CONSTRUCTING THE DISCRETE SERIES REPRESENTATION
 OF $\operatorname{GL}\left(2, \mathbb{F}_{q}\right)$

JEFFERY OPOKU-MENSAH

1. Introduction

In this paper we construct the discrete series representations, a collection of irreducible representations of $\operatorname{GL}\left(2, \mathbb{F}_{q}\right)$. The representations arise from one-dimensional representations ν of a subgroup $K \leq \operatorname{GL}\left(2, \mathbb{F}_{q}\right)$ which can be likened to the orthogonal subgroup $\mathrm{O}(2, \mathbb{R}) \leq \mathrm{GL}(2, \mathbb{R})$. The manner in which the discrete series representation is obtained from a representation of K is not immediately obvious; for example, taking the induced representation from K to $G L\left(2, \mathbb{F}_{q}\right)$ yields a reducible representation. However, for a certain class of "indecomposable" representations $\nu: K \rightarrow \mathbb{C}^{\times}$, one obtains an irreducible representation $\sigma_{\nu}: \mathrm{GL}\left(2, \mathbb{F}_{q}\right) \rightarrow \mathrm{GL}(V)$ where V is the vector space of functions $\mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}$ (see Chapter 21 of [T]). To construct this representation, we define σ_{ν} on the generators of a particular presentation of $\operatorname{GL}\left(2, \mathbb{F}_{q}\right)$, and check that σ_{ν} respects the relations of the presentation.

2. Representations of a Subgroup of $\operatorname{GL}\left(2, \mathbb{F}_{q}\right)$

Suppose $q \neq 2$. One may pick a nonsquare element $\delta \in \mathbb{F}_{q}{ }^{1}$ and write $\mathbb{F}_{q^{2}}=$ $\mathbb{F}_{q}[\sqrt{\delta}]$, defining the subgroup

$$
K=\left\{\left[\begin{array}{cc}
a & b \delta \tag{2.1}\\
b & a
\end{array}\right] \in \operatorname{GL}\left(2, \mathbb{F}_{q}\right)\right\} .
$$

One has an isomorphism $\phi: \mathbb{F}_{q^{2}}^{\times} \rightarrow K$ given by

$$
a+b \delta \mapsto\left[\begin{array}{cc}
a & b \delta \tag{2.2}\\
b & a
\end{array}\right]
$$

Checking this is simple; observe that $\left[\begin{array}{cc}a & b \delta \\ b & a\end{array}\right]$ is the matrix representation of the linear $\operatorname{map} \mathbb{F}_{q}[\sqrt{\delta}]$ given by multiplication by $a+b \delta$. Here, the basis of $\mathbb{F}_{q}[\sqrt{\delta}]$ as an \mathbb{F}_{q}-vector space is chosen to be $\{1, \delta\}$.

Definition 2.1. A multiplicative character $\nu: \mathbb{F}_{q}[\sqrt{\delta}]^{\times} \rightarrow \mathbb{C}$ is said to be decomposable if $\nu=\chi \circ N$, where χ is a multiplicative character of \mathbb{F}_{q}^{\times}and N is the norm, defined by $N=\operatorname{det} \circ \phi$.

Essentially, a decomposable character is given by the "pullback" of a representation π of \mathbb{F}_{q}^{\times}to a representation $\pi \circ N$ of $\mathbb{F}_{q^{2}}^{\times}$. In order to determine when a given multiplicative character is decomposable we introduce the following lemmas:

Proposition 2.2. The norm map $N: \mathbb{F}_{q}[\sqrt{\delta}]^{\times} \rightarrow \mathbb{F}_{q}^{\times}$is a surjective homomorphism.

[^0]Proof. It is well known that the Galois group $\operatorname{Gal}\left(\mathbb{F}_{q}[\sqrt{\delta}]^{\times} / \mathbb{F}_{q}^{\times}\right)$is generated by the Frobenius automorphism $\alpha \mapsto \alpha^{q}$. But the Galois group only contains two elements: the identity and the conjugation map swapping $\delta \mapsto-\delta$. Thus $N(\alpha)=$ $\alpha \bar{\alpha}=\alpha^{q+1}$. By considering primitive elements, can view $N: \mathbb{F}_{q^{2}}^{\times} \rightarrow \mathbb{F}_{q}^{\times}$, as a map $\mathbb{Z} /\left(q^{2}-1\right) \mathbb{Z} \rightarrow \mathbb{Z} /(q-1) \mathbb{Z}$ given by multiplication by $q+1$. Hence, the kernel of N consists of $\left(q^{2}-1\right) /(q-1)=q+1$ elements. Consequently the image of N consists of $\left(q^{2}-1\right) /(q+1)=q-1$ elements, which is the order of \mathbb{F}_{q}^{\times}. Hence N is surjective.

Proposition 2.3. The map $\psi: \mathbb{F}_{q}[\sqrt{\delta}]^{\times} \rightarrow \operatorname{ker} N$ taking $\alpha \mapsto \bar{\alpha} \alpha^{-1}$ is surjective.
Proof. The map $\psi: \mathbb{F}_{q}[\sqrt{\delta}]^{\times} \rightarrow \operatorname{ker} N$ taking $\alpha \mapsto \bar{\alpha} \alpha^{-1}$ is a homomorphism, as a product of homomorphisms into an abelian group. The kernel is given by

$$
\operatorname{ker} \phi=\{\alpha \mid \bar{\alpha}=\alpha\}=\mathbb{F}_{q}^{\times}
$$

which has order $q-1$. Thus the image of ψ has order $\left(q^{2}-1\right) /(q-1)=q+1$, which is the order of ker N (see Proposition 2.2). Hence ψ is surjective.

Lemma 2.4. A multiplicative character ν of $\mathbb{F}_{q}[\sqrt{\delta}]^{\times}$is decomposable if and only if $\nu(\alpha)=\nu(\bar{\alpha})$ for all $\alpha \in \mathbb{F}_{q}[\sqrt{\delta}]$.

Proof. Suppose that $\nu=\chi \circ N$, where N is the norm from $\mathbb{F}_{q^{2}}$ to \mathbb{F}_{q}. Since the norm is preserved under conjugation, one obtains that ν is preserved under conjugation as well.

Conversely, suppose that ν is preserved under conjugation. Suppose that $N(\alpha)=$ $N(\beta)$ for $\alpha, \beta \in \mathbb{F}_{q}[\sqrt{\delta}]$. Then $N\left(\alpha \beta^{-1}\right)=1$, so by Proposition 2.3, there exists $\gamma \in \mathbb{F}_{q}[\sqrt{\delta}]$ such $\bar{\gamma} \gamma^{-1}=\beta$. Thus $\nu\left(\alpha \beta^{-1}\right)=\nu\left(\bar{\gamma} \gamma^{-1}\right)=1$. Hence $\nu(\alpha)=\nu(\beta)$ by multiplicativity and the fact that ν is preserved under conjugation. Hence, using the fact N is surjective, one may factor ν as $\nu=\chi \circ N$, where $\chi: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$is some function. We finish by showing that χ is a multiplicative character, implying ν is decomposable. To see this, observe that for $x, y \in \mathbb{F}_{q}$, there exists $\alpha, \beta \in \mathbb{F}_{q}[\sqrt{\delta}]$ such that $N(\alpha)=x$ and $N(\beta)=y$, yielding

$$
\begin{equation*}
\chi(x y)=\chi(N(\alpha \beta))=\nu(\alpha \beta)=\nu(\alpha) \nu(\beta)=\chi(x) \chi(y) . \tag{2.3}
\end{equation*}
$$

The "obvious" way to obtain a representation from a one-dimensional representation ν defined on a subgroup of K, taking the induced representation, unfortunately does not yield an irreducible representation.

Proposition 2.5. Two elements $g, g^{\prime} \in K$ are conjugate in $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$ if and only if g, g^{\prime} correspond to conjugates in $\mathbb{F}_{q}[\sqrt{\delta}]$.

Proof. Suppose $g, g^{\prime} \in K$ are conjugates in G, that is, there exists $x \in G$ such that $x g x^{-1}=g^{\prime}$. Then g, g^{\prime} are similar matrices, and hence share the same trace and determinant. As elements of a quadratic extension with the same trace and norm, this characterizes $\phi^{-1}(g)$ and $\phi^{-1}\left(g^{\prime}\right)$ up to conjugacy.

The converse follows similarly, as matrices of dimension 2 with the same trace and determinant are characterized up to similarity.

Lemma 2.6. Let ν be a (indecomposable) multiplicative character of $\mathbb{F}_{q^{2}}^{\times} \cong K$. Then the induced representation $\pi=\operatorname{Ind}_{K}^{G} \nu$ is reducible, where $G=\operatorname{GL}\left(2, \mathbb{F}_{q}\right)$.

Proof. First, note that by Proposition 2.5, two elements g, g^{\prime} in the subgroup K are conjugate in G, if and only if g, g^{\prime} correspond to conjugates in $\mathbb{F}_{q}[\sqrt{\delta}]$. Again, we shall denote the conjugate of g by \bar{g}. Then $\chi_{\pi}(g)=\chi_{\pi}(\bar{g})$, which implies that $\chi_{\nu}(g)=\chi_{\nu}(\bar{g})$, so by Lemma 2.4, ν is decomposable, which contradicts the assumption of indecomposability. Relaxing this assumption still leads to a reducible representation, however.

We shall use the Frobenius formula to calculate $\left\langle\chi_{\pi}, \chi_{\pi}\right\rangle$. Given $g \in K$, one has by the Frobenius formula

$$
\chi_{\pi}(g)=\frac{1}{|K|} \sum_{x \in G} \widetilde{\chi_{\nu}}\left(x g x^{-1}\right)= \begin{cases}\chi_{\nu}(g)+\chi_{\nu}(\bar{g}) & \text { if } g \text { is elliptic } \tag{2.4}\\ \left(q^{2}-q\right) \chi_{\nu}(g) & \text { if } g \text { is central }\end{cases}
$$

In the first case, we used the fact that $x g x^{-1} \in K$ if and only if $x g x^{-1} \in\{g, \bar{g}\}$, and that the centralizer of g has order $|G| /\left(q^{2}-q\right)=q^{2}-1$. In the second case, we used the fact that $x g x^{-1} \in K$ if and only if $x g x^{-1}=g$, and that the centralizer has size $|G| / 1=\left(q^{2}-q\right)\left(q^{2}-1\right)$. One may further write $\chi_{\pi}(g)=2 \chi_{\nu}(g)$, since g, \bar{g} are conjugate.

From the Frobenius formula, one sees that χ_{π} vanishes for elements not in an elliptic or central conjugacy class, hence

$$
\begin{align*}
\left\langle\chi_{\pi}, \chi_{\pi}\right\rangle & =\sum_{g \in K_{\text {central }}}\left(q^{2}-q\right)^{2} \chi_{\nu}(g)^{2}+\sum_{g \in K_{\text {elliptic }}} \frac{q(q-1)}{2} \cdot 4 \chi_{\nu}(g)^{2} \tag{2.5}\\
& >\sum_{g \in K_{\text {central }}}\left(q^{2}-q\right) \chi_{\nu}(g)^{2}+\sum_{g \in K_{\text {elliptic }}}\left(q^{2}-q\right) \chi_{\nu}(g)^{2} \\
& =\left(q^{2}-q\right)\left\langle\chi_{\nu}, \chi_{\nu}\right\rangle \\
& =\left(q^{2}-q\right)\left(q^{2}-1\right) \\
& =|G| .
\end{align*}
$$

Since $\left\langle\chi_{\pi}, \chi_{\pi}\right\rangle \neq|G|$, the induced representation is not irreducible.

3. The Discrete Series Representation

Definition 3.1. The Borel subgroup B is the subgroup of GL $\left(2, \mathbb{F}_{q}\right)$ defined by

$$
B=\left\{\left[\begin{array}{ll}
a & b \tag{3.1}\\
0 & c
\end{array}\right] \in \operatorname{GL}\left(2, \mathbb{F}_{q}\right)\right\}
$$

One can easily check that the set B indeed is a subgroup. In order to define the discrete series representation, we first express $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$ as a group presentation involving the Borel subgroup. To start, consider the matrices

$$
t=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad v_{r, s}=\left[\begin{array}{ll}
r & 0 \\
0 & s
\end{array}\right] .
$$

Theorem 3.2. The general linear group $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$ has a group presentation

$$
\mathrm{GL}\left(2, \mathbb{F}_{q}\right) \cong\left\langle B, w \mid w v_{r, s}=v_{s, r} w, w^{2}=-\mathrm{id}, w t w=(t w t)^{-1}\right\rangle
$$

Proof. Let $G^{\prime}=\left\langle B, w \mid w v_{r, s}=v_{s, r} w, w^{2}=-\mathrm{id},(w t)^{3}=\mathrm{id}\right\rangle$. We wish to show that $G^{\prime} \cong \mathrm{GL}\left(2, \mathbb{F}_{q}\right)$. Consider the surjective homomorphism $\theta: G^{\prime} \rightarrow \mathrm{GL}\left(2, \mathbb{F}_{q}\right)$ which is the identity on B and maps w to the Weyl element,

$$
w \mapsto w^{\prime}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

Checking that the Weyl element satisfies the given relations in the presentation confirms that θ is a homomorphism. By straightforward calculation, one verifies that if $c \neq 0$, then

$$
\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
(b c-a d) c^{-1} & -a \\
0 & -c
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & c^{-1} d \\
0 & 1
\end{array}\right]
$$

Thus θ is surjective. It suffices to show that θ has trivial kernel. We make the following claim and defer its proof to the end of this proof:

Proposition 3.3. Let $D=\left\{v_{r, s} \mid r, s \in \mathbb{F}_{q}\right\}$ be the diagonal subgroup. For each $b \in B-D$, there exists $b_{1}, b_{2} \in B$ such that $w^{\prime} b w^{\prime}=b_{1} w^{\prime} b_{2}$.

Now suppose, for the sake of contradiction, that there exists some $g \in \operatorname{ker} \theta$ such that $g \neq$ id. Then g may be written as $g=b_{1} w b_{2} w \cdots b_{n-1} w b_{n}$, a word of length $2 n-1$ for $n \geq 2$. We show that if $n>2$, then g may be rewitten as a word of length $\leq 2 n-3$; induction then shows that $g=a_{1} w a_{2}$ for some $a_{1}, a_{2} \in B$. To do this, note that if $b_{2} \in D$, then $w b_{2} w \in B$ via the group relations. Thus $g=b^{\prime} \cdots w b_{n-1} w b_{n}$, where $b^{\prime}=b_{1} w b_{2} w b_{3} \in B$, which is a word of length $2 n-5$. Otherwise, if $b_{2} \in B-D$, applying Proposition 3.3 allows us to write $w b_{2} w=c_{1} w c_{2}$ for $c_{1}, c_{2} \in B$. Thus we may write $g=b_{1}^{\prime} w b_{2}^{\prime} \cdots w b_{n-1} w b_{n}$, where $b_{1}^{\prime}=b_{1} c_{1} \in B$ and $b_{2}^{\prime}=b_{2} c_{3} \in B$, which is a word of length $2 n-3$.

Thus g is ultimately of the form $a_{1} w a_{2}$ for some $a_{1}, a_{2} \in B$. One may check that such an element gets mapped by θ to matrix of the form

$$
\theta(g)=\left[\begin{array}{cc}
\alpha & \beta \tag{3.2}\\
0 & \gamma
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{cc}
\alpha^{\prime} & \beta^{\prime} \\
0 & \gamma^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-\alpha^{\prime} \beta & \alpha \gamma^{\prime}-\beta \beta^{\prime} \\
-\alpha^{\prime} \gamma & -\beta^{\prime} \gamma
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

where $\alpha, \gamma \neq 0$ and $\alpha^{\prime}, \gamma^{\prime} \neq 0$, since B consists of invertible matrices. But this yields a contradiction since the previous equation implies $\alpha^{\prime} \gamma=0$. Thus the kernel of θ is trivial.

Proof of Proposition 3.3. Suppose that $b \in B-D$. Then one may write $b=\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]$ where $b \neq 0$, which in turn is equal to the product $v_{1, c b^{-1}} t v_{a, c}$. Since $w t w=(t w t)^{-1}$, one has
$w b w=\left(w v_{1, c b^{-1}} w^{-1}\right)(w t w)\left(w^{-1} v_{a, c} w\right)=\left(w v_{1, c b^{-1}} w^{-1}\right) t^{-1} v_{1,-1} w t^{-1}\left(w^{-1} v_{a, c} w\right)$,
which puts $w b w$ in the desired form, with $b_{1}=\left(w v_{1, c b^{-1}} w^{-1}\right) t^{-1} v_{1,-1}$ and $b_{2}=$ $t^{-1}\left(w^{-1} v_{a, c} w\right)$.

We may finally construct the discrete series representation σ_{ν} associated to a indecomposable multiplicative character $\nu: K \rightarrow \mathbb{C}^{\times}$. To do this, we shall define σ_{ν} on B and the Weyl element w, and verify σ_{ν} is a homomorphism by checking
that it respects the group presentation of $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$ given by Theorem 3.2. Consider the \mathbb{C}-vector space V of functions $\mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}$, and let $\psi: \mathbb{F}_{q}^{+} \rightarrow \mathbb{C}^{\times}$be a nontrivial additive character ${ }^{2}$. Now define

$$
\left[\left(\sigma_{\nu}\left[\begin{array}{ll}
a & b \tag{3.4}\\
0 & c
\end{array}\right]\right) f\right](x)=\nu(c) \psi\left(b c^{-1} x\right) f\left(a c^{-1} x\right)
$$

and

$$
\left[\left(\sigma_{\nu} w\right) f\right](x)=-\sum_{y \in \mathbb{F}_{q}^{\times}} \nu\left(y^{-1}\right) j_{\psi}(x y) f(y)
$$

where $j_{\psi}: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}$ is the generalized Kloosterman sum

$$
j_{\psi}(x)=\frac{1}{q} \sum_{N(t)=x} \psi(t+\bar{t}) \nu(t)
$$

Here, the sum is taken over all $t \in \mathbb{F}_{q}[\sqrt{\delta}]$ with norm x.
Before continuing, we state some facts about generalized Kloosterman sums; the proofs of these can be verified by computation and can be found in [PS].

Lemma 3.4. Let $\nu: K \rightarrow \mathbb{C}^{\times}$be a multiplicative character and $\psi: \mathbb{F}_{q}^{+} \rightarrow \mathbb{C}^{\times}$be a nontrivial additive character, and $j_{\psi}: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}$ be the generalized Kloosterman sum associated to ψ and ν. Then the following identities hold:

$$
\begin{align*}
\sum_{v \in \mathbb{F}_{q}^{\times}} j_{\psi}(u v) j_{\psi}(v) \nu\left(v^{-1}\right) & = \begin{cases}\nu(-1) & \text { if } u=1 \\
0 & \text { if } u \neq 1\end{cases} \tag{3.5}\\
\sum_{v \in \mathbb{F}_{q}^{\times}} j(x v) j(y v) \nu\left(v^{-1}\right) \psi(v) & =\nu(-1) \psi(-x-y) j(x y) \tag{3.6}
\end{align*}
$$

Theorem 3.5. σ_{ν} defines a representation of $\operatorname{GL}\left(2, \mathbb{F}_{q}\right)$.
Proof. Let us first check that σ_{ν} defines a homomorphism from B to GL(V). For this, we simply calculate

$$
\left[\begin{array}{cc}
a & b \tag{3.7}\\
0 & c
\end{array}\right]\left[\begin{array}{cc}
\alpha & \beta \\
0 & \gamma
\end{array}\right]=\left[\begin{array}{cc}
a \alpha & a \beta+b \gamma \\
0 & c \gamma
\end{array}\right]
$$

and write

$$
\left[\sigma_{\nu}\left(\left[\begin{array}{cc}
a \alpha & a \beta+b \gamma \tag{3.8}\\
0 & c \gamma
\end{array}\right]\right) f\right](x)=\nu(c \gamma) \psi\left((a \beta+b \gamma) c^{-1} \gamma^{-1} x\right) f\left(a \alpha c^{-1} \gamma^{-1} x\right)
$$

Writing $g(x)=\left[\sigma_{\nu}\left(\left[\begin{array}{ll}\alpha & \beta \\ 0 & \gamma\end{array}\right]\right) f\right](x)$, one has

$$
\begin{align*}
{\left[\left(\sigma_{\nu}\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right]\right) g\right](x) } & =\nu(c) \psi\left(b c^{-1} x\right) g\left(a c^{-1} x\right) \tag{3.9}\\
& =\nu(c) \psi\left(b c^{-1} x\right) \nu(\gamma) \psi\left(\beta \gamma^{-1}\left(a c^{-1} x\right)\right) f\left(\alpha \gamma^{-1}\left(a c^{-1} x\right)\right) \tag{3.10}\\
& =\nu(c \gamma) \psi\left((a \beta+b \gamma) c^{-1} \gamma^{-1} x\right) f\left(a \alpha c^{-1} \gamma^{-1} x\right) \tag{3.11}\\
& =\left[\sigma_{\nu}\left(\left[\begin{array}{cc}
a \alpha a \beta+b \gamma \\
0 & c \gamma
\end{array}\right]\right) f\right](x), \tag{3.12}
\end{align*}
$$

where we used the fact that ν and ψ are homomorphisms into \mathbb{C}^{\times}. Thus σ_{ν} defines a homomorphism on B. To extend this to a homomorphism on $\operatorname{GL}\left(2, \mathbb{F}_{q}\right)$, we must

[^1]check that the three relations in the group presentation are respected by σ_{ν}. We check that $\sigma_{\nu}\left(w^{\prime}\right) \sigma_{\nu}\left(v_{r, s}\right)=\sigma_{\nu}\left(v_{s, r}\right) \sigma_{\nu}\left(w^{\prime}\right)$, by first computing
\[

$$
\begin{equation*}
\left[\sigma_{\nu}\left(v_{r, s}\right) f\right](x)=\nu(s) f\left(r s^{-1} x\right) \tag{3.13}
\end{equation*}
$$

\]

Then

$$
\begin{align*}
{\left[\sigma_{\nu}\left(w^{\prime}\right) \sigma_{\nu}\left(v_{r, s}\right) f\right](x) } & =-\sum_{y \in \mathbb{F}_{q}^{\times}} \nu\left(y^{-1}\right) j_{\psi}(x y) \nu(s) f\left(r s^{-1} y\right) \tag{3.14}\\
& =-\sum_{x \in \mathbb{F}_{q}^{\times}} \nu\left(s y^{-1}\right) j_{\psi}(x y) f\left(r s^{-1} y\right) .
\end{align*}
$$

and

$$
\begin{align*}
{\left[\sigma_{\nu}\left(v_{s, r}\right) \sigma_{\nu}\left(w^{\prime}\right) f\right](x) } & =-\nu(r) \sum_{y \in \mathbb{F}_{q}^{\times}} \nu\left(y^{-1}\right) j_{\psi}\left(s r^{-1} x y\right) f(y) \tag{3.15}\\
& =-\sum_{y \in \mathbb{F}_{q}^{\times}} \nu\left(s y^{-1}\right) j_{\psi}(x y) f\left(r s^{-1} y\right) .
\end{align*}
$$

Here, the fact that $y \mapsto r s^{-1} y$ is an automorphism of \mathbb{F}_{q}^{\times}was used in the last equality. Thus the first relation is respected by σ_{ν}. For the second relation, we calculate

$$
\begin{aligned}
{\left[\sigma_{\nu}\left(w^{\prime}\right) \sigma_{\nu}\left(w^{\prime}\right) f\right](x) } & =-\sum_{y \in \mathbb{F}_{q}^{\times}} \nu\left(y^{-1}\right) j_{\psi}(x y)\left[\sigma_{\nu}\left(w^{\prime}\right) f\right](y) \\
& =\sum_{y \in \mathbb{F}_{q}^{\times}} \nu\left(y^{-1}\right) j_{\psi}(x y)\left[\sum_{z \in \mathbb{F}_{q}^{\times}} \nu\left(z^{-1}\right) j_{\psi}(y z) f(z)\right] \\
& =\sum_{z \in \mathbb{F}_{q}^{\times}} \nu\left(x z^{-1}\right) f(z)\left[\sum_{y \in \mathbb{F}_{q}^{\times}} \nu\left(x^{-1} y^{-1}\right) j_{\psi}(y z) j_{\psi}(x y)\right]
\end{aligned}
$$

Where we used the multiplicativity of ν in the second equality. Now consider the automorphisms $y \mapsto x^{-1} y$ and $z \mapsto x z$, which allows us to rewrite

$$
\begin{align*}
{\left[\sigma_{\nu}\left(w^{\prime}\right) \sigma_{\nu}\left(w^{\prime}\right) f\right](x) } & =\sum_{z \in \mathbb{F}_{q}^{\times}} \nu\left(z^{-1}\right) f(x z)\left[\sum_{y \in \mathbb{F}_{q}^{\times}} \nu\left(y^{-1}\right) j_{\psi}(z y) j_{\psi}(y)\right] \tag{3.16}\\
& =\nu(-1) f(x) \\
& =\left[\sigma_{\nu}\left(v_{-1,-1}\right) f\right](x),
\end{align*}
$$

where (3.5) was used in the second equality. Thus the second relation is respected by σ_{ν}. For the third relation, it suffices to check that $\sigma_{\nu}\left(w^{\prime}\right) \sigma_{\nu}(t) \sigma_{\nu}\left(w^{\prime}\right)=$
$\sigma_{\nu}\left(-t^{-1}\right) \sigma_{\nu}\left(w^{\prime}\right) \sigma_{\nu}\left(t^{-1}\right)$. The former is given by

$$
\begin{aligned}
{\left[\sigma_{\nu}\left(w^{\prime}\right) \sigma_{\nu}(t) \sigma_{\nu}\left(w^{\prime}\right) f\right](x) } & =-\sum_{y \in \mathbb{F}_{q}^{\times}} \nu\left(y^{-1}\right) j_{\psi}(x y)\left[\sigma_{\nu}(t) \sigma_{\nu}\left(w^{\prime}\right) f\right](y) \\
& =-\sum_{y \in \mathbb{F}_{q}^{\times}} \nu\left(y^{-1}\right) j_{\psi}(x y) \psi(y)\left[\sigma_{\nu}\left(w^{\prime}\right) f\right](y) \\
& =\sum_{y \in \mathbb{F}_{q}^{\times}} \nu\left(y^{-1}\right) j_{\psi}(x y) \psi(y)\left[\sum_{z \in \mathbb{F}_{q}^{\times}} \nu\left(z^{-1}\right) j_{\psi}(y z) f(z)\right] .
\end{aligned}
$$

On the other hand, one may write

$$
\begin{aligned}
{\left[\sigma_{\nu}\left(-t^{-1}\right) \sigma_{\nu}\left(w^{\prime}\right) \sigma_{\nu}\left(t^{-1}\right) f\right](x) } & =-\left[\sigma_{\nu}\left(t^{-1}\right) \sigma_{\nu}\left(w^{\prime}\right)\right] \psi(-x) f(x) \\
& =\nu(-1) \psi(-x) \sum_{z \in \mathbb{F}_{q}^{\times}} \nu\left(z^{-1}\right) j_{\psi}(x z) \psi(-z) f(z) \\
& =\sum_{z \in \mathbb{F}_{q}^{\times}} \nu\left(z^{-1}\right) f(z)\left[\nu(-1) \psi(-x-z) j_{\psi}(x z)\right] \\
& =\sum_{z \in \mathbb{F}_{q}^{\times}} \nu\left(z^{-1}\right) f(z)\left[\sum_{y \in \mathbb{F}_{q}^{\times}} j_{\psi}(x y) j_{\psi}(y z) \nu\left(y^{-1}\right) \psi(y)\right],
\end{aligned}
$$

where (3.6) was used in the last equality. Comparison of (3.17) and (3.18) shows that the third relation is respected by σ_{ν}. Thus σ_{ν} is a well defined representation.

This establishes the discrete series representation σ_{ν} of $\mathrm{GL}\left(2, \mathbb{F}_{q}\right)$ which is the desired irreducible "extension" of ν; showing that this representation is irreducible involves computing its character, which is unfortunately outside of the scope of this paper(see Chapter 21 of [T]). In particular, it turns out that the indecomposability of the character $\nu: K \rightarrow \mathbb{C}^{\times}$is crucial to the irreducible of the discrete series representation.

References

[PS] I. Piatetski-Shapiro. Complex Representations of $G L(2, K)$ for Finite Fields K. American Mathematical Society (1983).
[T] A. Terras. Fourier Analysis on Finite Groups and Applications. Cambridge University Press (1999).

Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139

[^0]: ${ }^{1}$ Such δ exists for $q>2$. To see, note that the squaring map is not injective since $(-x)^{2}=x^{2}$, hence its image is not the entire field.

[^1]: ${ }^{2}$ such characters can be obtained by pulling back a character through the trace map $\operatorname{tr}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{p}$, where $q=p^{r}$.

