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1. Introduction

The Poincaré upper half-plane is a model of the hyperbolic plane. It consists of
the points in the complex upper half-plane, but it has a non-standard arc length
element (which leads to a non-Euclidean distance metric).

Definition 1.1. The Poincaré upper half-plane is defined as

H = {x + iy ∈ C|y > 0}.

In the Poincaré upper half-plane, we use a non-euclidean arc length element ds,
defined by

ds2 = y−2(dx2 + dy2).

2. Fractional Linear Transformations

The class of fractional linear transformations act on H. As we will see later,
fractional linear transformations preserve the arc length element of H, which makes
them useful for eliciting properties of distances in H.

Definition 2.1. For any element g =
(

a b
c d

)
∈ SL(2,R), we define a fractional

linear transformation T (g) : H → H as follows:

T (g)(z) = az + b

cz + d
.

Lemma 2.2. The fractional linear transformations are a group action of SL(2,R)
on H.

Proof. Let x =
(

a b
c d

)
and y =

(
e f
g h

)
. Then for all z ∈ H,

T (x)T (y)(z) =
a ez+f

gz+h + b

c ez+f
gz+h + d

= aez + af + bgz + bh

cez + cf + dgz + dh

= (ae + bg)z + (af + bh)
(ce + dg)z + (cf + dh)

= T (xy)z.

And trivially, the identity matrix yields the identity fractional linear transformation.
Therefore, since since fractional linear transformations satisfy the necessary identity
and composition properties, then they constitute a group action of SL(2,R) on
H. □
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3. Arc Lengths in the Poincaré Upper Half-Plane

We will soon go on to prove properties about distances and paths in H. When
we do so, it will come in handy that the non-euclidean arc length element of H is
invariant under fractional linear transformations, so we can apply a transformation
that sends a pair of points to another pair of points, and the distance between them
remains the same.

Theorem 3.1. If g ∈ SL(2,R), then the arc length element is invariant under the
fractional linear transformation T (g). That is, given a point z ∈ H and its image
w = T (g)(z) ∈ T (g)(H), the arc length element in H at z is equal to the arc length
element in T (g)(H) at w.

Proof. Let w = u + iv, and let g =
(

a b
c d

)
. Since g ∈ SL(2,R), then ad − bc = 1.

We can then compute that v = y |cz + d|−2 and d
dz T (g)(z) = (cz + d)−2.

The Jacobian of the transformation from z to w is

J =
(

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
.

The fractional linear transformation T (g) is holomorphic (that is, complex differ-
entiable everywhere), so we can apply the Cauchy-Riemann equations to rewrite
the Jacobian as

J =
(

∂u
∂x

∂u
∂y

− ∂u
∂y

∂u
∂x

)
.

Then the determinant of J is ( ∂u
∂x

2 + ∂u
∂y

2) =
∣∣ d

dz T (g)(z)
∣∣2 = |cz + d|−4.

We can now derive the arc length element in T (g)(H):

ds2|(x+iy)∈H = y−2(dx2 + dy2)

= y−2|cz + d|4|cz + d|−4(dx2 + dy2)

= v−2|J |(dx2 + dy2)

= v−2(du2 + dv2)

= ds2|(u+iv)∈T (g)(H)

Then the arc length is invariant under T (g). □

Lemma 3.2. For any y0 > 0, the imaginary axis is the shortest path in H from i

to iy0.

Proof. Let z(t) = x(t) + iy(t), defined on 0 ≤ t ≤ 1, be a curve in H, with z(0) = i

and z(1) = iy0.
The Poincaré length of z(t) is

∫ 1

0
y−1

√(
dx

dt

)2
+
(

dy

dt

)2
dt(3.1)

If z is the path on the imaginary axis, then this length becomes∫ y0

1
y−1|dy| = |log(y0)|(3.2)
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It’s evident that (3.2) is the minimum attainable value of (3.1), so the shortest path
from i to iy0 is the imaginary axis. □

4. Geodesics in the Poincaré Upper Half-Plane

A geodesic is the shortest curve between two points. For example, on the Euclidean
plane with the standard arc length function (not our special Poincaré arc length
element), the geodesic between two points is a straight line. On the surface of a
sphere, the geodesics are great circles.

We will characterize the geodesics in H. We saw in Lemma 3.2 that the imaginary
axis is one geodesic of H. We can describe the complete set of geodesics in H as
follows:

Theorem 4.1. In the Poincaré upper half-plane, the geodesics are vertical lines or
circles whose centers lie on the real axis.

Figure 1. A diagram of some geodesics in the Poincaré upper
half-plane [1]

Before we prove this, we’ll first prove some lemmas:

Lemma 4.2. Given any two points p, q ∈ H, there exists some matrix g ∈ SL(2,R)
and some y0 > 0 such that the fractional linear transformation T (g) maps p → i

and q → iy0.

Proof. Let p = x + iy and q = u + iv. Let f be the matrix

f =
(

1√
y − x√

y

0 √
y

)

(Recall that the Poincaré upper half-plane restricts y > 0, so this is well-defined.)
We see that f has determinant 1, so f ∈ SL(2,R). Additionally,

T (f)(p) =
1√
y (x + iy) − x√

y√
y

= iy

y

= i

Let gθ be the matrix

gθ =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
∈ SO(2,R) ⊂ SL(2,R)
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We can compute that

T (gθ)(i) = cos(θ)i − sin(θ)
sin(θ)i + cos(θ)

= i,

so i is a fixed point of the transformation T (gθ) for any θ.
We can proceed to compute that the real part of gθ acting on an arbitrary point

x + iy is:

Re [T (gθ)(x + iy)] =
x cos (2θ) + 1

2
(
x2 + y2 − 1

)
sin (2θ)

(cos (θ))2 + (x2 + y2) (sin (θ))2 + x sin (2θ)

Note that if θ = 1
2 arctan( −2x

x2+y2−1 ), then Re [T (gθ)(x + iy)] = 0. Therefore,
given any point z = x + iy ∈ H, there exists some θ such that T (gθ) maps z to some
point in H with zero real part; that is, T (gθ) maps z to iy0 for some positive y0.

Then since f maps p to i, we can choose θ such that T (gθ) maps T (f)(q) to the
imaginary axis. Therefore T (gθ)T (f) = T (gθf) continues to map p to i (since i is a
fixed point of T (gθ)), and maps q to iy0 for some positive y0. □

Lemma 4.3. For g ∈ SL(2,R), the fractional linear transformation T (g) maps the
imaginary axis either to a circle whose center lies on the real axis, or to a vertical
line.

Proof. Let g =
(

a b
c d

)
. The imaginary axis in H consists of the points iy for y > 0.

We consider several cases:
(1) c = 0. Then T (g)(iy) = aiy+b

d , which is a vertical line.
(2) d = 0. Then T (g)(iy) = aiy+b

ciy = a − bi
cy , which is a vertical line.

(3) c and d are both nonzero. Then I claim that T (g)(iy) is a circle centered at
2bc+1

2cd with radius 1
2cd . Since |g| = 1, we can substitute a = bc+1

d . Then:∣∣∣∣T (g)(iy) − 2bc + 1
2dc

∣∣∣∣ =

∣∣∣∣∣ bc+1
d iy + b

ciy + d
− 2bc + 1

2dc

∣∣∣∣∣
=
∣∣∣∣bciy + iy + bd

cdiy + d2 − 2bc + 1
2dc

∣∣∣∣
=
∣∣∣∣ ciy − d

2c2diy + 2d2c

∣∣∣∣
= 1

2cd

∣∣∣∣ciy − d

ciy + d

∣∣∣∣
= 1

2cd
,

confirming that T (g)(iy) is a circle centered at a point on the real axis.
Therefore, in all cases, T (g)(iy) is either a vertical line or a circle whose center

lies on the real axis. □

Now we can prove Theorem 4.1:

Proof. Let p, q be two points in H. By Lemma 4.2, there exists some g ∈ SL(2,R)
such that T (g)(p) = i and T (g)(q) = iy0. By Lemma 3.2, the shortest path between
i and iy0 is the imaginary axis. Then by Theorem 3.1, T (g) must map the shortest
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path between p and q must be mapped to the imaginary axis, so the shortest path
is the image of the imaginary axis under the inverse map T (g)−1, which by Lemma
2.2 is the fractional linear map T (g−1). By Lemma 4.3, this image must either be a
vertical line or a circle whose center lies on the real axis.

Therefore, the shortest path between p and q is either a vertical line or a circle
whose center lies on the real axis. □
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