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1. Introduction

In this paper, we’ll aim to find the volume of a certain double coset: namely,
SL(2,Z)\SL(2,R)/SO(2,R). This space naturally comes up as SL(2,Z)\H, where
H is the upper half plane, and therefore is the fundamental domain for the SL(2,Z)-
action on the upper half plane. This space is of utmost importance historically,
as holomorphic functions on this space (with some extra conditions) are known
as modular forms, which have played a pivotal role in number theory in the last
century. There are many generalizations of the volume of fundamental domains of
various modular groups obtained by Siegel and Langlands, but in this paper we will
just be concerned with the most historically important case.

To do so, we will first define and explain the notion of Haar measures, which will
allow us to form reasonable differential forms on certain topological groups (namely
real Lie groups). We will then require the use of slight generalizations of Poisson
summation, and finally apply Poisson summation to computing the integral of the
Haar measure over the space SL(2,Z)\SL(2,R)/SO(2,R).

2. Haar measure

We will always denote by G, a locally compact Hausdorff topological group. In
this paper, by locally compact Hausdorff topological groups, we really mean real
Lie groups:

Example 2.1. The usual suspects GL(n,R), SL(n,R), SO(n,R), etc. are all
examples of locally compact Hausdorff topological groups.

Any such G comes with a maximal compact subgroup K, which is defined to be
a maximal element among the compact subgroups. Although K is not unique, it is
unique up to conjugation: we call this essentially unique. Much of the discussion in
this paper is far more general, but we’ll be primarily concerned with the SL(2,R)
case. Therefore, we’ll only describe the maximal compact subgroup in this case.

Example 2.2. The maximal compact subgroup of SL(2,R) is SO(2,R), up to
conjugation.

We are aiming to define a sort of integration on G, and so the first important
step is defining a measure which is compatible with the group structure. However,
we’ll actually define it more generally, so that it can be extended to coset spaces of
G in addition to G itself.

Definition 2.3. A left Haar measure on a locally compact Hausdorff topological
space M with a continuous action of G is a Borel measure µ on M which is left
G-invariant. i.e. µ(gX) = µ(X) for all Borel sets X ⊂ M and all g ∈ G.
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Most of our early applications of a Haar measure will be on G itself, with the
natural action of G given by left multiplication. When we say that µ is a Haar
measure on G, we implicitly mean that µ is a Haar measure on G treated as a
topological space, with the natural group action of G by multiplication. Defining it
in this generality allows us to also extend the notion of Haar measure to quotients
of G, such as G/K.

With every (Haar) measure µ, there is an associated (translation-invariant)
differential top-form dµ, which is defined in the following manner. First, the
differential form must satisfy ∫

h∈H

dµ(h) = µ(H)

for any measurable subset H ⊂ M . From there, we can define integration on
compactly supported functions f : M → C in the usual way. For the remainder of
the paper, we will consider µ and dµ to be the same.

Example 2.4. [Bum04, Exercise 1.1] Let µM (X) be the usual Euclidean measure
on Matn(R), viewed as Rn2 . Let us view Matn(R) as a Lie group under addition.
Concretely, letting (xij)1≤i,j≤n be the coordinates of Matn(R), we can express the
differential top-form associated to dµM as∏

1≤i,j≤n

dxij

(where the product is taken to be the wedge product). Let us show that this is
both left and right invariant. Take any X ∈ Matn(R), where X = (Xij)i,j . Let us
denote LX to be the function Matn(R) → Matn(R) which is left translation, i.e.
Y 7→ X + Y (equivalently, right translation, because Matn(R) is abelian). Then
since d(constant) = 0, we have

L∗
X dµM =

∏
1≤i,j≤n

d(xij −Xij) =
∏

1≤i,j≤n

dxij = dµM ,

hence dµM indeed defines a Haar measure on Matn(R).

Example 2.5. [Bum04, Exercise 1.1] Let µM (X) be the usual Euclidean measure
on Matn(R) as in the previous example. Then dµM

| det X|n is both a left and right Haar
measure on GL(n,R) ⊂ Matn(R), which is a Lie group under multiplication. Now
let Lg : GL(n,R) → GL(n,R) denote left multiplication x 7→ gx; the case of right
multiplication is completely analogous. We have

L∗
g

dµM (x)
| det(x)|n = dµM (g−1x)

| det(g−1x)|n ,

= | det g|n| detx|−n
n∏

j=1
d(gxj),

=
n∏

j=1
| det g−1|

n∏
i=1

dxij ,

= dµM (x)
| detx|n

.
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The important fact which allows us to sweep certain details under the rug is the
following theorem.

Theorem 2.6. [Gol06, Theorem 1.4.2, 1.5.1] There exists a unique left-invariant
Haar measure µ on G, up to scalar. If µ is normalized so that µ(K) = 1 for some
subgroup K ⊆ G, then there is a unique left-invariant Haar measure on G/K (as a
locally compact Hausdorff topological space with G-action), up to scalar.

Armed with these technical assurances, we will construct the left Haar measure
explicitly for SL(2,R).

3. Left Haar measure on SL(2,R)

In this paper, our main interest is the group SL(2,R). In order to construct an
explicit Haar measure, we first want a simpler description of elements of SL(2,R).

Proposition 3.1 (Iwasawa Decomposition). Any element in SL(2,R) can be written
uniquely as (

1 x

0 1

)(
y1/2 0

0 y−1/2

)(
cos θ − sin θ
sin θ cos θ

)
,

where x ∈ R, y ∈ R>0, and θ ∈ [0, 2π).

The proof is not particularly enlightening or important for us, so we omit it.
However, the interested reader may find a proof in such sources as [Lan05, VI §4].
Note that in the Iwasawa decomposition, the K is precisely the K we mentioned
above as the maximal compact subgroup SO(2,R) ⊂ SL(2,R). In particular, this
gives us simple coordinates (x, y, θ) with which to express the Haar measure of
SL(2,R). In fact, the Haar measure is given as follows.

Proposition 3.2. A left Haar measure for SL(2,R) is given by

dx dy

y2 dθ.

The proof is again unenlightening, so we point the reader to [Lan12, III §1].
However, we make two remarks: one (which the reader can find in the aforementioned
source), that such a Haar measure is (fairly) easily constructed under the general
assumptions of an Iwasawa-type NAK decomposition from the Haar measures on
N , A, and K; and two, that to check this manually, one needs only check invariance

under matrices of the form
(

1 r

0 1

)
and

(
0 1

−1 0

)
, since these generate SL(2,R).

But notice the very nice interpretation of the coordinates (x, y) in (x, y, θ): we
have x ∈ R and y ∈ R>0, which we can view as the upper-half plane H ⊂ R2. In
fact, SL(2,R)/SO(2,R) ∼= H as manifolds, and this is a consequence of the following
theorem applied to M = SL(2,R) and G = SO(2,R) (with SO(2,R) acting in the
obvious way):

Theorem 3.3. [Lee13, Theorem 21.10] Suppose G is a Lie group acting smoothly,
freely, and properly on a smooth manifold M . Then the orbit space M/G is a
topological manifold of dimension equal to dimM − dimG, and has a unique smooth
structure with the property that the quotient map π : M → M/G is a smooth
submersion.
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In order to plausibly integrate on SL(2,R)/SO(2,R), we need a left-invariant
Haar measure on SL(2,R)/SO(2,R). In order to apply Theorem 2.6, we need to
scale the Haar measure given in Proposition 3.2 by∫

SO(2)

dx dy

y2 dθ =
∫ 2π

0
dθ = 2π.

We then obtain the Haar measure

1
2π

dx dy

y2 dθ,

which becomes a Haar measure on SL(2,R)/SO(2,R) by omitting the dθ term. Now
rescaling, we can define the following differential form on H.

Proposition 3.4. Let H := {(x, y) ∈ R2 | y > 0}. Then we define

d∗z := dx dy

y2 .

(Note that this is essentially the image of the Haar measure on SL(2,R), now onto
SL(2,R)/SO(2,R).)

Remark 3.5. Although we could have easily defined d∗z on H beforehand, the
advantage of going through this theory is that we know that d∗z is SL(2,R)-invariant
as well.

4. Setup and preliminary tools

The main result of our paper will be computing the volume of

SL(2,Z)\SL(2,R)/SO(2,R),

which is more precisely defined as

Vol(SL(2,Z)\SL(2,R)/SO(2,R)) :=
∫

SL(2,Z)\SL(2,R)/SO(2,R)
d∗z.

Before we do so, however, we need some preliminary results which will be discussed
in this section. For convenience, let us set up some notation to fix for the remainder
of the paper.

Notation 4.1. We will denote Γ := SL(2,Z), as a discrete subgroup of SL(2,R).

Notation 4.2. As from before, we will identify H, the upper-half plane, with
SL(2,R)/SO(2,R).

In this notation, our goal will be to compute

Vol(Γ\H) :=
∫

Γ\H
d∗z.

Let us give a brief outline of the argument. The basic idea is to study integrals
of test functions in order to extract information about the volume of Γ\H. Our
chosen test function f : SL(2,R) → C will be a compactly supported right-SO(2,R)
invariant function. In order to make it Γ-invariant, we sum over all Z2-shifts to
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produce F , a function which is now right-SO(2,R) invariant and left-Γ invariant,
and we will take an integral of F over Γ\H to relate it to the volume. Finally,
summation over Z2-shifts of f lead us to naturally use Poisson summation to relate
this to Z2-shifts of f̂ , the Fourier transform of f , giving us enough information to
compute the volume.

We’ll begin with the following Lemma 4.3, which describes the orbits of Z2 under
the action of SL(2,Z) acting by right multiplication on row vectors.

Lemma 4.3. The action of SL(2,Z) on Z2 has orbits indexed by the nonnegative
integers: the elements (0, n) are representatives of each orbit, i.e.

Z2 =
⊔

n≥0
(0, n)SL(2,Z).

Furthermore, each orbit can be identified with Γ∞\SL(2,Z), where Γ∞ :=
(

1 ∗
0 1

)
;

therefore, we may identify

(0, n)SL(2,Z) ↔ {(0, n)γ | γ ∈ Γ∞\SL(2,Z)}.

Proof. It’s clear that one orbit is (0, 0). We will demonstrate that the orbits are
essentially the gcd of the two entries: let (a′, b′) = n(a, b) with gcd(a, b) = 1. Then
by the Eulidean algorithm, there exist x, y ∈ Z with

ax+ by = 1,

and therefore we have the matrix

(a, b)
(
b x

−a y

)
= (0, 1).

Furthermore, we have

det
(
b x

−a y

)
= ax+ by = 1 =⇒

(
b x

−a y

)
∈ SL(2,Z).

Therefore we have shown that (a′, b′) ∈ (0, gcd(a′, b′)) · SL(2,Z). It suffices to show
that any two orbits (0, n1)SL(2,Z) and (0, n2)SL(2,Z) are disjoint. We can easily
rule out the n = 0 orbit, so let’s assume n1, n2 > 0. But we can explicitly shown
this: if

(0, n1)
(
a b

c d

)
= (0, n2),

then clearly c = 0, so det = ad. Since this matrix must have determinant 1, we have
a = d = ±1. However, multiplying out the second entry, we have that n2 = dn1,
and since n1, n2 > 0, we must have d = 1, hence a = 1. Then the condition that
1 = 1·n2

n1
implies that n1 = n2, thus we conclude that the orbits are disjoint.

To see the last statement, it suffices to see that for any (0, n), the stabilizer in
SL(2,Z) is precisely Γ∞. □

Now we will introduce a test function f , which is essentially an arbitrary function
that we will conveniently specify later. From f , we will construct a left-SL(2,Z)
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invariant function F on SL(2,R)/SO(2,R) in the usual way: by summation over
all Z2-shifts.

Lemma 4.4. Let f : R2 → C be a smooth, compactly supported function which is
right-SO(2,R) invariant. Define F : SL(2,R) → C to be the function

F (z) =
∑

(m,n)∈Z2

f((m,n) · z).

Then F is left-SL(2,Z) invariant and right-SO(2,R) invariant, and hence defines a
function F : SL(2,Z)\SL(2,R)/SO(2,R) → C. By identifying SL(2,R)/SO(2,R)
with the upper-half plane H, F defines a function Γ\H → C.

Proof. The right-SO(2,R) invariance is clear because f is right-SO(2,R) invariant.

Let γ =
(
a b

c d

)
∈ SL(2,Z). Using the fact that SL(2,Z) : Z2 → Z2 is a bijection,

we have that

F (γz) =
∑

(m,n)∈Z2

f((m,n)
(
a b

c d

)
z) =

∑
(m′,n′)∈Z2

f((m′, n′)z) = F (z),

where (m′, n′) = (m,n)γ. Note that the rearrangement is allowed because f

is compactly supported, hence only finitely many terms are nonzero, so this is
allowed. □

The important of Lemma 4.4 is that we can now produce many functions acting
on our coset space SL(2,Z)\SL(2,R)/SO(2,R), and furthermore we can group the
terms together due to Lemma 4.3. The last tool we will need is Poisson summation,
which will relate the constructed function F to both its original test function f and
the Fourier transform.

4.1. Poisson summation. We first introduce the notion of Fourier transforms over
more general vector spaces. Although we will only need the case n = 2, let us define
it more generally for Rn.

Definition 4.5. Let f : Rn → C be a compactly supported function. Then we
define the Fourier transform of f to be

f̂(y) =
∫
Rn

f(x)e−2πi⟨x,y⟩ dx,

where ⟨, ⟩ is the dot product on two n-vectors.

Proposition 4.6 (Poisson summation). Let f : Rn → C to be compactly supported
function. Then ∑

x∈Zn

f(x) =
∑

x∈Zn

f̂(x).

Proof. Define
F (x) :=

∑
t∈Zn

f(x+ t).

Note that F is periodic, i.e. F (x+ t) = F (x) for t ∈ Zn. Therefore F has a Fourier
transform

F (x) =
∑
t∈Zn

f̂(t)ei⟨−,x⟩,
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and we can see that the Fourier coefficient of t ∈ Zn is given by∫
[0,1]n

F (x)e−2πi⟨t,x⟩ dx =
∫

[0,1]n

∑
s∈Zn

f(x+ s)e−2πi⟨t,x⟩ dx,

=
∫
Rn

f(x)e−2πi⟨t,x⟩ dx,

= f̂(t).

Now let us plug in x = 0: we find that∑
t∈Zn

f(t) =
∑
t∈Zn

f̂(t).

□

Remark 4.7. The hypothesis that f is compactly supported ensures that the sum
makes sense. However, we don’t actually need such a strong hypothesis; “rapidly
decreasing functions" will also ensure that the sum converges. For convenience in
this paper, however, we’ll stick to the compactly supported hypothesis.

Corollary 4.8. Let f : Rn → C be a compactly supported function. For g ∈
SL(n,R), we have that ∑

t∈Zn

f(tg) =
∑
t∈Zn

f̂(t(g−1)⊺).

Proof. Define the function h(x) = f(x · g). Then clearly h is still compactly
supported, so by Poisson summation (4.6), we have∑

t∈Zn

h(t) =
∑
t∈Zn

ĥ(n).

But then note that

ĥ(y) =
∫
Rn

f(xg)e−2πi⟨x,y⟩ dx,

=
∫
Rn

f(z)e−2πi⟨zg−1,y⟩ dz,

=
∫
Rn

f(z)e−2πi⟨z,y(g−1)⊺⟩ dz,

= f̂(y · (g−1)⊺).

Note that we crucially used that the Euclidean measure dx (defined to be dµM in
Example 2.4) is SL(n,R)-invariant, and also that

xMy⊺ = x(My⊺) = x(yM⊺)⊺ =⇒ ⟨xM, y⟩ = ⟨x,My⟩ = ⟨x, yM⊺⟩.

□

5. Computation of volume

In this section, we will finally compute Vol(Γ\H) using the results from the
last section. In Lemma 4.4, we chose a smooth, compactly supported function
f : R2 → C which is right-SO(2,R) invariant, and produced the auxiliary function
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F : SL(2,Z)\SL(2,R)/SO(2,R) → C by summation over Z2-shifts. It turns out
that integrating F is enough to produce a relation with Vol(Γ\H), due to our
description of SL(2,Z)-orbits of Z2 (Lemma 4.3). In this section, we will frequently
identify SL(2,R)/SO(2,R) with the upper-half plane H.

Proposition 5.1. Let f and F be as in Lemma 4.4; the lemma shows that F defines
a function SL(2,Z)\SL(2,R)/SO(2,R) → C. Taking the integral of F with respect
to the Haar measure d∗z, we have the equality

∫
SL(2,Z)\SL(2,R)/SO(2,R)

F (z) d∗z =
∫

Γ\H
F (z) d∗z = f((0, 0))·Vol(Γ\H)+π

3 ·f̂((0, 0)).

Proof. Our strategy will be to break the integral into a sum of integrals over all of
the orbits, then change variables until the integral is independent of the orbit. From
Lemma 4.3, the decomposition of Z2 into right SL(2,Z)-orbits shows that

∫
Γ\H

F (z) d∗z = f((0, 0)) · Vol(Γ\H) +
∑
n>0

∑
γ∈Γ∞\Γ

∫
Γ\H

f((0, n)γz) d∗z.

We may change the second summation with the integral to

∑
γ∈Γ∞\Γ

∫
Γ\H

f((0, n)γz) d∗z = 2
∫

Γ∞\H
f((0, n)z) dz,

where the factor of 2 comes from the trivial action of
(

−1 0
0 −1

)
. Intuitively, this

is due to the fact that the orbits are indexed by Z≥0, when the natural action gives
“natural" orderings by Z, hence we have the trivial action which sends n 7→ −n. We
can view Γ∞\H as

∫∞
0 with respect to y, as from the Iwasawa decomposition, we

have

H ∼= SL(2,R)/SO(2,R) ∼=

{(
1 x

0 1

)(
y1/2 0

0 y−1/2

)}
= Γ∞ ·

{(
y1/2 0

0 y−1/2

)}
.

Now writing

z =
(

1 x

0 1

)(
y1/2 0

0 y−1/2

)
,

we have that

(5.1) f((0, n)z) = f((0, ny−1/2)).

Then since

d∗z = dx dy

y2 ,
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we can make the change of variables y = n2t−2, which yields dy = −2n2t−3 dt, and
hence we have

2
∑
n>0

∫
Γ∞\H

f((0, ny−1/2)) dx dy
y2 = 2

∑
n>0

∫ ∞

0
f((0, ny−1/2)) dx dy

y2 ,

= 2
∑
n>0

∫ 0

∞
f((0, t)) · −2

n2 t dt,

= 4
∑
n>0

1
n2

∫ ∞

0
f((0, t))t dt,

= 2π2

3

∫ ∞

0
f((0, t))t dt.

Now we may reformulate
∫∞

0 f((0, t))t dt using right-SO(2,R)-invariance of f . Let

0 ≤ θ ≤ 2π; then since f((0, t)) = f((0, t)
(

sin θ − cos θ
cos θ sin θ

)
) = f((t cos θ, t sin θ)),

we have ∫ ∞

0
f((0, t))t dt = 1

2π

∫ 2π

0

∫ ∞

0
f((t cos θ, t sin θ))t dt dθ,

= 1
2π

∫
R2
f((u, v)) du dv,

= 1
2π f̂((0, 0)).

Putting these together yields the result. □

The final step is using Poisson summation: this will give us another relation,
allowing us to compute Vol(Γ\H).

Theorem 5.2. [Gol06, Theorem 1.6.1] We have the equality∫
SL(2,Z)\SL(2,R)/SO(2,R)

d∗z = π

3 .

Proof. From Poisson summation (4.8), we have that

F (z) =
∑
Z2

f((m,n)z) =
∑
Z2

f̂((m,n)(z−1)⊺),

since z ∈ SL(2,R). Note that Γ is stable under ((·)−1)⊺. However, after applying
((·)−1)⊺, the analogue of Lemma 4.3 is that

Z2 =
⊔

n≥0
(n, 0) · SL(2,Z)′

where we denote SL(2,Z)′ to indicate the “twisted" action of (t, γ) 7→ t·(γ−1)⊺. (This
is in particular to ensure that Γ∞ still acts trivially.) One important observation is
that this is still a group action: we have (γ−1)⊺(ψ−1)⊺ = (ψ−1γ−1)⊺ = ((γψ)−1)⊺.
Therefore, we have that∫

Γ\H
F (z) d∗z = f̂((0, 0)) · Vol(Γ\H) +

∑
n>0

∑
γ∈Γ∞\Γ

∫
Γ\H

f̂((n, 0)(γ−1)⊺(z−1)⊺d∗z,

= f̂((0, 0)) · Vol(Γ\H) +
∑
n>0

∫
Γ∞\H

f̂((n, 0)(z−1)⊺d∗z.
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Now we again write z =
(

1 x

0 1

)(
y1/2 0

0 y−1/2

)
, and we find that

(n, 0) · (z−1)⊺ = (y−1/2n, 0),

which (essentially) matches Equation 5.1. Now we may proceed identically to the
proof of Proposition 5.1, from which we obtain the same result, but with f̂ instead
of f . In other words, we see that∫

Γ\H
F (z) d∗z = f̂((0, 0)) · Vol(Γ \ H) + π

3 · ˆ̂
f((0, 0)),

= f̂((0, 0)) · Vol(Γ \ H) + π

3 · f((0, 0)),

since ˆ̂
f(x) = f(−x). Having computed

∫
Γ\H F (z) d∗z in two ways, we set them

equal and find that(
f((0, 0)) − f̂((0, 0))

)(
Vol(Γ\H) − π

3

)
= 0.

Now choosing f such that f((0, 0)) ̸= f̂((0, 0)), we find that

Vol(Γ\H) =
∫

SL(2,Z)\SL(2,R)/SO(2,R)
d∗z = π

3 .

□

Remark 5.3. We can actually calculate∫
SL(n,Z)\SL(n,R)/SO(n,R)

d∗z

by induction from the n = 2 case (where d∗z is defined analogously), and amazingly,
we will find factors of ζ(n) in the answer (see [Gol06, §1.6] for more details). The
reader may have noticed that this work was quite intensive when we could have
just integrated d∗z over the fundamental domain for Γ\H, which is well-known: one
notes that Γ is generated by elements which act on H by translations and inversions,
which immediately gives that the (closure of the) fundamental domain is bounded
below by the unit circle and to the left and right by −1/2 ≤ x ≤ 1/2. Therefore,
the volume Vol(Γ\H) is also equal to

Vol(Γ\H) =
∫ 1/2

−1/2

∫ ∞

√
1−x2

dy

y2 dx =
∫ 1/2

−1/2

dx√
1 − x2

= arcsin(x)

∣∣∣∣∣
1/2

−1/2

= π

3 .

However, the advantage of the method outlined in this paper is that it generalizes
and allows us to compute the volume of SL(n,Z)\SL(n,R)/SO(n,R) for n > 2 as
well.
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