CONSTRUCTING THE DISCRETE SERIES REPRESENTATION OF $GL(2, \mathbb{F}_q)$

JEFFERY OPOKU-MENSAH

1. INTRODUCTION

In this paper we construct the discrete series representations, a collection of irreducible representations of $\operatorname{GL}(2, \mathbb{F}_q)$. The representations arise from one-dimensional representations ν of a subgroup $K \leq \operatorname{GL}(2, \mathbb{F}_q)$ which can be likened to the orthogonal subgroup $\operatorname{O}(2, \mathbb{R}) \leq \operatorname{GL}(2, \mathbb{R})$. The manner in which the discrete series representation is obtained from a representation of K is not immediately obvious; for example, taking the induced representation from K to $\operatorname{GL}(2, \mathbb{F}_q)$ yields a reducible representation. However, for a certain class of "indecomposable" representations $\nu \colon K \to \mathbb{C}^{\times}$, one obtains an irreducible representation $\sigma_{\nu} \colon \operatorname{GL}(2, \mathbb{F}_q) \to \operatorname{GL}(V)$ where V is the vector space of functions $\mathbb{F}_q^{\times} \to \mathbb{C}$ (see Chapter 21 of [T]). To construct this representation, we define σ_{ν} on the generators of a particular presentation of $\operatorname{GL}(2, \mathbb{F}_q)$, and check that σ_{ν} respects the relations of the presentation.

2. Representations of a Subgroup of $\operatorname{GL}(2, \mathbb{F}_q)$

Suppose $q \neq 2$. One may pick a nonsquare element $\delta \in \mathbb{F}_q^1$ and write $\mathbb{F}_{q^2} = \mathbb{F}_q[\sqrt{\delta}]$, defining the subgroup

(2.1)
$$K = \left\{ \begin{bmatrix} a & b\delta \\ b & a \end{bmatrix} \in \operatorname{GL}(2, \mathbb{F}_q) \right\}.$$

One has an isomorphism $\phi \colon \mathbb{F}_{q^2}^{\times} \to K$ given by

Checking this is simple; observe that $\begin{bmatrix} a & b\delta \\ b & a \end{bmatrix}$ is the matrix representation of the linear map $\mathbb{F}_q[\sqrt{\delta}]$ given by multiplication by $a + b\delta$. Here, the basis of $\mathbb{F}_q[\sqrt{\delta}]$ as an \mathbb{F}_q -vector space is chosen to be $\{1, \delta\}$.

Definition 2.1. A multiplicative character $\nu \colon \mathbb{F}_q[\sqrt{\delta}]^{\times} \to \mathbb{C}$ is said to be **decomposable** if $\nu = \chi \circ N$, where χ is a multiplicative character of \mathbb{F}_q^{\times} and N is the norm, defined by $N = \det \circ \phi$.

Essentially, a decomposable character is given by the "pullback" of a representation π of \mathbb{F}_q^{\times} to a representation $\pi \circ N$ of $\mathbb{F}_{q^2}^{\times}$. In order to determine when a given multiplicative character is decomposable we introduce the following lemmas:

Proposition 2.2. The norm map $N \colon \mathbb{F}_q[\sqrt{\delta}]^{\times} \to \mathbb{F}_q^{\times}$ is a surjective homomorphism.

¹Such δ exists for q > 2. To see, note that the squaring map is not injective since $(-x)^2 = x^2$, hence its image is not the entire field.

Proof. It is well known that the Galois group $\operatorname{Gal}(\mathbb{F}_q[\sqrt{\delta}]^{\times}/\mathbb{F}_q^{\times})$ is generated by the Frobenius automorphism $\alpha \mapsto \alpha^q$. But the Galois group only contains two elements: the identity and the conjugation map swapping $\delta \mapsto -\delta$. Thus $N(\alpha) = \alpha \overline{\alpha} = \alpha^{q+1}$. By considering primitive elements, can view $N \colon \mathbb{F}_{q^2}^{\times} \to \mathbb{F}_q^{\times}$, as a map $\mathbb{Z}/(q^2 - 1)\mathbb{Z} \to \mathbb{Z}/(q - 1)\mathbb{Z}$ given by multiplication by q + 1. Hence, the kernel of N consists of $(q^2 - 1)/(q - 1) = q + 1$ elements. Consequently the image of Nconsists of $(q^2 - 1)/(q + 1) = q - 1$ elements, which is the order of \mathbb{F}_q^{\times} . Hence N is surjective. \Box

Proposition 2.3. The map $\psi \colon \mathbb{F}_q[\sqrt{\delta}]^{\times} \to \ker N$ taking $\alpha \mapsto \overline{\alpha} \alpha^{-1}$ is surjective.

Proof. The map $\psi \colon \mathbb{F}_q[\sqrt{\delta}]^{\times} \to \ker N$ taking $\alpha \mapsto \overline{\alpha} \alpha^{-1}$ is a homomorphism, as a product of homomorphisms into an abelian group. The kernel is given by

$$\ker \phi = \{ \alpha \mid \overline{\alpha} = \alpha \} = \mathbb{F}_a^{\times}$$

which has order q-1. Thus the image of ψ has order $(q^2-1)/(q-1) = q+1$, which is the order of ker N (see Proposition 2.2). Hence ψ is surjective.

Lemma 2.4. A multiplicative character ν of $\mathbb{F}_q[\sqrt{\delta}]^{\times}$ is decomposable if and only if $\nu(\alpha) = \nu(\overline{\alpha})$ for all $\alpha \in \mathbb{F}_q[\sqrt{\delta}]$.

Proof. Suppose that $\nu = \chi \circ N$, where N is the norm from \mathbb{F}_{q^2} to \mathbb{F}_q . Since the norm is preserved under conjugation, one obtains that ν is preserved under conjugation as well.

Conversely, suppose that ν is preserved under conjugation. Suppose that $N(\alpha) = N(\beta)$ for $\alpha, \beta \in \mathbb{F}_q[\sqrt{\delta}]$. Then $N(\alpha\beta^{-1}) = 1$, so by Proposition 2.3, there exists $\gamma \in \mathbb{F}_q[\sqrt{\delta}]$ such $\overline{\gamma}\gamma^{-1} = \beta$. Thus $\nu(\alpha\beta^{-1}) = \nu(\overline{\gamma}\gamma^{-1}) = 1$. Hence $\nu(\alpha) = \nu(\beta)$ by multiplicativity and the fact that ν is preserved under conjugation. Hence, using the fact N is surjective, one may factor ν as $\nu = \chi \circ N$, where $\chi \colon \mathbb{F}_q^{\times} \to \mathbb{C}^{\times}$ is some function. We finish by showing that χ is a multiplicative character, implying ν is decomposable. To see this, observe that for $x, y \in \mathbb{F}_q$, there exists $\alpha, \beta \in \mathbb{F}_q[\sqrt{\delta}]$ such that $N(\alpha) = x$ and $N(\beta) = y$, yielding

(2.3)
$$\chi(xy) = \chi(N(\alpha\beta)) = \nu(\alpha\beta) = \nu(\alpha)\nu(\beta) = \chi(x)\chi(y).$$

The "obvious" way to obtain a representation from a one-dimensional representation ν defined on a subgroup of K, taking the induced representation, unfortunately does not yield an irreducible representation.

Proposition 2.5. Two elements $g, g' \in K$ are conjugate in $GL(2, \mathbb{F}_q)$ if and only if g, g' correspond to conjugates in $\mathbb{F}_q[\sqrt{\delta}]$.

Proof. Suppose $g, g' \in K$ are conjugates in G, that is, there exists $x \in G$ such that $xgx^{-1} = g'$. Then g, g' are similar matrices, and hence share the same trace and determinant. As elements of a quadratic extension with the same trace and norm, this characterizes $\phi^{-1}(g)$ and $\phi^{-1}(g')$ up to conjugacy.

The converse follows similarly, as matrices of dimension 2 with the same trace and determinant are characterized up to similarity. $\hfill \Box$

Lemma 2.6. Let ν be a (indecomposable) multiplicative character of $\mathbb{F}_{q^2}^{\times} \cong K$. Then the induced representation $\pi = \operatorname{Ind}_K^G \nu$ is reducible, where $G = \operatorname{GL}(2, \mathbb{F}_q)$.

Proof. First, note that by Proposition 2.5, two elements g, g' in the subgroup K are conjugate in G, if and only if g, g' correspond to conjugates in $\mathbb{F}_q[\sqrt{\delta}]$. Again, we shall denote the conjugate of g by \overline{g} . Then $\chi_{\pi}(g) = \chi_{\pi}(\overline{g})$, which implies that $\chi_{\nu}(g) = \chi_{\nu}(\overline{g})$, so by Lemma 2.4, ν is decomposable, which contradicts the assumption of indecomposability. Relaxing this assumption still leads to a reducible representation, however.

We shall use the Frobenius formula to calculate $\langle \chi_{\pi}, \chi_{\pi} \rangle$. Given $g \in K$, one has by the Frobenius formula

(2.4)
$$\chi_{\pi}(g) = \frac{1}{|K|} \sum_{x \in G} \widetilde{\chi_{\nu}}(xgx^{-1}) = \begin{cases} \chi_{\nu}(g) + \chi_{\nu}(\overline{g}) & \text{if } g \text{ is elliptic} \\ (q^2 - q)\chi_{\nu}(g) & \text{if } g \text{ is central} \end{cases}.$$

In the first case, we used the fact that $xgx^{-1} \in K$ if and only if $xgx^{-1} \in \{g, \overline{g}\}$, and that the centralizer of g has order $|G|/(q^2 - q) = q^2 - 1$. In the second case, we used the fact that $xgx^{-1} \in K$ if and only if $xgx^{-1} = g$, and that the centralizer has size $|G|/1 = (q^2 - q)(q^2 - 1)$. One may further write $\chi_{\pi}(g) = 2\chi_{\nu}(g)$, since g, \overline{g} are conjugate.

From the Frobenius formula, one sees that χ_{π} vanishes for elements not in an elliptic or central conjugacy class, hence

(2.5)
$$\langle \chi_{\pi}, \chi_{\pi} \rangle = \sum_{g \in K_{\text{central}}} (q^2 - q)^2 \chi_{\nu}(g)^2 + \sum_{g \in K_{\text{elliptic}}} \frac{q(q-1)}{2} \cdot 4\chi_{\nu}(g)^2$$
$$> \sum_{g \in K_{\text{central}}} (q^2 - q)\chi_{\nu}(g)^2 + \sum_{g \in K_{\text{elliptic}}} (q^2 - q)\chi_{\nu}(g)^2$$
$$= (q^2 - q)\langle\chi_{\nu},\chi_{\nu}\rangle$$
$$= (q^2 - q)(q^2 - 1)$$
$$= |G|.$$

Since $\langle \chi_{\pi}, \chi_{\pi} \rangle \neq |G|$, the induced representation is not irreducible.

3

3. The Discrete Series Representation

Definition 3.1. The **Borel subgroup** B is the subgroup of $GL(2, \mathbb{F}_q)$ defined by

(3.1)
$$B = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \in \operatorname{GL}(2, \mathbb{F}_q) \right\}.$$

One can easily check that the set B indeed is a subgroup. In order to define the discrete series representation, we first express $GL(2, \mathbb{F}_q)$ as a group presentation involving the Borel subgroup. To start, consider the matrices

$$t = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad v_{r,s} = \begin{bmatrix} r & 0 \\ 0 & s \end{bmatrix}.$$

Theorem 3.2. The general linear group $GL(2, \mathbb{F}_q)$ has a group presentation

$$\operatorname{GL}(2,\mathbb{F}_q) \cong \langle B, w \mid wv_{r,s} = v_{s,r}w, \ w^2 = -\operatorname{id}, \ wtw = (twt)^{-1} \rangle$$

Proof. Let $G' = \langle B, w | wv_{r,s} = v_{s,r}w, w^2 = -\mathrm{id}, (wt)^3 = \mathrm{id} \rangle$. We wish to show that $G' \cong \mathrm{GL}(2, \mathbb{F}_q)$. Consider the surjective homomorphism $\theta \colon G' \to \mathrm{GL}(2, \mathbb{F}_q)$ which is the identity on B and maps w to the **Weyl element**,

$$w\mapsto w'= \begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix}.$$

Checking that the Weyl element satisfies the given relations in the presentation confirms that θ is a homomorphism. By straightforward calculation, one verifies that if $c \neq 0$, then

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} (bc - ad)c^{-1} & -a \\ 0 & -c \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & c^{-1}d \\ 0 & 1 \end{bmatrix}.$$

Thus θ is surjective. It suffices to show that θ has trivial kernel. We make the following claim and defer its proof to the end of this proof:

Proposition 3.3. Let $D = \{v_{r,s} \mid r, s \in \mathbb{F}_q\}$ be the diagonal subgroup. For each $b \in B - D$, there exists $b_1, b_2 \in B$ such that $w'bw' = b_1w'b_2$.

Now suppose, for the sake of contradiction, that there exists some $g \in \ker \theta$ such that $g \neq \operatorname{id}$. Then g may be written as $g = b_1 w b_2 w \cdots b_{n-1} w b_n$, a word of length 2n - 1 for $n \geq 2$. We show that if n > 2, then g may be rewitten as a word of length $\leq 2n - 3$; induction then shows that $g = a_1 w a_2$ for some $a_1, a_2 \in B$. To do this, note that if $b_2 \in D$, then $w b_2 w \in B$ via the group relations. Thus $g = b' \cdots w b_{n-1} w b_n$, where $b' = b_1 w b_2 w b_3 \in B$, which is a word of length 2n - 5. Otherwise, if $b_2 \in B - D$, applying Proposition 3.3 allows us to write $w b_2 w = c_1 w c_2$ for $c_1, c_2 \in B$. Thus we may write $g = b'_1 w b'_2 \cdots w b_{n-1} w b_n$, where $b'_1 = b_1 c_1 \in B$ and $b'_2 = b_2 c_3 \in B$, which is a word of length 2n - 3.

Thus g is ultimately of the form a_1wa_2 for some $a_1, a_2 \in B$. One may check that such an element gets mapped by θ to matrix of the form

(3.2)
$$\theta(g) = \begin{bmatrix} \alpha & \beta \\ 0 & \gamma \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} \alpha' & \beta' \\ 0 & \gamma' \end{bmatrix} = \begin{bmatrix} -\alpha'\beta & \alpha\gamma' - \beta\beta' \\ -\alpha'\gamma & -\beta'\gamma \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

where $\alpha, \gamma \neq 0$ and $\alpha', \gamma' \neq 0$, since *B* consists of invertible matrices. But this yields a contradiction since the previous equation implies $\alpha'\gamma = 0$. Thus the kernel of θ is trivial.

Proof of Proposition 3.3. Suppose that $b \in B - D$. Then one may write $b = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ where $b \neq 0$, which in turn is equal to the product $v_{1,cb^{-1}}tv_{a,c}$. Since $wtw = (twt)^{-1}$, one has

 $wbw = (wv_{1,cb^{-1}}w^{-1})(wtw)(w^{-1}v_{a,c}w) = (wv_{1,cb^{-1}}w^{-1})t^{-1}v_{1,-1}wt^{-1}(w^{-1}v_{a,c}w),$

which puts wbw in the desired form, with $b_1 = (wv_{1,cb^{-1}}w^{-1})t^{-1}v_{1,-1}$ and $b_2 = t^{-1}(w^{-1}v_{a,c}w)$.

We may finally construct the discrete series representation σ_{ν} associated to a indecomposable multiplicative character $\nu: K \to \mathbb{C}^{\times}$. To do this, we shall define σ_{ν} on *B* and the Weyl element *w*, and verify σ_{ν} is a homomorphism by checking that it respects the group presentation of $\operatorname{GL}(2, \mathbb{F}_q)$ given by Theorem 3.2. Consider the \mathbb{C} -vector space V of functions $\mathbb{F}_q^{\times} \to \mathbb{C}$, and let $\psi \colon \mathbb{F}_q^+ \to \mathbb{C}^{\times}$ be a nontrivial additive character². Now define

(3.4)
$$[(\sigma_{\nu} \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}) f](x) = \nu(c)\psi(bc^{-1}x)f(ac^{-1}x),$$

and

$$[(\sigma_{\nu}w)f](x) = -\sum_{y\in\mathbb{F}_q^{\times}}\nu(y^{-1})j_{\psi}(xy)f(y),$$

where $j_{\psi} \colon \mathbb{F}_q^{\times} \to \mathbb{C}$ is the generalized Kloosterman sum

$$j_{\psi}(x) = \frac{1}{q} \sum_{N(t)=x} \psi(t+\bar{t})\nu(t).$$

Here, the sum is taken over all $t \in \mathbb{F}_q[\sqrt{\delta}]$ with norm x.

Before continuing, we state some facts about generalized Kloosterman sums; the proofs of these can be verified by computation and can be found in [PS].

Lemma 3.4. Let $\nu: K \to \mathbb{C}^{\times}$ be a multiplicative character and $\psi: \mathbb{F}_q^+ \to \mathbb{C}^{\times}$ be a nontrivial additive character, and $j_{\psi}: \mathbb{F}_q^{\times} \to \mathbb{C}$ be the generalized Kloosterman sum associated to ψ and ν . Then the following identities hold:

(3.5)
$$\sum_{v \in \mathbb{F}_q^{\times}} j_{\psi}(uv) j_{\psi}(v) \nu(v^{-1}) = \begin{cases} \nu(-1) & \text{if } u = 1\\ 0 & \text{if } u \neq 1 \end{cases}$$

(3.6)
$$\sum_{v \in \mathbb{F}_q^{\times}} j(xv)j(yv)\nu(v^{-1})\psi(v) = \nu(-1)\psi(-x-y)j(xy)$$

Theorem 3.5. σ_{ν} defines a representation of $\operatorname{GL}(2, \mathbb{F}_q)$.

Proof. Let us first check that σ_{ν} defines a homomorphism from B to GL(V). For this, we simply calculate

(3.7)
$$\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \begin{bmatrix} \alpha & \beta \\ 0 & \gamma \end{bmatrix} = \begin{bmatrix} a\alpha & a\beta + b\gamma \\ 0 & c\gamma \end{bmatrix},$$

and write

(3.8)
$$\left[\sigma_{\nu} \left(\left[\begin{smallmatrix} a\alpha & a\beta + b\gamma \\ 0 & c\gamma \end{smallmatrix} \right] \right) f \right] (x) = \nu(c\gamma)\psi((a\beta + b\gamma)c^{-1}\gamma^{-1}x)f(a\alpha c^{-1}\gamma^{-1}x)$$

Writing $g(x) = \left[\sigma_{\nu}\left(\left[\begin{smallmatrix} \alpha & \beta \\ 0 & \gamma \end{smallmatrix}\right]\right)f\right](x)$, one has

(3.9)
$$[(\sigma_{\nu} \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}) g](x) = \nu(c)\psi(bc^{-1}x)g(ac^{-1}x)$$

(3.10)
$$= \nu(c)\psi(bc^{-1}x)\nu(\gamma)\psi(\beta\gamma^{-1}(ac^{-1}x))f(\alpha\gamma^{-1}(ac^{-1}x))$$

(3.11)
$$= \nu(c\gamma)\psi((a\beta + b\gamma)c^{-1}\gamma^{-1}x)f(a\alpha c^{-1}\gamma^{-1}x)$$

(3.12)
$$= \left[\sigma_{\nu}\left(\left[\begin{smallmatrix}a\alpha & a\beta+b\gamma\\ 0 & c\gamma\end{smallmatrix}\right]\right)f\right](x),$$

where we used the fact that ν and ψ are homomorphisms into \mathbb{C}^{\times} . Thus σ_{ν} defines a homomorphism on B. To extend this to a homomorphism on $\mathrm{GL}(2, \mathbb{F}_q)$, we must

²such characters can be obtained by pulling back a character through the trace map tr: $\mathbb{F}_q \to \mathbb{F}_p$, where $q = p^r$.

check that the three relations in the group presentation are respected by σ_{ν} . We check that $\sigma_{\nu}(w')\sigma_{\nu}(v_{r,s}) = \sigma_{\nu}(v_{s,r})\sigma_{\nu}(w')$, by first computing

(3.13)
$$[\sigma_{\nu}(v_{r,s})f](x) = \nu(s)f(rs^{-1}x).$$

Then

(3.14)
$$[\sigma_{\nu}(w')\sigma_{\nu}(v_{r,s})f](x) = -\sum_{y \in \mathbb{F}_q^{\times}} \nu(y^{-1})j_{\psi}(xy)\nu(s)f(rs^{-1}y)$$
$$= -\sum_{x \in \mathbb{F}_q^{\times}} \nu(sy^{-1})j_{\psi}(xy)f(rs^{-1}y).$$

and

(3.15)
$$\left[\sigma_{\nu}(v_{s,r})\sigma_{\nu}(w')f \right](x) = -\nu(r) \sum_{y \in \mathbb{F}_q^{\times}} \nu(y^{-1})j_{\psi}(sr^{-1}xy)f(y)$$
$$= -\sum_{y \in \mathbb{F}_q^{\times}} \nu(sy^{-1})j_{\psi}(xy)f(rs^{-1}y).$$

Here, the fact that $y \mapsto rs^{-1}y$ is an automorphism of \mathbb{F}_q^{\times} was used in the last equality. Thus the first relation is respected by σ_{ν} . For the second relation, we calculate

$$\begin{split} \left[\sigma_{\nu}(w')\sigma_{\nu}(w')f\right](x) &= -\sum_{y\in\mathbb{F}_q^{\times}}\nu(y^{-1})j_{\psi}(xy)[\sigma_{\nu}(w')f](y)\\ &= \sum_{y\in\mathbb{F}_q^{\times}}\nu(y^{-1})j_{\psi}(xy)\left[\sum_{z\in\mathbb{F}_q^{\times}}\nu(z^{-1})j_{\psi}(yz)f(z)\right]\\ &= \sum_{z\in\mathbb{F}_q^{\times}}\nu(xz^{-1})f(z)\left[\sum_{y\in\mathbb{F}_q^{\times}}\nu(x^{-1}y^{-1})j_{\psi}(yz)j_{\psi}(xy)\right], \end{split}$$

Where we used the multiplicativity of ν in the second equality. Now consider the automorphisms $y \mapsto x^{-1}y$ and $z \mapsto xz$, which allows us to rewrite

(3.16)
$$\left[\sigma_{\nu}(w')\sigma_{\nu}(w')f \right](x) = \sum_{z \in \mathbb{F}_{q}^{\times}} \nu(z^{-1})f(xz) \left[\sum_{y \in \mathbb{F}_{q}^{\times}} \nu(y^{-1})j_{\psi}(zy)j_{\psi}(y) \right]$$
$$= \nu(-1)f(x)$$
$$= [\sigma_{\nu}(v_{-1,-1})f](x),$$

where (3.5) was used in the second equality. Thus the second relation is respected by σ_{ν} . For the third relation, it suffices to check that $\sigma_{\nu}(w')\sigma_{\nu}(t)\sigma_{\nu}(w') =$

 $\sigma_{\nu}(-t^{-1})\sigma_{\nu}(w')\sigma_{\nu}(t^{-1})$. The former is given by

$$[\sigma_{\nu}(w')\sigma_{\nu}(t)\sigma_{\nu}(w')f](x) = -\sum_{y \in \mathbb{F}_{q}^{\times}} \nu(y^{-1})j_{\psi}(xy)[\sigma_{\nu}(t)\sigma_{\nu}(w')f](y)$$

$$= -\sum_{y \in \mathbb{F}_{q}^{\times}} \nu(y^{-1})j_{\psi}(xy)\psi(y)[\sigma_{\nu}(w')f](y)$$

$$(3.17) \qquad = \sum_{y \in \mathbb{F}_{q}^{\times}} \nu(y^{-1})j_{\psi}(xy)\psi(y)\left[\sum_{z \in \mathbb{F}_{q}^{\times}} \nu(z^{-1})j_{\psi}(yz)f(z)\right].$$

On the other hand, one may write

$$\begin{aligned} \left[\sigma_{\nu}(-t^{-1})\sigma_{\nu}(w')\sigma_{\nu}(t^{-1})f\right](x) &= -\left[\sigma_{\nu}(t^{-1})\sigma_{\nu}(w')\right]\psi(-x)f(x) \\ &= \nu(-1)\psi(-x)\sum_{z\in\mathbb{F}_{q}^{\times}}\nu(z^{-1})j_{\psi}(xz)\psi(-z)f(z) \\ &= \sum_{z\in\mathbb{F}_{q}^{\times}}\nu(z^{-1})f(z)\left[\nu(-1)\psi(-x-z)j_{\psi}(xz)\right] \\ \end{aligned}$$

$$(3.18) \qquad \qquad = \sum_{z\in\mathbb{F}_{q}^{\times}}\nu(z^{-1})f(z)\left[\sum_{y\in\mathbb{F}_{q}^{\times}}j_{\psi}(xy)j_{\psi}(yz)\nu(y^{-1})\psi(y)\right], \end{aligned}$$

where (3.6) was used in the last equality. Comparison of (3.17) and (3.18) shows that the third relation is respected by σ_{ν} . Thus σ_{ν} is a well defined representation. \Box

This establishes the discrete series representation σ_{ν} of $\operatorname{GL}(2, \mathbb{F}_q)$ which is the desired irreducible "extension" of ν ; showing that this representation is irreducible involves computing its character, which is unfortunately outside of the scope of this paper(see Chapter 21 of [T]). In particular, it turns out that the indecomposability of the character $\nu \colon K \to \mathbb{C}^{\times}$ is crucial to the irreducible of the discrete series representation.

References

- [PS] I. Piatetski-Shapiro. Complex Representations of GL(2,K) for Finite Fields K. American Mathematical Society (1983).
- [T] A. Terras. Fourier Analysis on Finite Groups and Applications. Cambridge University Press (1999).

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, 77 MASSACHUSETTS AVENUE, CAMBRIDGE, MA 02139

 $\overline{7}$