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ABSTRACT 

Association schemes originated in s t a t i s t i c s , but have recently 

been used in coding theory and combinatorics by Delsar te , McEliece and 

others to obtain strong upper bounds on the s ize of codes and other com-

binatorial objects , and to character ize those objects (such as perfect 

codes) which meet these bounds. A central role is played by the e igen-

values of the associa t ion scheme, which in many c a s e s come from a 

family of orthogonal polynomials. In the most important c a s e these are 

the Krawtchouk polynomials. This paper gives an introduction to a s s o c i -

ation schemes and the way they are used in coding theory and combina-

tor ics . 

§1 INTRODUCTION 

Association schemes were first introduced by s ta t i s t ic ians in con-

nection with the design of experiements [6], [7], [39], [61], and have 

since proved very useful in the study of permutation groups [9], [33]-[38] 

and graphs [4], [10]. Recently, starting with the work of Delsarte [11]-

[15], associa t ion schemes have been applied with considerable success 

in coding theory and in other combinatorial problems [16]-[21], [29]. 

One of the interesting features of this work is that to most of these 

associa t ion schemes there corresponds one or more families of orthogonal 

polynomials. For the Hamming associa t ion scheme, the most important 
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scheme for coding theory, these are the Krawtchouk polynomials ¥L (x;n), 

k = 0, . . . , n, which are orthogonal on the set {0,1, . . . , n} with respect 

to the weighting function w(i) = 

There are two kinds of problems which are considered. The first is 

to find upper bounds on the s ize of a subset of an associa t ion scheme 

having certain desirable properties (a code, a t -des ign, an orthogonal 

array, etc). The second is to characterize those subsets which meet the 

bounds. The second problem includes the famous problem of finding all 

perfect codes - see §§2, 8 below. 

The key result is a theorem published by Delsar te in 1972 [11] which 

s ta tes that certain linear combinations of the parameters of the subset 

must be nonnegative (Th 8 below). This theorem was independently d i s -

covered by McEliece, Rodemich, Rumsey and Welch [55] in the special 

ca se of error-correcting codes . Because of this result , the first problem 

can be stated as a linear programming problem. By converting to the 

dual problem, and using properties of Krawtchouk polynomials, Delsarte 

[11], [14] and McEliece et al . [55], [56] have obtained very good upper 

bounds on the s ize of codes - see §§2, 7 below. The same technique 

has been applied to other combinatorial problems including: 

(i) Codes of constant weight [14], [15] 

(ii) t -des igns and orthogonal arrays [14], [15] 

(iii) Families of l ines with a prescribed number of angles between 

them [21] 

(iv) Bilinear and alternating bilinear forms over GF(q) [19], [20] . 

This gives a natural setting for subcodes of the second-order Reed Müller 

codes , including Kerdock codes . (See also [27]. ) 

The linear programming approach is also useful in the second prob-

lem. For example, in this way Delsarte [11], [15] proved Lloyd's theorem 

(Cor. 15 below) which s ta tes that if a perfect error-correcting code ex-

i s t s then a certain Krawtchouk polynomial must have dis t inct integer 

zeros in a certain interval. 

This paper assumes no previous knowledge of coding theory or 

" ) · 
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associa t ion schemes. Most of the resul t s can be found in Delsar te [11]-

[15]. Indeed an appropriate subtit le would be "an introduction to 

De lsa r te ' s work". 

§2 Error-Correcting Codes 

Error-correcting codes were invented to transmit data more accur-

ately. Suppose there is a telegraph wire from Madison to New York down 

which O's and l ' s can be sent. Usually when a 0 is sent it is r e -

ceived as a 0, but occasional ly a 0 will be received as a 1, or a 1 

as a 0 . 

0 or 1 
noisy channel 

0 or 1 
—* 

There are a lot of important messages to be sent down this wire, and 

they must be sent as quickly and reliably as possible . The messages 

are already written as strings of O's and l ' s - perhaps they are being 

produced by a computer. 

The method we shall use is to encode the messages into codewords. 

Only codewords will be sent down the channel . 

An example will make this clear. Suppose only two messages are 

to be sent, e . g . "Yes" or "No" . "Yes" will be encoded as 00000 

and "No" as 11111 . This is a code with two codewords. 

message 

,"Yes" 

codeword received 
vector 

Message 
Source 

or 
- » — 
" No" 

Encoder 

00000 
or 

—> 
11111 

Channel 
11000 
- » Decoder 

decoded vector 

00000 
or "Yes" 

> User 

Suppose 11000 is received at the far end. The decoder argues that 

00000 was more likely to have been sent than 11111, because 11000 is 

somehow closer to 00000 than to 1 1 1 1 1 . 

To make this precise we define the Hamming d is tance dist(u, v) 

between two vectors u = u. . . .u and v = v. . . . v to be the number of I n I
n places where they differ. Thus 
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dist(00000, 11000) = 2, d i s t ( l l l l l , 11000) = 3 . 

It is easy to check that this is a metric. 

Then the decoder ' s strategy is to decode the received vector as the 

c loses t codeword (in Hamming dis tance) . This is because a digit is more 

likely to be correct than in error. 

Notice that in this example the decoder was able to correct two 

errors. This is because the Hamming dis tance between the codewords 

00000 and 11111 is 5 . The error correction procedure is perhaps bes t 

explained by a picture. Suppose we have a code in which any two dis t inct 

codewords differ in at leas t 3 p laces . 

x = codewords 

Then this code can correct one error. If the codeword u is transmitted 

and at most one error occurs , the received vector will still be within the 

"sphere" of radius 1 about u, and (by the triangle inequality) is c loser 

to u than to any other codeword v . The "spheres" of radius 1 about 

each codeword are disjoint. 

The same argument shows that a code in which any two dist inct 

codewords have Hamming dis tance at leas t d apart can correct - y -

errors. The "spheres" of Hamming radius - y - around the codewords 

are disjoint. 

This motivates our definition. An (n, M,d) error-correcting code 

is a set of M vectors u = u . . . . u of 0 's and l ' s of length n (called 

codewords ) such that any two dist inct codewords differ in at leas t d 

places , n is called the length of the code, M is the s ize and d is 

the minimum dis tance . This is a [ | (d- l ) ] -error-correct ing code. 
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Examples of Codes 

1. The preceding example {00000, 11111} is a (5, 2, 5) code. 

2. A (3 ,4 ,2 ) code: { 0 0 0 , 0 1 1 , 1 0 1 , 1 1 0 } . More generally, the 

(n, 2 , 2) even weight code cons i s t s of all vectors of even Hamming 

weight, where the Hamming weight wt(u) of a vector u = u . . . . u is 

the number of nonzero u, . Clearly 

dist(u, v) = wt(u-v) . 

3. The Hamming (7,16, 3) code: 

0000000 
1101000 
0110100 
0011010 
0001101 
1000110 
0100011 
1010001 

1111111 
0010111 
1001011 
1100101 
1110010 
0111001 
1011100 
0101110 

The reader will recognize codewords 2 through 8 as forming the inci-

dence matrix of 

the projective plane of order 2 . 

These examples are all linear codes . That i s , the sum (taken 

componentwise, modulo 2) of two codewords is again a codeword. They 

are a lso cycl ic : if u . . . . u i s a codeword so is u„ . . .u u, . —* I n 2 n 1 
The (7,16, 3) code has another nice property: it is perfect. An 

e-error-correcting code is called perfect if every binary vector of length 

n is within Hamming dis tance e of some codeword. 

To state this another way, let Q = {u.. . .u : u = 0 or 1} be the 79 ^n 1 n i 
set of all binary vectors of length n, i. e. the ver t ices of the unit n-cube. 
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An (n, M, d) code C is a subset of Q of s ize M, with the property 

that the spheres 

Se(v) = {u€ Qn: dist(u,v) < e } , v c C , 

of radius e = [ |(d-l)] about the codewords are disjoint. In a perfect 

code these spheres include all the points of Q : they are both a pack-
n 

ing and a covering of Q . We shall return to perfect codes in §8. 
n 

The Coding Theory Problem 

In a good code n is small (for fast transmission), M is large 

(for efficiency), and d is large (to correct many errors). 

The first thing one wants to know is how large M can be, for 

given values of n and d . Upper and lower bounds on the largest M 

(when n is large) due to Elias, Gilbert and Varshamov have been known 

for some time (see [1, Ch 13], [59, Ch 4]). Recently Levenshtein [47] and 

Sidel'nikov [64] have given small improvements on the Elias upper bound. 

One of the goals of this paper is to describe a new technique for obtain-

ing upper bounds, discovered independently by Delsarte [11] and McEliece, 

Rodemich, Rumsey and Welch [55], and known as the linear programming 

method (see §7). Welch, McEliece and Rumsey [69] have recently used 

this method to improve the Elias bound when d/n is c lose to \ . Final-

ly, while this paper was being written, McEliece, Rodemich, Rumsey and 

Welch [56] have announced the following bound: if C is any (n, M, d) 

code, then 

^ * - , ( » - V ! F i ) ) . » · - - . 
where H (x) = -x log?x - (l-x)log (1-x) . This is a considerable improve-

ment on the Elias bound over most of the range of d/n, and was ob-

tained by using the linear programming method together with asymptotic 

properties of Krawtchouk polynomials. One expects that further upper 

bounds will be obtained using this method. However, the true upper 
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bound probably coincides with the Gilbert-Varshamov lower bound, and 

a proof of this seems a long way off. 

For small values of n the story is similar. Upper and lower 

bounds are known [32], [41], [52], [67], and again the linear programming 

method has recently been used [55] to improve the upper bound in many 

c a s e s . 

The second main problem in coding theory is of course to find codes 

which come c lose to these bounds. This problem is still essentially 

unsolved, although a lot of constructions are known [1], [43], [48], [52], 

[59]. 

It i s interesting to list a few of the best known codes and the math-

ematical techniques used to construct them: 

Reed-Müller codes (Boolean functions, 1954), 
Bose-Chaudhuri-Hocquenghem codes (Galois fields, 1959), 
Quadratic residue codes (number theory, around I960), 
Geometry codes (finite geometries, 1967), 
Goppa codes (alternating determinants, 1970 [30], [2], [31], [52]). 

The latest technique to be introduced is that of association schemes (in 

197 3, by Delsarte [12]). This has led to the powerful linear programming 

bounds just mentioned, and to the other applications mentioned in the 

introduction. 

§3 Association Schemes 

This section gives some of the basic theory, mostly following 

Delsarte [14], and then the next three §'s contain examples. 

Definition (Bose and Shimamoto [7]) An association scheme with n 

c l a s s e s consists of a finite set X of v points, together with n + 1 

symmetric relations R , R , . . . , R defined on X which satisfy 

(i) For every x, y € X, (x, y) € R for exactly one i . 

(ii) R = {(x, x): x € X} i s the identity relation. 

(iii) If (x, y) € R,, the number of z e X such that (x, z) € R and 

(y, z) € R i s a constant p , depending on i, J,k but not on the par-J i, j , K 
ticular choice of x and y . 
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Two points x and y are called ith a s soc ia t e s if (x, y) € R, . In 

words, the definition s ta tes that if x and y are ith a s soc ia tes so are 

y and x; every pair of points are ith a s soc ia t e s for exactly one i ; 

each point i s i ts own zeroth assoc ia te while dis t inct points are never 

zeroth a s soc ia t e s ; and finally if x and y are kth a s soc ia tes then the 

number of points z which are both ith a s soc ia t e s of x and jth 

a s soc ia t e s of y is a constant p. . , . 
An associat ion scheme can be described by a complete graph hav-

ing v nodes (corresponding to the points of X ), in which the edge join-

ing nodes x and y is labeled by i if x and y are ith a s soc i a t e s . 

The numbers p are called the intersection numbers of the scheme. 
ljJc 

z 

p. is the number of tr iangles / \ in the graph which have a 
x k y 

fixed base O—O 
x y 

The number of ith assoc ia tes of any point x is 

PiiO = Vi (say) , 

the valency of the ith relation. The p must satisfy the following 
ljK ident i t ies: 

p i jk = pjik -

POjk = V Vk Pijk = Vi Pkji 

i?o Pi* = Vi ' 

(1) 

Σ η
 pijm Pmki =. £ p ih i Pjkh · ( 2 ) 

m=0 h=0 
The last identity follows from counting the quadrilaterals 
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i - —L 

k, either as i k or as k . 

Let D be the adjacency matrix of R, (i = 0, . . . , n) . That i s , 

D. is the v Xv matrix with rows and columns labeled by the points of 

X, defined by 

( D i } x , y 

1 if (x, y) € RA , 

0 otherwise. 

The definition of an associa t ion scheme is equivalent to saying that the 

D. are symmetric (0,1)-matrices which satisfy 

(i) V D. = J (the a l l -ones matrix), 
i=0 1 

(3) 

(Ü) D 0 = I , 

(Ui) Di°J \?Λ V °k' i, j = 0, . . . , n . 
k=0 

(4) 

Indeed the (x, y) entry of the left side of Eq. (4) i s the number of paths 
i j 

x o — o — o y in the graph. Also 

D J = JD = v J 
iJ J i l 

(5) 

The Böse-Mesner Algebra 
Let d be the vector space consis t ing of all matrices of the form 

Y c D , where the c are real . 
i=0 
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All the matrices in (2 are symmetric. Equation (3) implies that D , . . . , 

D are linearly independent, and the dimension of (2 is n + 1 . Further-

more Eq. (4) implies that (2 is closed under multiplication, so (2 is an 

algebra. Multiplication is commutative, from Eq. (1), and associative, 

since (2 is an algebra of matrices and matrix multiplication is assoc ia-

tive. (Alternatively, associativity follows from Eq. (2). ) We call this 

associative, commutative algebra 3 the Bose-Mesner algebra of the 

association scheme, after Ref. [6]. 

Since the matrices in (2 are symmetric and commute with each 

other, they can be simultaneously diagonalized ([54, p. 77]). I . e . there 

is a matrix S such that to each A € (2 there is a diagonal matrix Λ Δ 

with 

S_1AS = Λ Α . (5·) 

Therefore (2 is semisimple and has a unique basis of primitive idem-

potent s J , 

[8], [68a]) 

potents J , . . . , J . These are real n Xn matrices satisfying (see [58], 

J* = Jt, i = 0, . . . , n , (6a) 

JtIk = 0, i Φ k , (6b) 

I 1 ^ 1 . (6c) 
i=0 

1 
From Eqs. (3), (5), — J is a primitive idempotent, so we shall choose 

Let D, be expressed in terms of the basis J , . . . , J by 

n 
D k = Σ Vi)Ji' k = ° > · · · > η > (?) 

K i=0 K X 
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for some uniquely determined real numbers P, (i) . Equations (6), (7) 

imply 

D k J i = p
k

( I ) I i · (8) 

Therefore the P, (i), i = 0 , . . . , n, are the eigenvalues of D, . Also 

the columns of the J span the common eigenspaces of all the matrices 

in a · Let μ. = rank J. be the multiplicity of the i eigenspace. 

Conversely, to express the J, in terms of the D., let P be the 

real (n+1) X (n+1) matrix 

P0(0) P^O) . . . Pn(0) 

P0(l) P j d ) 

P0(n) P^n) 

Pn(l) 

P (n) n 

(9) 

and let 

Q = v P 

Q0(0) Qj(0) 

Q 0 ( l ) 0 ^ 1 ) 

Qn(0) 

Qn(D 

Q0(n) Qx(n) . . . Qn<n)_j 

(say). (10) 

We call P and Q the eigenmatrices of the association scheme. Then 

l n 

\ = v Σ Q
k

( i ) D i ' k = 0 , . . . , n . (11) 
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Lemma 1 

Pn(i) = Qft(i) = 1, PJO) = v, , Q. (0) = μ, 

Proof Only the las t equation is not immediate. Since J, is an idem-
-1 potent the diagonal entries of S J, S (see Eq. (5')) are 0 and 1 . 

Therefore 

trace S" L S = trace J, = rank J = μ, . 

Since trace D. = v δ (11) implies μ = Q (0) . Q. E.D. 
1 U l K. K 

Theorem 2 

The eigenvalues P (i) and Q, (i) satisfy the following orthogon-

ality condit ions. 

| o ^ P k ( i ) P i ( i ) = v v k 6 k f , (13) 

Σ v . Q k ( i ) Q f ( i ) ^ k 6 k i . (14) 

1=0 

Also 

^ P.(J) = v.QjU), i , j = 0, . . . , n . (15) 

Proof To prove (14), expand J J = J δ in the bas i s D , . . . , D , 

and equate the coefficients of D . To prove (13), write (14) as Q AQ = 

v B, where A = diag(v , . . . , v ), B = d i a g ^ , . . . , μ ), and T denotes 

t ranspose. Then v A = P BP, which is (13). Finally (from (10)) AQ = 
T P B, which proves (15). Q. E. D. 

An Isomorphic Algebra of (n+1) X (n+1) Matrices 

We briefly mention that there is an algebra of (n+1) X(n+1) matrices 
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which is isomorphic to G, and i s often eas ier to work with. Let 

L. = 
1 

Pi00 

Pi01 

. . 

PiOn 

PilO 

Pill 

• 

Piln 

inO 

•inl 

inn 

i = 0, . . . , n 

Then Eq. (2) implies 

LiVkÇo V H 

Thus the L. multiply in the same manner as the D. Since p i k Q = 6 . k 

it follows that L , . . . , L are linearly independent. Therefore the a l -

gebra 13 consis t ing of all matrices Y c.L, (c. real) is an assoc ia t ive 

commutative algebra, which is isomorphic to d under the mapping 

D . - L i . 

Equating eigenvalues on both s ides of Eq. (4) gives 

P i ( i ) P j ( i ) = ^ o p . j k P k ( i ) , 1 = 0 , 

This implies that 

PL P PLk 
-1 diag(Pk(0), . . . , P k ( n ) ) 

Thus the P,(i), i = 0, . . . , n, are also the eigenvalues of L. . (Alter-

natively, since d and ß are isomorphic, D. and L. have the same 

minimal polynomials and therefore the same eigenvalues . ) 

Further general properties of associa t ion schemes are given by 

Delsarte [14], [15]. But now it is time for some examples. 
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§4 The Hamming Association Scheme 

The Hamming or hypercubic association scheme is the most impor-

tant example for coding theory (see Delsarte [14], [15]). In this scheme 

X = Q , the set of binary vectors of length n, and two vectors u, 

V€ Q are ith associates if they are Hamming distance i apart. 

Plainly conditions (i), (ii) of the definition of an association scheme are 

satisfied. To verify (iii), let dist(u, v) = k . Without loss of generality 

we may take u = 00. . . 0, v = 11. . . 100. . . 0 . We show that the number 

of w € Q such that dist(u, w) = i, dist(v, w) = j is a constant p , 
n i j ^ 

independent of the choice of u, v, w . Consider the figure 

u = 000 000 000 000 

v = 111 111 000 000 

w = 111 000 111 000 
a b e d 

Then a + c = i, b + c = j , a + b = k . Hence a = }(i-j+k), c = }(i+j-k) 

and so 

' k \ / n-k ' 

i-J+k i+J-k 

ijk 

if i+J-k is even, 

if i+j-k is odd. 

Also v. =[ . I . The matrices in the Bose-Mesner algebra <2 are 2 X2 

matrices, with rows and columns labeled by vectors u € Q . In partie-

ular the (u, v) entry of D is 1 if and only if dist(u, v) = k . 

For example, if n = 2, Q = {00, 01,10,11}, and we label the rows 
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00 1 01 

and columns by 00, 01,10,11 . The graph 1 Μ>Ώ| 1 shows that v r 

10 1 11 
P000 = 1> V 1 = P110 = 2> V 2 = P220 = 1' P l l l = Z> P112 = l> e t C ' Ä e 

adjacency matrices are 

Γ1 0 0 0" 

0 1 0 0 

0 0 1 0 

0 0 0 1 

» V 

■0 1 1 0 " 

1 0 0 1 

1 0 0 1 

J) 1 1 0_ 

• D 2 = 

"0 0 0 1Ί 

0 0 1 0 

0 1 0 0 

_1 0 0 0J 

We shall need the following simple result. 

Lemma 3 

U € Q U ' 

where u - v denotes the real scalar product Y u,v, . 
i=l 

Lemma 4 The primitive idempotent J i s the matrix which has (u, v) 

entry equal to 

th 

2 wt(w)=k 

(u+v) · w k = 0, (16) 

Proof Let A, be the matrix (16). We show that the n + 1 matrices A, 

satisfy (6a), (6b) and (6c), and therefore are the primitive idempotents. 
.th 

The (u, w) entry of A, A i s 

2 vcQ wt(x)=k 

(u+v) · x Σ (-D 
wt(y)=i 

(v+w) · y 

= - k Σ Σ <-Du-x+v-y Σ (-Dv· 
2 wt(x)=k wt(y)=i vcQ 

v- (x+y) 
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-i \* Σ ,(-i) (u+v) · x , by Lemma 3 , 
wt(x)=k 

*th which is the (u, w) entry of A, δ and proves (6a) and (6a). Equa-

tion (6c) follows from Lemma 3. Q. E. D. 

For example, when n = 2, 

J o = I 

1 1 1 1 

1 1 1 1 

1 1 1 1 

1 1 1 1 

h-z 

1 0 0 -

0 1 - 0 

0 - 1 0 

- 0 0 1 

J 2 = 4 

1 - - 1 

- 1 1 -

- 1 1 -

1 - - 1 

where - stands for -1 . The ranks are μ = 1, μ. = 2, μ =1 . 

The eigenvalues P (i) will turn out to be the values of Krawtchouk 

polynomials. 

Definition For any positive integer n, the k Krawtchouk polynomial 

([44], [68]) is defined by 

v x ; n , B i ( - 1 , J ( î î ( Î : i ) · ^0'1'2- (17) 

where x is an indeterminate, and 

0 = 
x(x-l)· - - (x-m+1) 

m! 

I ' 
o 

if m is a positive 
integer, 
if m = 0 , 

otherwise. 

Thus ¥L (x;n) is a polynomial in x of degree k . The first few 

Krawtchouk polynomials are 

KQ(x;n) = 1 , 
K (x;n) = n - 2x , 

K2(x - • ( S ) - 2nx + 2x 
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Theorem 5 

If u i s any vector of weight i , 

Proof The figure 

£ (-1)U 'V = K (i;n) (18) 
wt(v)=k 

u = 111 111 000 000 

v = 111 000 111 000 

j k -J . 

shows that the left hand side is 

,Ι-'ΉίΧ^Κ^ 
Q.E .D. 

Theorem 6 The eigenvalues of the Hamming associat ion scheme are 

Pk(i) = O k d ) = \ α ; η ) , for i, k = 0, . . . , n . 

Proof Since the expansion (7) is unique, P, (i) = K,(i;n) will follow if 

we show that 

n 
D = £ K. ( i ;n ) J , k = 0, . . . , n . 

* i=0 * * 

This is now a routine calculation using Lemmas 3, 4 and Th. 5. Similar-

Qk(D · 
E. G. , when n = 2 

ly for Qk(i) . Q .E .D . 

/ 1 2 1 
P = Q = 1 0 - 1 

\ 1 -2 1 
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Thus K, (x;n) is a polynomial in x of degree k, with leading coeffici-

ent (-2) /k ! and constant term (, 1 . Some other useful formulae are 

(?) W>= ( Î ) K i ( k : n ) » (24) 

242 

From Th. 2 we obtain 

| o ( ^ K k ( i ; n ) K i ( i ; n ) = 2 n ( ^ 6 k ( f . (19) 

Thus the Krawtchouk polynomials K, (x;n), k = 0, . . . , n , are an orthog-

onal family on the set {0,1, . . . , n}, with respect to the weighting func-

tion w(i) = i1^ . 

A generating function for these polynomials is 

00 

( l+z) n - X ( l -z) X = £ M x ; n ) z k . 
k=0 K 

(20) 

(21) 

(22) 

(23) 

If i is an integer in the range 0 <_ i < n this becomes 

. n , 
( l+z)n _ 1 (1-z)1 = £ Ι^(1;η)ζ* . 

k=0 

From (20) it i s not difficult to obtain the three-term recurrence 

(k+lJK^xjn) = (η-2χ)Ι^(χ;η) - (n-k+1) ^ ^ ( χ ; η ) 

for k = 1, 2, . . . , and the alternative expressions 

V;n,.|o,-2,<(f)(-g , 
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n 
£ 1^(1^) ^(1;!!) = 2 n 6 k | , (25) 
i=0 

k 
£ K (x;n) = £ (x-l;n-l) , k = 0,1, . . . (26) 
i=0 

| 0 ( Μ ) ^ » ' - 2 1 ( Τ ) · '■· ■· «"> 

The usual c lass ical definition of these polynomials i s a bit more 

general than this (see [44], [45], [68], [24], [25]). Other generaliza-

tions have been used in coding theory (see [14]-[17], [53]). 

§5 The Johnson Association Scheme 

Upper bounds on the size of codes with a prescribed minimum d i s -

tance and in which all codewords have the same weight have been given 

by Levenshtein [46] and Johnson [40]-[42]. Not only are these bounds 

important in themselves, but they often lead to improved bounds on un-

restricted codes, see [40]-[42], [14, T h 3 . 7 ] . The appropriate assoc ia-

tion scheme is what we shall call the Johnson scheme, following 

Delsarte. (In the statistical literature this i s called a triangular as soc i -

ation scheme [57], [71]). As will be seen in §7, this scheme also has 

applications to t -designs. 

Let V and n be fixed integers with 0 < n < } V . In the Johnson 

scheme, X consists of all ( J binary vectors of length V and weight 

n . Two vectors u, v are ith associates if dist(u, v) = 2i, for i = 0, 

1,. . . , n . 

The figure 

< — k —y. 4—n-k—> «—k — > 
u 111 111 111 111 000 000 000 000 
v 000 000 111 111 111 111 000 000 
w 111 000 111 000 111 000 111 000 

n-i-s s n-j-s i+j+s-n 
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shows that this i s an associat ion scheme, with intersection numbers 

n-k 

Σ 
s=0 

n
v " k / k \( k V n - k U V - n - k \ 

Pijk ZJ I n - i - s A n - j - s A s A i + J + s - n / ' 

and valencies 

-. ■ C1M 
It can be shown that the eigenvalues are given by P (i) = E.(i;V, n) , 

where E (x;V, n) is the Eberlein polynomial ([26], [14], [15], [18]) d e -

fined by 

In fact E (x;V, n) is a polynomial Φ,(ζ;ν", n), say, of degree k in the 

indeterminate z = x(V+l-x) . 

Theorem 2 implies that the Eberlein polynomials Φ, (z;V, n) are an 

orthogonal family on the set {z. = i(V+l-i): i = 0, . . . , n} with respect 

to the weighting function w(z.) =[. ) - ( . ,) . 

The eigenvalues Q (i) = Q (i;V, n) are also obtained from orthogon-

al polynomials Q (x;V, n), where (see [14]) 

Q0(x;V, n) = 1 , 

Q 1 ( X ; V ' n ) = n(V-n) i n < v - n ) - V x > > (29) 

Q (x;V, n) i s a polynomial in x of degree k . 

§6 Association Schemes Obtained from Graphs and Other Sources 

Let Γ be a connected graph with v nodes, containing no loops 

or multiple edges . Let X be the set of nodes of Γ . The dis tance 
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p(x, y) between nodes x and y is defined to be the number of edges on 

the shortest path joining them. The maximum dis tance n (say) between 

any two nodes is called the diameter of Γ . 

Definition The graph Γ is called metrically regular [2 3] (or perfectly 

regular [36], or dis tance-regular [4], [10]) if the following condition is 

satisfied. For any pair of nodes x, y with p(x, y) = k, the number of 

nodes z such that p(x, z) = i and p(y, z) = j is a constant p d e -
lJK pending on i, j , k but not on the particular choice of x and y . 

Clearly we may obtain an associat ion scheme with n c l a s s e s from 

the nodes X of a metrically regular graph by calling x and y ith 

a s soc i a t e s if p(x, y) = i, i = 0, . . . , n . This example explains why the 

p . , . are called intersection numbers: let Γ.(χ) = {ye X: p(x, y) = i} be 

the nodes at d is tance i from x . Then if p(x, y) = k , 

P . j k= lr.(x) Π i y y ) ! . 

Association schemes that can be obtained from graphs in this way 

are called metric schemes. To construct the graph from the scheme, one 

defines x and y to be adjacent if and only if (x, y) c R. . 

Examples of Metrically Regular Graphs 

1. The Hamming and Johnson Schemes are metric schemes. 

2. Metrically regular graphs of diameter 2 are known as strongly 

regular graphs, and have been extensively studied ([5], [28], [62], [63]). 

Any associa t ion scheme with two c l a s s e s is metric, and corresponds to 

a strongly regular graph. 

But not all associat ion schemes are metric. As pointed out by 

Delsarte [14], an associa t ion scheme is metric if and only if (i) k = i + j 

= > p φ o, and (ii) p Φ 0 = > | i - j | < k < i + j . Delsarte has a l -
i j K ij Jc 

so given an interesting characterization of metric schemes in terms of the 

eigenvalues P (i), as follows. 

Let z , . . . , z be dis t inct nonnegative real numbers, with z = 0 . 
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Suppose the entries of the eigenmatrix P can be written as 

Pk(i) = $
k ( z i )> i ,k = 0, . . . , n , 

where Φ (z) i s a polynomial of degree k . Then the association 

scheme is called a P-polynomial scheme with respect to the z . A Q-

polynomial scheme is defined similarly. 

Theorem 2 implies that in a P-polynomial scheme, $ n ( z ) , · . . ,Φ (ζ) 

are an orthogonal family on the set {z , . . . , z } with respect to the 

weighting function w(z ) = μ . It can also be shown that the sum poly-

nomials 

* k ( z ) = * Q ( z ) + . . . +<&k(z), k = 0, . . . , n - l (30) 

form an orthogonal family on the set {z , . . . , z } with respect to the 

weighting function w(z ) = μ.ζ . The Hamming and Johnson schemes are 

both P- and Q-polynomials schemes. 

Theorem 7 (Delsarte [14]) 

An association scheme is metric if and only if it is a P-polynomial 

scheme. 

(No such characterization is known for Q-polynomial schemes.) 

In a metric scheme, D. is the ordinary node-node adjacency 

matrix of the graph. Also it is easy to see that D is a polynomial in 

D. of degree i . Thus the Bose-Mesner algebra of a metric association 

scheme is the algebra of polynomials in D. . This algebra and its eigen-

values have been studied by several authors (see for example Biggs [3], 

[4], [4a]). 

An interesting subclass of metrically regular graphs are distance-

transitive graphs, defined as follows [4], [67a]. A graph is distance-

transitive if, for any nodes u, v, x, y with p(u,v) = p(x, y), there is a 

permutation of the nodes which preserves adjacency and which takes 

u to x and v to y . It is easy to see that a distance-transitive graph 

is metrically regular. The graphs corresponding to the Hamming and 
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Johnson schemes are distance-transitive. 

Association Schemes from Permutation Groups 

Metrically regular and distance-transitive graphs are important in 

studying permutation groups. In fact, many of the sporadic simple groups 

can be obtained as automorphism groups of such graphs. But we have al-

ready strayed too far from coding theory, and so just refer the reader to 

the extremely interesting references Higman [33]-[38], Cameron [9] and 

Biggs [3]. Wielandt [70] also contains much relevant material, although 

without using the terminology of association schemes. 

Association Schemes in Statistics 

Here again, space does not permit us to describe the role of a s s o c -

iation schemes in statist ics . See Bose and Shimamoto [7], James [39], 

Ogasawara [57], Ogawa [58], Raghavarao [61], and Yamamoto et al. [71]. 

§7 The Linear Programming Bound 

The definition of an error-correcting code given in §2 amounts to 

saying that a code is a subset of X = Q in the Hamming association n 

scheme. More generally, let us define a code. Y in any association 

scheme to be a nonempty subset of the points X . Elements of Y are 

called codewords. We shall use the term error-correcting code to refer 

to a code as defined in §2. 

The distance distribution of the code Y is defined to be the (n+1)-

tuple of rational numbers (B , . . . , B ), where 

Β ι = ι π | κ ι η γ 2 1 

i s the average number of codewords which are ith associates of a given 

codeword. The distance distribution of an error-correcting code in the 

Hamming scheme gives the minimum distance d of the code and other 

useful information (see [52]). 

Note that B = 1, £ B = IYI, and of course B > 0 . A much 
0 i=0 i 

stronger result is 
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Theorem 8 (Delsarte [11], [15]) 

The dis tance distribution of any code Y C X sat isf ies 

B k i F T l B i ° I c ( 1 , i 0 ' i=0 
n 

for k = 0 , . . . , n . Note that B^ = 1, £ B ' = IXI /1YI . 
k=0 

Proof Let u = (u ) w be the character is t ic vector of Y, defined by x'xcX 1 ' 
u = 1 if X€ Y, = 0 if x / Y . Then B. = jrr uD.u . Also 

x ' l |Y | l 

^{!Λ,Ι)Ψ B | t"i7iT"lioQ k", D')''**| !^",' t ' , T' ,r'"n"" 
Now J, has eigenvalues 0 and 1 (see the proof of Lemma 1), so is 

positive semi-definite. Therefore B' > 0 . Q. E. D. 

Remark For a linear error-correcting code in the Hamming scheme 

it turns out that B, is the number of codewords of Hamming weight i , 

and (by the Mac Williams theorem [51], [52, Ch 5]) B! is the number of 

codewords of Hamming weight i in the dual code. So in this ca se Th. 8 

i s tr ivial . But the importance of Th. 8 comes from the fact that it ap -

plies to nonlinear error-correcting codes and more generally to codes in 

arbitrary associat ion schemes. 

The simultaneous linear inequali t ies in Th. 8 suggest the use of 

linear programming. Let us say that a code Y in an associa t ion scheme 

has minimum dis tance d if no codeword is an ith assoc ia te of any other 

codeword, for 0 < i < d . The dis tance distribution of Y must satisfy 

Bl = B 2 = - - - = B d - l = 0 · 

This includes error-correcting codes with minimum dis tance d in the 

Hamming scheme as a special c a s e . 
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The problem of finding the largest code of minimum dis tance d is 

related to: 

Linear Programming Problem (I) Choose the real variables B, , B, ., 
d7 d+1 

. . . , B so as to 7 n 

n 
maximize g = ^ B. 

i=d X 

subject to the inequali t ies 

B. > 0, i = d, . . . , n , (31) 

n 
Q (0) + Y B Q (i) > 0, k = 1, . . . , n . (32) 

K i=d l K 

An (n+1)-tuple B = (BQ, . . . , Bn) with BQ = 1, Βχ = . . . = Β ^ = 0 

is called a feasible solution to Problem (I) if it sa t isf ies (31) and (32). 

A feasible solution is optimal if g i s maximized. Let g be the max-max 
imal value of g . 

If a code Y with minimum dis tance d exis t s in this associat ion 

scheme, i ts d is tance distribution (B , B , . . . , B ) is (from Th. 8) a 

feasible solution to Problem (I). Therefore 

Y < g + 1 
— max 

is an upper bound on the s ize of the code. This is the first version of 

the linear programming bound for codes . 

Associated with this linear programming problem is the: 

Dual Problem (II) Choose the real var iables β , . . . , ß so as to 

n 
minimize V = / , \ , Q , (0) 

k=l K K 

subject to the inequali t ies 
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ßk > 0, k = 1, . . . , n , (33) 

n 
1 + Σ P v Q k ( i ) l ° » i = d, . . . , n . (34) 

k=l K K 

An (n+1)-tuple β = (β , β,, . . . , β ) with β = 1 is called a feas-

ible solution to Problem (II) if it satisfies (33) and (34), and an optimal 

solution if \ is minimized. 

We now invoke the following theorem from linear programming 

theory: 

Theorem 9 ([65]) 

(a) If B is a feasible solution to Problem (I) and β is a feasible 

solution to Problem (II) then g < y . 

(b) Optimal solutions exist to both Problems, and the optimal val-

ues of g and v are equal (to g ) . 
1
 max 

(c) If B is an optimal solution to (I) and β is an optimal solu-

tion to (II), then 

ßk Q k W + | B i Q k ( i ) ] = 0> * = 1 > · · · > η (35) 

and 

/ n \ 
Bi Σ PjcQk(1) = °> i = d, . . . , n . (36) 

(d) Conversely, if a pair of feasible solutions B, β satisfy (35) 

and (36), then they are optimal solutions. 

Suppose the association scheme is such that Q, (x) is a polynomi-

al in x of degree k . (This includes the Hamming and Johnson schemes, 

as we have seen. ) The Q, (x) are a family of orthogonal polynomials. 

Th. 9 can now be used to obtain another upper bound on | Y | . 
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Theorem 10 The second version of the linear programming bound for 

codes (Delsarte [11]). 

Suppose a polynomial p(x) of degree at most n can be found with 

the following properties. Let us write 

n 
P(x) = £ p Q (x) . (37) 

k=0 K K 

Then p(x) should satisfy 

p >̂  0 for k = 1, . . . , n , 

P(i) £ 0 for i = d, . . . , n . 

Then if Y i s any code with minimum distance d , 

IYI < P(0) . 

Proof If such a p(x) can be found, then (p , . . . , p ) is a feasible 

solution to Problem (II), since (33) and (34) hold, and -y = p(0) - 1 . The 

theorem follows from Th. 9(a). Q. E. D. 

Application to Error-Correcting Codes 

Next we describe how these bounds have been applied to error-

correcting codes in the Hamming and Johnson schemes. In the Hamming 

scheme, McEliece et al. [55] have obtained excellent numerical results 

by using the simplex algorithm and a computer. Delsarte et al. [22] 

have obtained preliminary numerical results for the Johnson scheme. 

For theoretical purposes the second version of the linear program-

ming bound i s easier to use. This turns out to be a very powerful tech-

nique. For example Delsarte [11], [14] has derived the Plotkin, Singleton, 

sphere-packing and Grey bounds in this way. We illustrate the technique 

with three examples. 
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Theorem 11 The Plotkin bound [60] 

If c is an (n, M, d) error-correcting code with n < 2d, then 

2d M < 
2d-n 

Proof We use Th. 9a, taking ß(x) to be a polynomial of degree 1 . The 

polynomials Q (x] 

ß(x) has the form 

polynomials Q (x) in Eq. (37) are now Krawtchouk polynomials. Thus 

P(x) - 1 + ßjK^xjn) = 1 + ^(n-Zx) 

The best choice for ß to satisfy (38) is to make ß(d) = 0, i . e . , β = 

l / (2d-n) . Then p(x) = (2d-2x)/(2d-n), and ß(0) = 2d/(2d-n) . The 

theorem now follows from Th. 9a. Q. E. D. 

Theorem 12 (Johnson [40, Th. 3]; Delsarte [14]) 

If C is a (V, M, 2δ) error-correcting code in which every code-

word has weight n, then 

6V M < - ÔV-n(V-n) ' 

provided n(V-n) < 6V 

Proof c is a code in the Johnson scheme, with minimum dis tance δ . 

The theorem is now proved in the same way as Th. 11, taking β(χ) to 

have degree 1 and using Eq. (29). Q. E. D. 

Theorem 13 (The Singleton bound [66], [14]) 
If c is an (n, M,d) error-correcting code then 

M < 2 n " d + 1 . 

Proof Let us use 
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at x 0 n -d+l 
P(x) = 2 T T ( i - f ) 

i=d v ' 

in Th. 10. Certainly (38c) is satisfied. Since the Krawtchouk polynomi-

als are orthogonal, Eq. (25), the coefficients of the expansion 

n 
β(χ) = Σ ßkVx ; n ) 

k=o K k 

are given by 

1 n 

2 i=0 

from Eq. (27) , 

for k = 0, . . . , n-d+1, and β, = 0 for k = n-d+2, . . . , n . Thus (38a), 

(38b) are satisfied. The result follows from Th. 10, since β(0) = 2 

Q .E .D . 

Applications to Designs 

A code Y in an associat ion scheme, with dis tance distribution 

(B , . . . , B ), will be called a t -des ign if 

BJ = . . . = B ; = O . 

Then t is called the strength of Y . The connection with the usual d e -

signs in s ta t i s t i cs is given by: 

Theorem 14 (Delsarte [14], [15]) 

A t -des ign Y in the Johnson associa t ion scheme is equivalent to 
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a c l a s s i ca l t-(V, k, \) design. (That i s , a family of k - subse t s , called 

blocks, of a V-set, such that any t - subse t of the V-set is contained in 

exactly λ blocks. ) Also a t -des ign in the Hamming associa t ion scheme 

is equivalent to an orthogonal array of strength t . 

Again the linear programming approach has led to a number of 

bounds on t -des igns (see [14], [15], [22]). 

§8 Properties of Perfect Codes 

Let Y be a code of minimum dis tance d in a metric associa t ion 

scheme (see §6). Then Y is called an e-perfect code if the spheres 

Se(y) = {x€ X: p ( x , y ) < e } , y c Y , 

of radius e = [ j (d- l)] about the codewords include all points of X . 

(These spheres are disjoint by the definition of d . ) This definition in-

cludes perfect error-correcting codes in the Hamming scheme as a spec i -

al ca se . The dis tance distribution of an e-perfect code is an extremal 

solution to the linear programming Problem (I), and hence Th. 9c can be 

applied to give: 

Theorem 15 (Delsarte [14]) 

If an e-perfect code exis t s in a metric associa t ion scheme, then 

the sum polynomial Ψ (z) of Eq. (30) has e dis t inct zeros in the set 

{ z r . . . , z n } . 

Corollary 16 (Lloyd [50]) 

If a perfect (n, M, d=2e+l) error-correcting code ex is t s , then the 

Krawtchouk polynomial K (x-l ;n-l) has e dis t inct zeros in the range 

[1, n] . 

This theorem was the bas i s for the recent proof by Tietäväinen and 

Van Lint that we know all the perfect error-correcting codes , see [49] . 

Other applications of Th. 15 can be found in [14], [29], and [49]. Per-

fect codes in graphs have been studied by Biggs [3a], [4a]. 
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