 0, 4δ. □

For a = 0, 4δ, the only elements on the “sphere” are z = (1 0)
√

δ and z =
(−1 0)

√
δ, respectively. These two elements are fixed by the group K, so their

orbits have order 1. Therefore, we only need to focus on the nontrivial case. It
suffices to show that KgaK for ga ∈ Sq(

√
δ, a) (a ̸= 0, 4δ) contains q + 1 elements.

We divide this proof into two steps.

Lemma 4.11. Z = {aI : a ∈ Fq\{0}} contains all elements in K that fix z ∈ Hq

unless z = ±
√

δ.

Proof. Suppose that k =

(
a bδ

b a

)
fixes z. Then z(a + bz) = az + bδ ⇒ bδ = bz2.

If z ̸= ±
√

δ, then b = 0. □

Next, since K is cyclic, we select a generator κ of K. Since K is isomorphic to
the multiplicative group F×

q (
√

δ), q + 1 is the smallest positive power r such that
κr ∈ Z. Thus |{κiga

√
δ : i ∈ {0, 1, · · · , q}}| = q + 1 = |Sq(

√
δ, a)| for a ̸= 0, 4δ.

Combined with the fact that {κiga

√
δ : i ∈ {0, 1, · · · , q}} ⊂ Kga

√
δ ⊂ Sq(

√
δ, a),

we see that Sq(
√

δ, a) contains a single left K-orbit.
The second step is to show the following lemma.

Lemma 4.12. If g ∈ Sq(
√

δ, a), then g−1 ∈ Sq(
√

δ, a).

Proof. We use the properties of the distance function:

d(g
√

δ,
√

δ) = d(
√

δ, g−1
√

δ) = d(g−1
√

δ,
√

δ).

□

Thus g−1 ∈ KgK for all g ∈ G. This finishes the proof of the main theorem.
□

Here we give an example of the finite upper half plane H3 (Figure 1). It contains
a sphere of order 4 = 3 + 1 of radius 1, and 2 poles of radius 0 and 2 = 4δ.

5. Conclusion

In this paper, we introduced the finite symmetric spaces, in terms of quotient
spaces of a finite group G with a subgroup K of G. We proved that two criteria,
Gelfand’s criterion and Selberg’s criterion, can be used to determine whether K-bi-
invariant functions are commutative under convolution. As an analogue of the real
Poincaré upper half plane, we showed that the finite upper half plane is a finite
symmetric space.
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Figure 1. A graph for H3. Here i =
√

2. It contains 6 elements, 4
of which form a sphere of radius 1. In this graph, each line segment
has length 1.
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