
CONSTRUCTING THE DISCRETE SERIES REPRESENTATION
OF GL(2,Fq)

JEFFERY OPOKU-MENSAH

1. Introduction

In this paper we construct the discrete series representations, a collection of irre-
ducible representations of GL(2,Fq). The representations arise from one-dimensional
representations ν of a subgroup K ≤ GL(2,Fq) which can be likened to the or-
thogonal subgroup O(2,R) ≤ GL(2,R). The manner in which the discrete series
representation is obtained from a representation of K is not immediately obvious; for
example, taking the induced representation from K to GL(2,Fq) yields a reducible
representation. However, for a certain class of “indecomposable” representations
ν : K → C×, one obtains an irreducible representation σν : GL(2,Fq) → GL(V )
where V is the vector space of functions F×

q → C (see Chapter 21 of [T]). To con-
struct this representation, we define σν on the generators of a particular presentation
of GL(2,Fq), and check that σν respects the relations of the presentation.

2. Representations of a Subgroup of GL(2,Fq)

Suppose q ̸= 2. One may pick a nonsquare element δ ∈ Fq1 and write Fq2 =
Fq[

√
δ], defining the subgroup

(2.1) K =
{[

a bδ

b a

]
∈ GL(2,Fq)

}
.

One has an isomorphism ϕ : F×
q2 → K given by

(2.2) a+ bδ 7→

[
a bδ

b a

]
.

Checking this is simple; observe that
[
a bδ
b a

]
is the matrix representation of the

linear map Fq[
√
δ] given by multiplication by a+ bδ. Here, the basis of Fq[

√
δ] as

an Fq-vector space is chosen to be {1, δ}.

Definition 2.1. A multiplicative character ν : Fq[
√
δ]× → C is said to be decom-

posable if ν = χ ◦ N , where χ is a multiplicative character of F×
q and N is the

norm, defined by N = det ◦ϕ.

Essentially, a decomposable character is given by the “pullback” of a representation
π of F×

q to a representation π ◦ N of F×
q2 . In order to determine when a given

multiplicative character is decomposable we introduce the following lemmas:

Proposition 2.2. The norm map N : Fq[
√
δ]× → F×

q is a surjective homomorphism.
1Such δ exists for q > 2. To see, note that the squaring map is not injective since (−x)2 = x2,

hence its image is not the entire field.
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Proof. It is well known that the Galois group Gal(Fq[
√
δ]×/F×

q ) is generated by
the Frobenius automorphism α 7→ αq. But the Galois group only contains two
elements: the identity and the conjugation map swapping δ 7→ −δ. Thus N(α) =
αα = αq+1. By considering primitive elements, can view N : F×

q2 → F×
q , as a map

Z/(q2 − 1)Z → Z/(q − 1)Z given by multiplication by q + 1. Hence, the kernel of
N consists of (q2 − 1)/(q − 1) = q + 1 elements. Consequently the image of N
consists of (q2 − 1)/(q + 1) = q − 1 elements, which is the order of F×

q . Hence N is
surjective. □

Proposition 2.3. The map ψ : Fq[
√
δ]× → kerN taking α 7→ αα−1 is surjective.

Proof. The map ψ : Fq[
√
δ]× → kerN taking α 7→ αα−1 is a homomorphism, as a

product of homomorphisms into an abelian group. The kernel is given by

kerϕ = {α | α = α} = F×
q ,

which has order q− 1. Thus the image of ψ has order (q2 − 1)/(q− 1) = q+ 1, which
is the order of kerN(see Proposition 2.2). Hence ψ is surjective. □

Lemma 2.4. A multiplicative character ν of Fq[
√
δ]× is decomposable if and only

if ν(α) = ν(α) for all α ∈ Fq[
√
δ].

Proof. Suppose that ν = χ◦N , where N is the norm from Fq2 to Fq. Since the norm
is preserved under conjugation, one obtains that ν is preserved under conjugation
as well.

Conversely, suppose that ν is preserved under conjugation. Suppose that N(α) =
N(β) for α, β ∈ Fq[

√
δ]. Then N(αβ−1) = 1, so by Proposition 2.3, there exists

γ ∈ Fq[
√
δ] such γγ−1 = β. Thus ν(αβ−1) = ν(γγ−1) = 1. Hence ν(α) = ν(β) by

multiplicativity and the fact that ν is preserved under conjugation. Hence, using
the fact N is surjective, one may factor ν as ν = χ ◦N , where χ : F×

q → C× is some
function. We finish by showing that χ is a multiplicative character, implying ν is
decomposable. To see this, observe that for x, y ∈ Fq, there exists α, β ∈ Fq[

√
δ]

such that N(α) = x and N(β) = y, yielding

(2.3) χ(xy) = χ(N(αβ)) = ν(αβ) = ν(α)ν(β) = χ(x)χ(y).

□

The “obvious” way to obtain a representation from a one-dimensional representa-
tion ν defined on a subgroup of K, taking the induced representation, unfortunately
does not yield an irreducible representation.

Proposition 2.5. Two elements g, g′ ∈ K are conjugate in GL(2,Fq) if and only
if g, g′ correspond to conjugates in Fq[

√
δ].

Proof. Suppose g, g′ ∈ K are conjugates in G, that is, there exists x ∈ G such that
xgx−1 = g′. Then g, g′ are similar matrices, and hence share the same trace and
determinant. As elements of a quadratic extension with the same trace and norm,
this characterizes ϕ−1(g) and ϕ−1(g′) up to conjugacy.

The converse follows similarly, as matrices of dimension 2 with the same trace
and determinant are characterized up to similarity. □
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Lemma 2.6. Let ν be a (indecomposable) multiplicative character of F×
q2

∼= K.
Then the induced representation π = IndGK ν is reducible, where G = GL(2,Fq).

Proof. First, note that by Proposition 2.5, two elements g, g′ in the subgroup K

are conjugate in G, if and only if g, g′ correspond to conjugates in Fq[
√
δ]. Again,

we shall denote the conjugate of g by g. Then χπ(g) = χπ(g), which implies
that χν(g) = χν(g), so by Lemma 2.4, ν is decomposable, which contradicts the
assumption of indecomposability. Relaxing this assumption still leads to a reducible
representation, however.

We shall use the Frobenius formula to calculate ⟨χπ, χπ⟩. Given g ∈ K, one has
by the Frobenius formula

(2.4) χπ(g) = 1
|K|

∑
x∈G

χ̃ν(xgx−1) =

χν(g) + χν(g) if g is elliptic

(q2 − q)χν(g) if g is central
.

In the first case, we used the fact that xgx−1 ∈ K if and only if xgx−1 ∈ {g, g},
and that the centralizer of g has order |G|/(q2 − q) = q2 − 1. In the second case, we
used the fact that xgx−1 ∈ K if and only if xgx−1 = g, and that the centralizer has
size |G|/1 = (q2 − q)(q2 − 1). One may further write χπ(g) = 2χν(g), since g, g are
conjugate.

From the Frobenius formula, one sees that χπ vanishes for elements not in an
elliptic or central conjugacy class, hence

⟨χπ, χπ⟩ =
∑

g∈Kcentral

(q2 − q)2χν(g)2 +
∑

g∈Kelliptic

q(q − 1)
2 · 4χν(g)2(2.5)

>
∑

g∈Kcentral

(q2 − q)χν(g)2 +
∑

g∈Kelliptic

(q2 − q)χν(g)2

= (q2 − q)⟨χν , χν⟩

= (q2 − q)(q2 − 1)

= |G|.

Since ⟨χπ, χπ⟩ ≠ |G|, the induced representation is not irreducible. □

3. The Discrete Series Representation

Definition 3.1. The Borel subgroup B is the subgroup of GL(2,Fq) defined by

(3.1) B =
{[

a b

0 c

]
∈ GL(2,Fq)

}
.

One can easily check that the set B indeed is a subgroup. In order to define the
discrete series representation, we first express GL(2,Fq) as a group presentation
involving the Borel subgroup. To start, consider the matrices

t =
[

1 1
0 1

]
, vr,s =

[
r 0
0 s

]
.

Theorem 3.2. The general linear group GL(2,Fq) has a group presentation

GL(2,Fq) ∼= ⟨B,w | wvr,s = vs,rw, w
2 = − id, wtw = (twt)−1⟩.
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Proof. Let G′ = ⟨B,w | wvr,s = vs,rw, w
2 = − id, (wt)3 = id⟩. We wish to show

that G′ ∼= GL(2,Fq). Consider the surjective homomorphism θ : G′ → GL(2,Fq)
which is the identity on B and maps w to the Weyl element,

w 7→ w′ =
[

0 1
−1 0

]
.

Checking that the Weyl element satisfies the given relations in the presentation
confirms that θ is a homomorphism. By straightforward calculation, one verifies
that if c ̸= 0, then[

a b

c d

]
=

[
(bc− ad)c−1 −a

0 −c

] [
0 1

−1 0

] [
1 c−1d

0 1

]
.

Thus θ is surjective. It suffices to show that θ has trivial kernel. We make the
following claim and defer its proof to the end of this proof:

Proposition 3.3. Let D = {vr,s | r, s ∈ Fq} be the diagonal subgroup. For each
b ∈ B −D, there exists b1, b2 ∈ B such that w′bw′ = b1w

′b2.

Now suppose, for the sake of contradiction, that there exists some g ∈ ker θ
such that g ̸= id. Then g may be written as g = b1wb2w · · · bn−1wbn, a word of
length 2n − 1 for n ≥ 2. We show that if n > 2, then g may be rewitten as a
word of length ≤ 2n− 3; induction then shows that g = a1wa2 for some a1, a2 ∈ B.
To do this, note that if b2 ∈ D, then wb2w ∈ B via the group relations. Thus
g = b′ · · ·wbn−1wbn, where b′ = b1wb2wb3 ∈ B, which is a word of length 2n − 5.
Otherwise, if b2 ∈ B−D, applying Proposition 3.3 allows us to write wb2w = c1wc2

for c1, c2 ∈ B. Thus we may write g = b′
1wb

′
2 · · ·wbn−1wbn, where b′

1 = b1c1 ∈ B

and b′
2 = b2c3 ∈ B, which is a word of length 2n− 3.

Thus g is ultimately of the form a1wa2 for some a1, a2 ∈ B. One may check that
such an element gets mapped by θ to matrix of the form

(3.2) θ(g) =
[
α β

0 γ

] [
0 1

−1 0

] [
α′ β′

0 γ′

]
=

[
−α′β αγ′ − ββ′

−α′γ −β′γ

]
=

[
1 0
0 1

]
,

where α, γ ̸= 0 and α′, γ′ ≠ 0, since B consists of invertible matrices. But this yields
a contradiction since the previous equation implies α′γ = 0. Thus the kernel of θ is
trivial. □

Proof of Proposition 3.3. Suppose that b ∈ B −D. Then one may write b = [ a b
0 c ]

where b ̸= 0, which in turn is equal to the product v1,cb−1tva,c. Since wtw = (twt)−1,
one has
(3.3)
wbw = (wv1,cb−1w−1)(wtw)(w−1va,cw) = (wv1,cb−1w−1)t−1v1,−1wt

−1(w−1va,cw),

which puts wbw in the desired form, with b1 = (wv1,cb−1w−1)t−1v1,−1 and b2 =
t−1(w−1va,cw). □

We may finally construct the discrete series representation σν associated to a
indecomposable multiplicative character ν : K → C×. To do this, we shall define
σν on B and the Weyl element w, and verify σν is a homomorphism by checking
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that it respects the group presentation of GL(2,Fq) given by Theorem 3.2. Consider
the C-vector space V of functions F×

q → C, and let ψ : F+
q → C× be a nontrivial

additive character2. Now define

(3.4)
[
(σν [ a b0 c ]) f

]
(x) = ν(c)ψ(bc−1x)f(ac−1x),

and
[(σνw)f ](x) = −

∑
y∈F×

q

ν(y−1)jψ(xy)f(y),

where jψ : F×
q → C is the generalized Kloosterman sum

jψ(x) = 1
q

∑
N(t)=x

ψ(t+ t)ν(t).

Here, the sum is taken over all t ∈ Fq[
√
δ] with norm x.

Before continuing, we state some facts about generalized Kloosterman sums; the
proofs of these can be verified by computation and can be found in [PS].

Lemma 3.4. Let ν : K → C× be a multiplicative character and ψ : F+
q → C× be a

nontrivial additive character, and jψ : F×
q → C be the generalized Kloosterman sum

associated to ψ and ν. Then the following identities hold:

∑
v∈F×

q

jψ(uv)jψ(v)ν(v−1) =

ν(−1) if u = 1

0 if u ̸= 1
,(3.5)

∑
v∈F×

q

j(xv)j(yv)ν(v−1)ψ(v) = ν(−1)ψ(−x− y)j(xy)(3.6)

Theorem 3.5. σν defines a representation of GL(2,Fq).

Proof. Let us first check that σν defines a homomorphism from B to GL(V ). For
this, we simply calculate[

a b

0 c

] [
α β

0 γ

]
=

[
aα aβ + bγ

0 cγ

]
,(3.7)

and write

(3.8)
[
σν

([
aα aβ+bγ
0 cγ

])
f

]
(x) = ν(cγ)ψ((aβ + bγ)c−1γ−1x)f(aαc−1γ−1x)

Writing g(x) =
[
σν

([
α β
0 γ

])
f

]
(x), one has[

(σν [ a b0 c ]) g
]
(x) = ν(c)ψ(bc−1x)g(ac−1x)(3.9)

= ν(c)ψ(bc−1x)ν(γ)ψ(βγ−1(ac−1x))f(αγ−1(ac−1x))(3.10)

= ν(cγ)ψ((aβ + bγ)c−1γ−1x)f(aαc−1γ−1x)(3.11)

=
[
σν

([
aα aβ+bγ
0 cγ

])
f

]
(x),(3.12)

where we used the fact that ν and ψ are homomorphisms into C×. Thus σν defines
a homomorphism on B. To extend this to a homomorphism on GL(2,Fq), we must

2such characters can be obtained by pulling back a character through the trace map tr : Fq → Fp,
where q = pr.
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check that the three relations in the group presentation are respected by σν . We
check that σν(w′)σν(vr,s) = σν(vs,r)σν(w′), by first computing

(3.13)
[
σν(vr,s)f

]
(x) = ν(s)f(rs−1x).

Then

[
σν(w′)σν(vr,s)f

]
(x) = −

∑
y∈F×

q

ν(y−1)jψ(xy)ν(s)f(rs−1y)(3.14)

= −
∑
x∈F×

q

ν(sy−1)jψ(xy)f(rs−1y).

and

[
σν(vs,r)σν(w′)f

]
(x) = −ν(r)

∑
y∈F×

q

ν(y−1)jψ(sr−1xy)f(y)(3.15)

= −
∑
y∈F×

q

ν(sy−1)jψ(xy)f(rs−1y).

Here, the fact that y 7→ rs−1y is an automorphism of F×
q was used in the last

equality. Thus the first relation is respected by σν . For the second relation, we
calculate

[
σν(w′)σν(w′)f

]
(x) = −

∑
y∈F×

q

ν(y−1)jψ(xy)[σν(w′)f
]
(y)

=
∑
y∈F×

q

ν(y−1)jψ(xy)

 ∑
z∈F×

q

ν(z−1)jψ(yz)f(z)


=

∑
z∈F×

q

ν(xz−1)f(z)

 ∑
y∈F×

q

ν(x−1y−1)jψ(yz)jψ(xy)

 ,
Where we used the multiplicativity of ν in the second equality. Now consider the
automorphisms y 7→ x−1y and z 7→ xz, which allows us to rewrite

[
σν(w′)σν(w′)f

]
(x) =

∑
z∈F×

q

ν(z−1)f(xz)

 ∑
y∈F×

q

ν(y−1)jψ(zy)jψ(y)

(3.16)

= ν(−1)f(x)

= [σν(v−1,−1)f ](x),

where (3.5) was used in the second equality. Thus the second relation is re-
spected by σν . For the third relation, it suffices to check that σν(w′)σν(t)σν(w′) =
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σν(−t−1)σν(w′)σν(t−1). The former is given by

[σν(w′)σν(t)σν(w′)f ] (x) = −
∑
y∈F×

q

ν(y−1)jψ(xy)[σν(t)σν(w′)f
]
(y)

= −
∑
y∈F×

q

ν(y−1)jψ(xy)ψ(y)[σν(w′)f
]
(y)

=
∑
y∈F×

q

ν(y−1)jψ(xy)ψ(y)

 ∑
z∈F×

q

ν(z−1)jψ(yz)f(z)

 .(3.17)

On the other hand, one may write[
σν(−t−1)σν(w′)σν(t−1)f

]
(x) = −

[
σν(t−1)σν(w′)

]
ψ(−x)f(x)

= ν(−1)ψ(−x)
∑
z∈F×

q

ν(z−1)jψ(xz)ψ(−z)f(z)

=
∑
z∈F×

q

ν(z−1)f(z)
[
ν(−1)ψ(−x− z)jψ(xz)

]

=
∑
z∈F×

q

ν(z−1)f(z)

 ∑
y∈F×

q

jψ(xy)jψ(yz)ν(y−1)ψ(y)

 ,(3.18)

where (3.6) was used in the last equality. Comparison of (3.17) and (3.18) shows that
the third relation is respected by σν . Thus σν is a well defined representation. □

This establishes the discrete series representation σν of GL(2,Fq) which is the
desired irreducible “extension” of ν; showing that this representation is irreducible
involves computing its character, which is unfortunately outside of the scope of this
paper(see Chapter 21 of [T]). In particular, it turns out that the indecomposability
of the character ν : K → C× is crucial to the irreducible of the discrete series
representation.

References

[PS] I. Piatetski-Shapiro. Complex Representations of GL(2,K) for Finite Fields K. American
Mathematical Society (1983).

[T] A. Terras. Fourier Analysis on Finite Groups and Applications. Cambridge University Press
(1999).

Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA
02139


	1. Introduction
	2. Representations of a Subgroup of GL(2, Fq)
	3. The Discrete Series Representation
	References

