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1. Introduction

In this paper, we will discuss the analogue of the Laplacian for the finite upper
half plane and provide an explicit form for its eigenfunctions, which is something that
is not possible for the real upper half plane case. As we will see, the Laplacian on the
finite upper half plane is motivated from the combinatorial Laplacian ([Terras(1999),
p. 51]) and is equal to Aa −(q+1)I for Aa the adjacency operator of an appropriately
defined Cayley graph with degree q + 1 (we are working in the field Fq). We then

define the k−Bessel functions by k(z|χ, ψ) =
∑

u∈Fq

χ

[
Im
(

−1
z + u

)]
ψ(−u) where

χ, ψ are multiplicative (for F∗
q) and additive (for Fq) characters respectively. We

show that the k−Bessel functions are indeed eigenfunctions of the Laplacian and
that they transform under horizontal translations of the input according to the
additive character of the translation. In Section 2, we present a summary of the
real and finite upper half planes as well as fractional linear transformations and
some elementary results. In section 3, we build on the discussion of finite upper half
planes to define the family of graphs Xq(δ, a) which we in fact show to be Cayley
graphs with a suitable generating set Sq(δ, a). We then use these graphs to define
Laplacians on the finite upper half plane. In Section 4, we first discuss the finite
power function which is an eigenfunction of the Laplacian on the finite upper half
plane and then discuss the k-Bessel functions, which are a family of eigenfunctions
of the Laplacian with nice properties under horizontal translations of the input.
The k−Bessel functions are tremendously useful in constructing the discrete series
representation of GL(2,Fq), which we will not discuss in this paper (we refer the
reader to [Piatetski-Shapiro et al.(1983), p. 34-40] and [Terras(1999), p. 370-374]
for a discussion of the Discrete Series).

2. Upper Half Planes and Fractional Linear Transformations

In this section, we discuss some prelimiaries, including the real upper half plane
H and the finite upper half plane Hq. We define the notion of distance on the
Laplacian on H and the notion of distance on Hq. We also discuss fractional linear
transformations and the fact that they are isometries. We will use these facts in
later sections to further explore Hq, specifically a discrete analog of the Laplacian
for Hq and its eigenfunctions.

2.1. Real Poincaré Upper Half Plane. The Poincaré upper half plane is

H = {z = x+ iy ∈ C | y > 0}
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with noneuclidean arc element ds2 = y−2(dx2 + dy2) and corresponding Laplacian

∆u = y2
(
∂2u

∂x2 + ∂2u

∂y2

)
Recall the action of elements SL(2,R) acting on z ∈ H is given by the fractional

linear/Mobius transformation: if g =
(

a b
c d

)
, then gz = az+b

cz+d . Mobius transforms
preserve both ds and ∆ (a proof of conservation of distances is given in Theorem
2.1) .

2.2. Finite Upper Half Plane. We model the finite upper half plane on the real
one from above. Let Fq be a finite field of odd characteristic p, where q = pr and
let δ ∈ Fq be nonsquare. Then the finite upper half plane is

Hq = {z = x+ y
√
δ | x, y ∈ Fq, y ̸= 0}

We can view the finite upper half plane as a subset of the quadratic field extension
Fq(

√
δ) of Fq. We note that Hq is not strictly a half plane (as we exclude the real

axis) but is useful as a parallel to H.
Mobius transformations apply to elements of Hq as well, with g =

(
a b
c d

)
and z ∈ Hq

giving gz = az+b
cz+d . Notation: If z = x+ y

√
δ ∈ Hq, we write x = Re z , y = Im z ,

zq = z̄ = x− y
√
δ. The norm of z is Nz = zz̄ and the trace is z + z̄. We will often

refer to
√
δ as the origin.

2.3. Finite Noneuclidean Geometry. We need a notion of distance to obtain a
finite analog of noneuclidean geometry (from Section 2.1) on the finite upper half
plane. We define a distance (not a metric) between two points in Hq:

d(z, w) = N(z − w)
Im z Im w

= (x− u)2 − δ(y − v)2

yv

where z = x + y
√
δ , w = u + v

√
δ, with x, y, u, v ∈ Fq, yv ≠ 0. We note that

d(z, w) ∈ Fq, so there is certainly no possibility of a triangle inequality and hence this
can’t be a metric. However, by taking δ = −1, we can recover ds2 = y−2(dx2 +dy2),
the hyperbolic distance for H, making d(z, w) a natural extension.

We have the following important result:

Theorem 2.1. d(z, w) = d(gz, gw) for all g ∈ GL(2,Fq) (or SL(2,R)), and for all
z, w ∈ Hq (or H).

Proof. We provide the proof for g ∈ GL(2,Fq) and z, w ∈ Hq; the other proof for
SL(2,R) and H is the exact same, by taking δ = −1.

Let z = x+y
√
δ , w = u+v

√
δ. Consider a general element g =

(
a b
c d

)
of GL(2,Fq).

It is well known that Mobius transformations can be thought of as compositions
of three elementary transformations: f(z) = z + b, f(z) = az, f(z) = 1/z. We can
easily see from the definition that d(z, w) = d(z + b, w + b) and d(z, w) = d(az, aw).
We now show d(z, w) = d(1/z, 1/w). We have
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N

(
1
z

− 1
w

)
= (w − z)(w̄ − z̄)

(wz)(w̄z̄) = u2 − δv2 + x2 − δy2 − 2ux+ 2vyδ
(u2 − δv2)(x2 − δy2)

= (x− u)2 − δ(y − v)2

(u2 − δv2)(x2 − δy2)

and

Im1
z

Im 1
w

= Imx− y
√
δ

x2 − δy2 Imu− v
√
δ

u2 − δv2 = yv

(u2 − δv2)(x2 − δy2)

and hence d(z, w) = d(1/z, 1/w).
Thus, for a general Mobius transformation on the finite (or real) upper half plane,

we have d(z, w) = d(gz, gw) as we can compose the elementary transformations and
use the fact that each of these preserves distances. □

3. The Graphs Xq(δ, a) and their properties

In this section, we will define a family of graphs Xq(δ, a) on Hq and prove that
these graphs can be thought of as Cayley graphs with the set of generators Sq(δ, a)
which are the "circles" of radius a around the origin in Hq. We then use these
graphs to motivate a "discretization" of the Laplacian on H for the Hq case using
the combinatorial Laplacian for Xq(δ, a).

3.1. Defining the graphs Xq(δ, a).

Definition 1. For a ∈ Hq, the graph Xq(δ, a) has vertices given by the elements of
Hq and z, w ∈ Hq connected by an edge when d(z, w) = a.

Example 3.1. Consider the graph X3(−1, 1). We can take δ = −1 because −1 ≡ 2
(mod 3) is not a square in F3. We write i =

√
−1 in F9. We begin by identifying

the neighbors of i in the graph. We want z = x+ iy such that

d(z, i) = N(z − i)
y

= x2 + (y − 1)2

y
= 1

which gives points ±1 ± i as the neighbors of i. To get the neighbors (distance 1
away) of z = x+ iy, we apply the matrix ( y x

0 1 ) to ±1 ± i (this follows from Theorem
2.1). In doing so, we have obtained a 4-regular graph.

3.2. Properties of Xq(δ, a).

Theorem 3.2. Xq(δ, a) is a (q + 1)-regular graph if a ̸= 0 or 4δ.

Proof. It suffices to show that there are q+ 1 points adjacent to the origin
√
δ. This

is because we can denote a general element x+ y
√
δ of Hq as ( y x

0 1 )
√
δ. Along with

Theorem 2.1, this will allow us to conclude the result.
We thus look for z = x+y

√
δ such thatN(z−

√
δ) = ay, that is, x2 = ay+δ(y−1)2.

Noting that z̄ = zq and that Im z = z−z̄
2

√
δ

= z−zq

2
√

δ
, we can also write the condition as

(z −
√
δ)q+1 = a(2

√
δ)−1(z − zq)
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which is a degree q+1 polynomial over Fq(
√
δ) and hence has at most q+1 solutions

in Fq(
√
δ). Note that that if any solution had y = 0, this would imply x2 = δ,

contradicting the nonsquare nature of δ. Thus, all solutions will lie in Hq.
Some computation shows that the desired condition is equivalent to N(z+ c) = r,

where c = (a/2δ − 1)
√
δ and r = a(1 − a/4δ) and we are thus solving wq+1 = r

where w = z + c. We wish to show that this equation has exactly q + 1 solutions.
We note that for r ̸= 0, that is for a ̸= 0, 4δ, we can solve N(z + c) = r as the norm
is simply a homomorphism from Fq(

√
δ)∗ to F∗

q . We know that the multiplicative
group Fq(

√
δ)∗ is cyclic with some generator, say γ. As N(z) = zq+1, the kernel

of the norm will have q + 1 elements given of the form γk where (q + 1)k ≡ 0
(mod q2 − 1). Thus, q− 1 must divide k, and we have k = (q− 1)j for j = 0, 1, ..., q.
The image of the norm map thus has (q2 − 1)/(q + 1) = q − 1 = |F∗

q | elements, and
thus wq+1 = r has q + 1 solutions w given any r ̸= 0 in Fq. This implies that the
origin has q + 1 neighbors and by extension, that Xq(δ, a) is (q + 1)-regular. □

In fact, we have a stronger result. We can show that Xq(δ, a) can be thought of
as a Cayley graph, with an explicit formula for the generating set.

Theorem 3.3. Xq(δ, a) is connected for a ̸= 0, 4δ. In fact, it is a Cayley graph for
the affine group

Aff(q) =
{(

y x

0 1

)∣∣∣∣∣ x, y ∈ Fq, y ̸= 0
}

using the generators

Sq(δ, a) =
{(

y x

0 1

)∣∣∣∣∣ x, y ∈ Fq, y ̸= 0, x2 = ay + δ(y − 1)2

}

We accept the above theorem without proof and refer the reader to [Terras(1999),
p. 319-321] for a proof.

We note that x2 = ay + δ(y − 1)2 is equivalent to d(x+ y
√
δ,

√
δ) = a, and thus

Sq(δ, a) corresponds to "circles" around the origin. It can also be seen that Sq(δ, a)
contains (q + 1) elements, thereby verifying Theorem 3.2.

We now define an analogue of the Laplacian discussed for H in the case of Hq.
This is not immediately obvious, as Hq consists of discrete points. We turn to the
combinatorial Laplacian ∆ = A − 2I for the circle graph X(Z/nZ, {±1}) in the
context of the Laplacian of the real line for motivation. As described above, the
Sq(δ, a) are "circles" around the origin, the analogue of our circle graphs in the
1−dimensional case. We thus consider the combinatorial Laplacians for the Cayley
graphs Xq(δ, a) given by ∆a = Aa − (q + 1)I, where Aa is the adjacency operator
for Xq(δ, a), and q + 1 is the degree of Xq(δ, a).

4. The k-Bessel functions and Elementary Properties

In this section, we will study eigenfunctions of the Laplacian on Hq. First, we
note that eigenfunctions of the Laplacians ∆a and of the adjacency operators Aa

of Xq(δ, a) are the same. This follows from the definition of ∆a above. It thus
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suffices to study the eigenfunctions of the operators Aa. We first look at the finite
power function, which we show to be an eigenfunction of Aa. We then look at the
k−Bessel functions which are a generalization of the finite power function and show
that they are a family of eigenfunctions of Aa that possess the additional property
of transforming by an additive character of Fq under horizontal translations of the
input. We then conclude by showing that the k−Bessel functions are orthogonal in
L2(Hq), whenever their additive characters differ. For a more detailed discussion of
orthogonality, we direct the reader to [Evans(1994), p. 33-50].

Definition 2. The finite power function pχ(z) for z ∈ Hq and χ a character of F∗
q

is given by pχ(z) = χ(Im z).

We now show that the finite power function is an eigenfunction of Aa.

Theorem 4.1. Let A be the adjacency operator of Xq(δ, a). The finite power function
is an eigenfunction of A, that is Apχ = Rχpχ where Rχ =

∑
w∈Sq(δ,a) χ(Im w).

Proof. We have

Apχ

{(
y x

0 1

)
√
δ

}
=

∑
( v u

0 1 )∈Sq(δ,a)

χ

(
Im
(
y x

0 1

)(
v u

0 1

)
√
δ

)

=
∑

( v u
0 1 )∈Sq(δ,a)

χ(yv) = χ(y)
∑

( v u
0 1 )∈Sq(δ,a)

χ(v) = Rχpχ(z).

□

Building upon the power functions previously discussed, we now turn to the
k−Bessel functions, a family of eigenfunctions of the adjacency operators Aa of
Xq(δ, a). More specifically, k−Bessel functions are eigenfunctions of Aa that behave
well under transformations by the abelian subgroup N of GL(2,Fq) defined by
N = {( 1 x

0 1 ) | x ∈ Fq}. Note N is isomorphic to the additive group of Fq and that
transformations by N are effectively horizontal translations of the input.

Definition 3. A k−Bessel function f : Hq → C is an eigenfunction of all adjacency
operators Aa of Xq(δ, a) such that f(z) transforms by N according to the nontrivial
additive character ψ(x) of Fq:
Aa(f) = λf, for all a ∈ Fq

f(z + u) = ψ(u)f(z), for all z ∈ Hq, u ∈ Fq

We will usually assume ψ(x) = exp(2πiTr(x)/p) where Tr(x) is the trace of
x ∈ Fq down to Fp given by x+ xp + xp2 + ...+ xpr−1 (remember q = pr).

Given that a k−Bessel function must satisfy a lot of constraints, how do we know
that they exist? We provide a construction of one class of k−Bessel functions below:

We define the k−Bessel function k(z|χ, ψ) for z ∈ Hq, χ a multiplicative character
and ψ the above-mentioned additive character of Fq, by

k(z|χ, ψ) =
∑

u∈Fq

χ

[
Im
(

−1
z + u

)]
ψ(−u).
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We first note that if χ is the trivial character, we have k(z|1, ψ) =
∑

u∈Fq
ψ(−u) =

0 (by exploiting symmetry and noting that the pth roots of unity sum to 0) and
thus we ignore this case.

We now prove some elementary properties of k(z|χ, ψ) and that it actually is a
valid form of the desired eigenfunction.

Theorem 4.2. Let z = x+ y
√
δ. Then

k(z|χ, ψ) = χ(y)ψ(x)
∑

u∈Fq

χ(u2 − δy2)ψ(−u).

Proof. This is a simple result that will help us later show that the k−Bessel function
as defined is an eigenfunction of the adjacency operator. Writing v = x−u, we have

χ(y)ψ(x)
∑

u∈Fq

χ(u2 − δy2)ψ(−u) = χ(y)
∑

u∈Fq

χ(u2 − δy2)ψ(x− u)

= χ(y)
∑
v∈Fq

χ((x− v)2 − δy2)ψ(v).

We can write the LHS as∑
u∈Fq

χ

[
Im
(

−1
z + u

)]
ψ(−u) =

∑
v∈Fq

χ

[
Im
(

−1
z − v

)]
ψ(v)

=
∑
v∈Fq

χ

[
Im
(

−1
x− v + y

√
δ

)]
ψ(v) =

∑
v∈Fq

χ

(
y

(x− v)2 − δy2

)
ψ(v).

It thus suffices to show that

χ((x− v)2 − δy2) = χ

(
1

(x− v)2 − δy2

)
.

As χ is a multiplicative character and aq = 1 for all a ∈ Fq, we have χ(a) = χ(a−1)
which gives the result. □

As a brief aside, we will now define the Gauss sum and prove an important
property of it which will aid us in proving the non-degeneracy of the k−Bessel
functions.

Definition 4. Given a multiplicative character χ of F∗
q and an additive character

ψ of Fq, their Gauss sum Γ(χ, ψ) is
∑
z∈Fq

χ(z)ψ(z).

Theorem 4.3. |Γ(χ, ψ)| = √
q provided neither χ nor ψ are trivial.

Proof. The proof of this fact is not particularly interesting or relevant to our main
result in this section, so we direct the reader to [Terras(1999), p. 142-147]. □

We now show that the k−Bessel functions are eigenfunctions of the adjacency
operators Aa of Xq(δ, a).
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Theorem 4.4. Let f(z) = k(z|χ, ψ). Then f(z) is an eigenfunction of the adjacency
operator A for Xq(δ, a) with the same eigenvalue as that for the finite power function,
that is, Rχ from Theorem 4.1. In particular, f(z) is not identically zero, if χ is a
nontrivial multiplicative character.

Proof. We recall that Af(g
√
δ) =

∑
s∈Sq(δ,a)

f(gs
√
δ). Also note that χ(Im( −1

z+u )) =

pχ

(( 0 −1
1 0

)
( 1 u

0 1 ) z
)

where the second equality follows from Theorem 4.1. Thus,

Ak(z|χ, ψ) =
∑

u∈Fq

Apχ

{(
0 −1
1 0

)(
1 u

0 1

)
z

}
ψ(−u)

= Rχ

∑
u∈Fq

pχ

{(
0 −1
1 0

)(
1 u

0 1

)
z

}
ψ(−u) = Rχk(z|χ, ψ).

We now need to show that k(z|χ, ψ) is nonzero for nontrivial multiplicative
character χ. We multiply both sides of the expression from Theorem 4.2 by χ(y)ψ(x)
and sum over elements y ∈ F∗

q as follows:

∑
y∈F∗

q

χ(y)ψ(x)k(x+ y
√
δ|χ, ψ)

=
∑

y∈F∗
q ,u∈Fq

χ(u2 − δy2)ψ(−u) (χ(y)χ(y) = ψ(x)ψ(x) = 1)

=
∑

w∈Hq

χ(Nw)ψ(−Tr(w)/2) (write w = v + y
√
δ)

= Γq2(χ ◦N,ψ ◦ 1
2Tr) − Γq(χ2, ψ).

For the third equality, note that Hq is effectively a subset of the field extension
Fq(

√
δ) with the elements x+ 0

√
δ excluded; Γq2 sums over Fq(

√
δ) and −Γq term

subtracts off the contribution from terms of the form w = x+ 0
√
δ and noting that

χ(Nw) = χ(w2) = (χ(w))2, ψ(−Tr(w)/2) = ψ(−w) = ψ(w) for such w.
By Theorem 4.3, we have |Γq(χ, ψ)| = √

q assuming neither χ, ψ are trivial. Thus
the difference Γq2 −Γq is nonvanishing, and k(z|χ, ψ) is nonzero for nontrivial χ. □

We now show the second property of the k−Bessel function, namely that k(z|χ, ψ)
transforms by N (as defined at the beginning of this section) according to the
nontrivial additive character ψ(x).

Theorem 4.5. For every u ∈ Fq, z ∈ Hq, we have k(z + u|χ, ψ) = ψ(u)k(z|χ, ψ)

Proof. From Theorem 4.2, we have

k(z|χ, ψ) = χ(y)ψ(x)
∑
v∈Fq

χ(v2 − δy2)ψ(−v)

where z = x+ y
√
δ. Thus,

k(z + u|χ, ψ) = χ(y)ψ(x+ u)
∑
v∈Fq

χ(v2 − δy2)ψ(−v)

= χ(y)ψ(x)ψ(u)
∑
v∈Fq

χ(v2 − δy2)ψ(−v) = ψ(u)k(z + u|χ, ψ).
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□

We now conclude with the orthogonality of the k−Bessel functions when the
additive characters differ.

Theorem 4.6. The k−Bessel functions k(z|χ, ψ) and k(z|χ, ψ′) are orthogonal
(with respect to the standard inner product on L2(Hq) if ψ,ψ′ are distinct.

Proof. Recall the standard inner product for functions f, g on L2(Hq) is given
by

∑
z∈Hq

f(z)g(z). We first note that for z = x + y
√
δ, we can write k(z|χ, ψ) =

ψ(x)k(y
√
δ|χ, ψ) due to Theorem 4.2. The desired inner product is thus

∑
z∈Hq

k(z|χ, ψ)k(z|χ, ψ′) =

∑
x∈Fq

ψ(x)ψ′(x)

 ∑
y∈Fq∗

k(y
√
δ|χ, ψ)k(y

√
δ|χ, ψ′)

 .

The first term is 0 for ψ ̸= ψ′ by the orthogonality relations on the additive group
Fq, which gives the result. □
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