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Abstract. We define the affine group Aff(q) over a finite field Fq and provide
some preliminary background on representation theory. We then introduce
Mackey-Wigner’s little group method, a powerful method that can completely
construct all irreducible representations of a semidirect product. Decomposing
the affine group as a semidirect product of translations and dilations, we apply
the little group method to determine the irreducible representations of Aff(q).

1. Introduction to the affine group Aff(q)

We closely follow Terras [T, p. 281–283].
In R2, dilation, translation, rotation, and their compositions preserve lines and

parallelism, which makes them so-called affine transformations. More generally, an
affine transformation of an affine space (which Euclidean space is a special case) is
an automorphism that preserves the dimension of any affine subspaces (e.g., sends
lines to lines) and the ratios of parallel line segments. This last condition implies
that the affine transformations of R are the transformations of the form x 7→ ax + b

with a ̸= 0. We can view this map as the matrix multiplication(
a b

0 1

)(
x

1

)
=
(

ax + b

1

)
.

These matrices ( a b
0 1 ) form a group, and so the affine transformations of R can be seen

as a group action. We can generalize this idea of groups of affine transformations to
other affine spaces. In particular, instead of working over R, we will work over a
finite field Fq, yielding the analogous definition of the affine group.

Definition 1.1. For finite field Fq, the affine group Aff(q) is the group of matrices
of the form ( a b

0 1 ) for a, b ∈ Fq with a ̸= 0.

Because of its group action interpretation, the affine group is sometimes called
the finite ax + b group.

The affine group has a particularly elegant structure as a semidirect product,
which we now define.

Definition 1.2. For subgroups A and H of G, we say G is the semidirect product of
A and H, denoted G = A⋉H, if A is a normal subgroup, G = A · H is the product
of the two subgroups, and A ∩ H = {e}, where e is the identity of G.

Lemma 1.3. The affine group Aff(q) = A ⋉ H, where

A =
{(

1 x

0 1

)∣∣∣∣∣x ∈ Fq

}
∼= Fq and H =

{(
y 0
0 1

)∣∣∣∣∣y ∈ F×
q

}
∼= F×

q .
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Proof. To show A is normal, note that(
y x

0 1

)(
1 z

0 1

)(
y−1 −xy−1

0 1

)
=
(

1 yz

0 1

)
∈ A.

Any element ( y x
0 1 ) ∈ G can be written as(

y x

0 1

)
=
(

1 x

0 1

)(
y 0
0 1

)
∈ A · H.

Finally, we see A ∩ H = {( 1 0
0 1 )} is the trivial group. □

Notice that A and H are both abelian. Viewing the affine group as the group
of affine transformations x 7→ ax + b, we see that A corresponds to translations
x 7→ x + b and H corresponds to dilations x 7→ ax, so Lemma 1.3 essentially shows
that the group of affine transformations can be decomposed into translations and
dilations.

2. A primer on representation theory

We first recall some preliminary definitions from representation theory.

Definition 2.1. A (finite-dimensional) representation of a finite group G is a
pair (V, π) consisting of a finite-dimensional vector space V over C and a group
homomorphism π : G → GL(V ). Frequently the representation will be identified
solely by its homomorphism, i.e., π, instead of both V and π.

As V is a finite-dimensional vector space, V ∼= Cn for some n, and thus π can be
seen as a group homomorphism sending G to a group of complex matrices. From
this perspective, we can easily concatenate two representations (V, π) and (U, ρ) to
yield a representation π ⊕ρ on V ⊕U ; hence, the following definition of irreducibility
allows us to restrict attention to the atomic representations.

Definition 2.2. A representation (V, π) of G is irreducible if it has no nontrivial
subrepresentations, i.e., there does not exist a subspace 0 ⊊ W ⊊ V such that
π(g)W ⊆ W for all g ∈ G.

The classical result by Maschke in 1899 states that any representation π can
be decomposed as the direct sum of irreducible representations (see [T, p. 247]).
Irreducibility is equivalent to the non-existence of any basis such that π(g) is always
upper-triangular in block form. However, we generally wish for the behavior of a
representation to not depend on a choice of basis, and so the following definition of
equivalence views two representations as essentially identical if they only differ by a
choice of basis.

Definition 2.3. Two representations (V, π) and (V, ρ) of G into V are equivalent if
there exists T ∈ GL(V ) such that Tπ(g)T −1 = ρ(g) for all g ∈ G.

With an equivalence relation on representations, we wish for elegant representa-
tives of each equivalence class; every representation of a finite group G is equivalent
to a unitary representation (see [T, p. 244]), defined as follows.
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Definition 2.4. A representation π of G into V ∼= Cn is unitary if π(g) is unitary
for all g ∈ G, i.e.,

π(g) ∈ U(n) =
{

A ∈ GL(n,C)
∣∣∣AT

A = I
}

,

where U(n) denotes the unitary group.

Unitary matrices A preserve the standard Hermitian inner product on Cn, i.e.,
⟨Au, Av⟩ = ⟨u, v⟩ = uT v for all u, v ∈ Cn. As any representation is equivalent to a
unitary representation and irreducible representations are the atoms creating all
representations, we define the dual of G to be the full set of irreducible unitary
representations, our periodic table for representations.

Definition 2.5. The dual Ĝ of a finite group G is any complete set of inequivalent
irreducible unitary representations of G.

One way to combine two representations together that will be useful later is the
tensor product of representations.

Definition 2.6. The tensor product σ ⊗ ϕ of representations σ and ϕ of G, where
σ is k-dimensional and ϕ is m-dimensional, is the km-dimensional representation of
G where (σ ⊗ ϕ)(g) is defined by forming a k × k array of m × m blocks such that
the i, j block is σi,j(g)ϕ(g) for all 1 ≤ i, j ≤ k.

Frequently, we will have representations of a group G while wanting represen-
tations of a related group G′. If we have a representation σ of G, we can always
naturally restrict σ to a representation ResG

H σ of a subgroup H ⊆ G. However, the
reverse direction is nontrivial; the following definition of an induced representation
allows one to obtain a representation of G using a representation of a subgroup
H ⊆ G.

Definition 2.7. For a representation (W, σ) of a subgroup H of G, the induced
representation from H up to G denoted ϕ = IndG

H σ is the group homomorphism
from G to GL(V ), where

V = {f : G → W |f(hg) = σ(h)f(g), for all h ∈ H, g ∈ G},

given by
[ϕ(g)f ](x) = f(xg)

for all x, g ∈ G.

To check whether an induced representation is irreducible, we can use Mackey’s
criterion (see [S, p. 59]), which we now state without proof.

Theorem 2.8. For a representation σ of H ⊆ G, the induced representation
IndG

H σ is irreducible if and only if σ is irreducible and for each s ∈ G \ H, the
two representations of Hs = H ∩ sHs−1 obtained by precomposing σ with the two
injections Hs → H given by x 7→ x and x 7→ s−1xs are disjoint.

Here, disjoint means they share no irreducible component in common, i.e., the
inner product of their characters is 0.
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The character of an induced representation can be calculated using the Frobenius
character formula for induced representations (see [T, p. 271]), which we state
without proof.

Theorem 2.9. The character of the induced representation π = IndG
H σ is given by

χπ(g) =
∑

a∈G/H

a−1ga∈H

χσ(a−1ga).

3. Mackey-Wigner’s little group method

We refer readers to [S, p. 62] for additional discussion of Mackey-Wigner’s little
group method. The little group method constructs the irreducible representations of
a semidirect product G = A ⋉ H. The crux of the method is that these irreducible
representations can be built from the irreducible representations of A and those of
their stabilizers in H.

To use the little group method, we must additionally stipulate that A is abelian,
so that its irreducible representations χ ∈ Â have degree 1. For any χ ∈ Â, we have
h ∈ H acts on χ via

(hχ)(a) = χ(h−1ah)

for all a ∈ A, where h−1ah ∈ A since A is normal. The stabilizer of χ by this
action is Hχ = {h ∈ H|hχ = χ}, and to recover a group similar to G = A · H,
define Gχ = A ⋉ Hχ ⊆ G; these are our namesake “little groups.” We now create
representations of Gχ from representations of its two component parts. For the
first part, we may extend χ to a representation of Gχ by defining χ(ah) = χ(a) for
all a ∈ A and h ∈ Hχ. Similarly, for any ρ ∈ Ĥχ, we may lift to a representation
of Gχ by defining ρ(ah) = ρ(h) for all a ∈ A and h ∈ Hχ. These two types
of representations essentially have all the information to create every irreducible
representation of G, so we combine them using the tensor product to obtain χ ⊗ ρ.
However, χ and ρ are both representations of Gχ and thus so is χ ⊗ ρ, so to obtain
a representation on G, we use the induced representation IndG

Gχ
(χ ⊗ ρ) from Gχ up

to G. This leads to our main result.

Theorem 3.1. The irreducible representations of G are θχ,ρ = IndG
Gχ

(χ ⊗ ρ) as χ

varies over orbit representatives of Â modulo the action of H.

Proof. We prove the result in three steps: first, the θχ,ρ are irreducible; second, the
θχ,ρ are inequivalent; third, every irreducible representation of G is equivalent to
some θχ,ρ.
Step one. The first part uses Mackey’s criterion, Theorem 2.8. It follows from
the Schur orthogonality relations (see [T, p. 253]) that the tensor product of two
irreducible representations is irreducible, and thus χ⊗ρ is irreducible. Next, to check
the two representations of Ks = Gχ ∩ sGχs−1 are disjoint, notice that if they were
not disjoint in Ks, then they will not be disjoint when restricted to any subgroup of
Ks. Note that A is a subgroup of Ks, so it suffices to show the restrictions to A are
disjoint. As ResGχ

A ρ is trivial, the first restricts to a multiple (namely the dimension
of ρ) of χ, and similarly the second restricts to a multiple of sχ by definition of the
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action of H on Â. However, s ̸∈ Gχ ⊇ Hχ, so sχ ̸= χ, but as both lie in Â and are
thus irreducible, they are disjoint. This proves θχ,ρ is irreducible.
Step two. To prove the θχ,ρ are inequivalent, we will show that χ and ρ can be
uniquely recovered from θχ,ρ. Using the Frobenius character formula, Theorem 2.9,
we will show that the restriction of θχ,ρ to A consists entirely of elements in the
orbit Hχ of χ. For a ∈ A, we have

θχ,ρ(a) =
∑

g∈G/Gχ

g−1ag∈Gχ

(χ ⊗ ρ)(g−1ag)

=
∑

g∈G/Gχ

g−1ag∈Gχ

χ(g−1ag)

=
∑

h∈H/Hχ

χ(h−1ah)

=
∑

h∈H/Hχ

(hχ)(a),

so the restriction of θχ,ρ to A indeed consists entirely of elements in Hχ. Here, the
first equality follows from the Frobenius character formula. The second equality
follows from the fact that g−1ag ∈ A by normality of A, so the ρ factor can be
ignored in the character. The third equality follows from the fact that the quotient
map G → H descends to a bijective projection map G/Gχ → H/Hχ, and if g 7→ h

under the quotient map, then g−1ag = h−1ah as A is abelian. The fourth equality
follows from the definition of the action of H on Â.

As χ various over orbit representatives, this uniquely determines χ. To recover ρ,
suppose the representation space for θχ,ρ is W ; let Wχ be the subspace corresponding
to χ, meaning the set of x ∈ W such that θχ,ρ(a)x = χ(a)x for all a ∈ A. One
can directly check that the representation of Hχ in Wi is isomorphic to ρ, uniquely
recovering ρ from θχ,ρ.
Step three. Lastly, we prove every irreducible representation of G is equivalent
to some θχ,ρ. Let (W, σ) be an arbitrary irreducible representation of G. Let W =⊕

χ∈Â
Wχ be the canonical decomposition of ResG

A σ, so that each Wχ corresponds
to a multiple of χ. At least one of the Wχ is nonzero, so fix one such χ. For
s ∈ G, we have σ(s) transforms Wχ into another subspace of W , which we denote
Ws(χ). Under this transformation, Hχ maps Wχ into itself. Let W ′ be an irreducible
subrepresentation of Wχ, and let ρ be the corresponding representation of Hχ.
Lifting ρ to Gχ, the restriction ResG

Gχ
σ contains χ ⊗ ρ at least once. Frobenius

reciprocity then implies (see [S, p. 57]) that θχ,ρ = IndG
Gχ

(χ ⊗ ρ) contains σ at least
once; as θχ,ρ is irreducible, this implies σ and θχ,ρ are equivalent. This completes
the proof. □

4. Irreducible representations of Aff(q)

We now apply the little group method to obtain all irreducible representations of
Aff(q). For brevity of notation, let

(y, x) =
(

y x

0 1

)
∈ G.
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In this section, we will prove the following classification of irreducible representations
of Aff(q).

Proposition 4.1. The irreducible representations of Aff(q) consist of q − 1 one-
dimensional irreducible representations and one (q − 1)-dimensional irreducible
representation. In the first case, fixing a primitive root b of Fq, we have a one-
dimensional irreducible representation for all m ∈ Z/(q − 1)Z given by

ρm(bj , x) = exp
(

2πimj

q − 1

)
,

for (bj , x) ∈ Aff(q). In the second case, our (q − 1)-dimensional irreducible repre-
sentation (L2(H), σ) is given by

[σ(y, x)f ](z, 0) = exp
(

2πi Tr(zx)
p

)
f(zy, 0),

for (y, x) ∈ Aff(q), f ∈ L2(H), and (z, 0) ∈ H.

Recall the trace of y ∈ Fq is

Tr(y) = y + yp + yp2
+ · · · + ypn−1

for q = pn.

4.1. Applying the little group method to Aff(q). From Lemma 1.3, we know
Aff(q) = A ⋉ H is a semidirect product with A abelian, so the assumptions of the
little group method hold. Following the method, by identifying (1, x) ∈ A with
x ∈ Fq, we first characterize the elements of Â as being the exponentials

χa(1, x) = exp
(

2πi Tr(ax)
p

)
= ζTr(ax)

p

for all a ∈ Fq, where ζp = e2πi/p. An element (y, 0) ∈ H acts on this χa by

(y, 0)χa(1, x) = χa((y, 0)−1(1, x)(y, 0))

= ζTr(axy−1)
p

= χy−1a(1, x),

and so (y, 0)χa = χy−1a. If a ̸= 0, then the orbit {y−1a|y ∈ F×
q } = F×

q , so there are
only two cosets of Â/H, namely with representatives χ0 ≡ 1 and χ1. These two
representatives yield

Hχ0 = {(y, 0) ∈ H|y−10 = 0} = H,

Hχ1 = {(y, 0) ∈ H|y−11 = 1} = {(1, 0)}.

For simplicity of notation, we will let H0 = Hχ0 and H1 = Hχ1 , and similarly use
the simplified notation Gi = A ⋉ Hi. In particular, G0 = G and G1 = A.

4.2. The one-dimensional irreducible representations of Aff(q). In the first
case, as H ∼= F×

q
∼= Z/(q − 1)Z, we have Ĥ ∼= Z/(q − 1)Z, consisting of ρm : F×

q → C
given by

ρm(bj) = exp
(

2πimj

q − 1

)
,
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for b a fixed primitive root of Fq, for all m ∈ {0, . . . , q − 2}. Lifting ρm to G, we
express each element (y, x) ∈ G as (bj , x) = (1, x)(bj , 0) to yield

ρm(bj , x) = exp
(

2πimj

q − 1

)
.

As
θχ0,ρm = IndG

G(χ0 ⊗ ρm) = ρm,

this yields the 1-dimensional irreducible representations of Aff(q), of which there
are q − 1 in total.

4.3. The (q −1)-dimensional irreducible representation of Aff(q). The second
case, where Ĥ1 contains only the trivial representation, yields only one irreducible
representation, σ = IndG

A(χ1); note that χ1 need not be lifted as G1 = A already.
This induced representation (V, σ) is on

V = {f : G → C|f(y, x + a) = χ1(1, a)f(y, x), for all (1, a) ∈ A, (y, x) ∈ G}

= {f ∈ L2(G)|f(y, x + a) = ζTr(a)
p f(y, x), for all a, x ∈ Fq, y ∈ F×

q }.

This condition fixes all values of f given its values on H, as

f(y, x) = ζTr(x)
p f(y, 0),

so V ∼= L2(H) ∼= Cq−1. Then

[σ(y, x)f ](z, w) = f((z, w)(y, x)) = f(zy, zx + w)

= ζTr(w)
p ζTr(zx)

p f(zy, 0),

where because σ(y, x)f ∈ V , we can reduce to only considering inputs in H, i.e.,

[σ(y, x)f ](z, 0) = ζTr(zx)
p f(zy, 0).

This defines a (q − 1)-dimensional irreducible representation of Aff(q), which con-
cludes the proof of Proposition 4.1.

With q−1 one-dimensional irreducible representations and one (q−1)-dimensional
irreducible representation, we find

|Aff(q)| = (q − 1) · 1 + (q − 1)2 = q(q − 1) = |Fq| · |F×
q |,

as expected. Hence, the little group method has found all irreducible representations
of Aff(q).
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