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G split semisimple group

W Weyl group

BrW braid group

V reflection representation of W

Motivations for this talk:

• Invariants of braids and knots/links

• Topology of varieties related to G

• Representations of algebras related to W y V

AW = C[W ] n Sym(V )

We’ll study a monoidal trace

AH : Hop
W →Mod2(AW )

and its decategorification

[−]q = ε ·
∑

i,j
(−1)iqi+j(AHi,j)∨ : HW → RW [[q]],

where:

• HW is the Hecke category of W

• Mod2(AW ) is a category of bigraded
AW -modules

• HW is the Hecke algebra of W

• RW is the representation ring of W
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Thm 1 Khovanov–Rozansky’s HHH factors as

HW
AH∨−−−→Mod2(AW )

HomW (Λ∗(V ),−)
−−−−−−−−−−−−→ Vect3.

Thus, AH is related to link invariants when W = Sn.

Ũ → U the Springer resolution

Thm 2 For a positive braid β ∈ Br+
W ,

AHi,j(R(β)) = grW
j H!,G

i (Z(β)),

where:

• R(β) ∈ HW is the Rouquier complex of β

• Z(β) = Ũ ×U U(β) is a generalized Steinberg
variety

Example A topological braid β has a link closure β̂:

A link has a superpolynomial P ∈ Z(q±1/2)[a±1, t±1].

If β = (σ1σ2σ3)3 ∈ Br4, then β̂ is the (3, 4) torus
knot and

P(β̂) = a6q−3(1 + q2t2 + q3t4 + q4t4 + q6t6)

+ a8q−2(t3 + qt5 + q2t5 + q3t7 + q4t8)

+ a10t8.

Thms 1, 2 imply that up to a shift, the red term is∑
i,j

qjti grW
j H!,G

i (U(β)).
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Thm 3 For positive β,

[β]q = ±
1

|G(Fq)|

∑
u∈U(Fq)

|U(β)u(Fq)|[Bu]q ,

where Bu is the Springer fiber over u and

[Bu]q =
∑
i

qiH2i(Bu),

an element of RW [q].

Drat
ν ⊇ AW rational DAHA of slope ν ∈ Q

Thm 4 For periodic β of “good” slope ν > 0,

[β]q is the q-character of an explicit Drat
ν -module.

Example Write Irr(S4) = {1, φ, ψ, εφ, ε} with
φ = tr(− | V ).

If β = (σ1σ2σ3)3 ∈ Br4, as before, then

[β]q = (1 + q2 + q3 + q4 + q6) · 1

+ (q + q2 + q3 + q4 + q5) · φ

+ (q2 + q4) · ψ

+ q3 · εψ.

Thm 3 claims this is a sum of [Bu]q . Indeed:

[β]q = q6 · [B4]q + (q3 + q4) · [B3,1]q + q2 · [B2,2]q
+ 1 · [B2,1,1]q + 0 · [B1,1,1,1]q .

Thm 4 claims this is also the q-character of a certain
Drat

3/4-module. It’s the simple quotient of Sym(V ).
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Thm 1 was inspired by Webster–Williamson’s
geometric model for Khovanov–Rozansky homology.

We expect AH to match the (underived) horizontal
trace on HW studied by Gorsky–Hogancamp–Wedrich
and others.

Thms 2, 3 came from asking how Springer theory
interacts with nonabelian Hodge phenomena, which
certain stacks U(β)/G and Z(β)/G should exhibit.

Inspired by Yun, Oblomkov–Rasmussen–Shende,
Shende–Treumann–Zaslow. . .

Thm 4 came from
Gorsky–Oblomkov–Rasmussen–Shende’s conjectures
relating Drat

ν -modules and KR of torus knots.

To describe AH, we interpret the Hecke category
geometrically. Henceforth, subscript 0 means “over
Fq .” No subscript means “over F̄q .”

B0 flag variety of (the split form) G0

By a theorem of Iwahori, the Hecke algebra is

HW ⊗C(q1/2) ' EndG(Fq)(C[B(Fq)])

' C[B(Fq)× B(Fq)]G(Fq).

Similarly, the Hecke category is built from

DbG,m(B0 × B0),

the bounded derived category of G0-equivariant mixed
complexes of sheaves over B0 × B0 with constructible
cohomology.
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The G-orbits of B × B are indexed by W :

B0 × B0 =
∐
w∈W

Ow,0.

Each Ow,0 defines an intersection complex ICw,0.

The Hecke category is HW = Kb(C(B0 × B0)), where

C(B0 × B0) =
〈
ICw,0〈n〉 : w ∈W,

n ∈ Z

〉
⊕

⊆ DbG,m(B0 × B0).

There is a geometric convolution on C(B0 × B0).

The ICw,0 decategorify to the Kazhdan–Lusztig basis.

The shift-twist 〈1〉 = [1]( 1
2 ) decategorifies to q−1/2.

Lusztig introduced the diagram below to study
unipotent representations of G:

B0 × B0
act←−− G0 × B0

pr−→ G0

The functor

CH =
⊕
i

pHi[−i] ◦ pr ! ◦ act∗ : DbG,m(B2
0)→ DbG,m(G0)

descends to a monoidal trace on HW .

Webster–Williamson showed that

grW
i+j HiG(G,CH(ICw)) ' HHj(Hi+jG (B × B, ICw)).

HH∗ is Hochschild homology over H∗G(B) ' Sym(V ).
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So, Khovanov–Rozansky’s HHH factors as

HW = Kb(C(B0 × B0)) CH−−→ Kb(C(G0))
grW
∗ H∗G−−−−−−→ Vect3

where

C(G0) =

〈
E0 :

E0 is a subquotient
of CH(ICw,0)〈n〉
for some w, n

〉
⊕

⊆ DbG,m(G0).

But the objects of the Kb(C(−)) are not directly
related to the topology of actual varieties, in general.

We need a realization functor

ρ : Kb(C(−))→ DbG,m(−)

to relate them to actual geometric objects.

A sufficient condition for ρ to exist is:

i nonzero =⇒ grW
0 Exti(K,L) = 0

for all K0, L0 ∈ C(−).

This fails for C(G0). But by work of Lusztig and
Rider–Russell, it holds for

C(U0) = 〈ι∗E0 : E0 ∈ C(G0)〉⊕ ⊆ DbG,m(U0),

where ι : U0 → G0 is the inclusion. Thus a diagram:

Kb(C(B2
0)) CH−−−−−→ Kb(C(G0)) ι∗−−−−−→ Kb(C(U0))

ρ

y yρ
DbG,m(B2

0) CH−−−−−→ DbG,m(G0) ι∗−−−−−→ DbG,m(U0)
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There are special objects in C(G0) and C(U0):

• G0 ∈ C(G0), the Grothendieck–Springer sheaf

• S0 ∈ C(U0), the Springer sheaf

By a theorem of Lusztig, AW ' Ext∗(S,S).

Our functor AH is the composition

Hop
W = Kb(C(B2

0))op → DbG,m(U0)op

grW
∗ Ext∗(−,S)

−−−−−−−−−−−→Mod2(AW ).

Use the top half of the diagram to show Thm 1:

HomW (Λ∗(V ),AH∨) ' HHH.

Key step is
⊕

i
grW
i Exti(G,G) ' Ext∗(S,S).

Thm 2: For positive β,

AH(R(β)) ' grW
∗ H!,G

∗ (Z(β)).

We need to define R(β) and Z(β).

Broué–Michel and Deligne introduced a map

O : Br+
W →

{
G0-varieties over B0 × B0
up to strict isomorphism

}
such that O(αβ)0 ' O(α)0 ×B0 O(β)0.

The complex R(β) ∈ HW is characterized by

ρ(R(β)) = (O(β)0 → B0 × B0)!C.

The variety Z(β)0 is a certain pullback of O(β)0.
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We define U(β)0 and Z(β)0 by cartesian squares:

O(β)0 ←−−−−− U(β)0 ←−−−−− Z(β)0

jβ

y y y
B0 × B0

act←−−−−− U0 × B0 ←−−−−− Ũ0 × B0

In particular, Ũ0 = U(1)0 for the identity braid 1.

AW y AH(R(β)) from H!,G
∗ (Z(1)) y H!,G

∗ (Z(β)).

Cor Up to (pure) shifts,

• The bottom a-degree of HHH matches
grW
∗ H!,G

∗ (U(β)).

• The top a-degree of HHH matches
grW
∗ H!,G

∗ (X (β)), where

X (β)0 = U(β)0 ×U0 {1}.

The full twist is a central element π = σ2
w0 ∈ Br+

W :

Gorsky–Hogancamp–Mellit–Nakagane proved

bottom a-degree of HHH(β) ' top a-degree of HHH(βπ),

refining a theorem of Kálmán.

Cor For positive β,

grW
∗ H!,G

∗ (U(β)) ' grW
∗ H!,G

∗ (X (βπ)).

What is a geometric explanation for this isomorphism?

It’s not induced by a homemorphism of stacks, in
general.
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Thm 3 is a decategorified analogue of Thm 2:

[β]q = ±
1

|G(Fq)|

∑
u∈U(Fq)

|U(β)u(Fq)|[Bu]q ,

where [Bu]q =
∑

i
qiH2i(Bu). However, it is not just

a corollary.

The virtual weight series of [X/G] need not be the quo-
tient of the virtual weight polynomial of X by that of G.

Instead, the proof uses a strange formula

[β]q = q|β|/2ε ·
∑
i

qi Symi(V ) ·
∑

φ,ψ∈Irr(W )

{φ, ψ}φq(β)ψ,

where {−,−} : Irr(W )2 → Q is Lusztig’s “exotic
Fourier transform.”

Cor For parabolic W ′ ⊆W , we have a commutative
diagram

HW ′
[−]q−−−−−→ RW ′ [[q]]y y(1−q)−dIndW

W ′

HW
[−]q−−−−−→ RW [[q]]

where d = rk(W )− rk(W ′).

This is a kind of Markov property for [−]q . The proof
uses an induction formula for the [Bu]q .

Cor If β 7→ w under Br+
W →W , then

[β]q ∈
1

(1− q)dim(V w) RW [q].

The proof uses a result of Lusztig on the sizes of
G-stabilizers.
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Example Writing r = rk(W ), we compute

[1]q =
1

(1− q)r
IndW{1}([1]q) =

1
(1− q)r

C[W ].

For W = Sn, recovers:

P(n-unlink)t=−1 =
(

a− a−1

q1/2 − q−1/2

)n−1

.

Example Let
W = S3 = 〈s, t : s2 = t2 = (sts)2 = 1〉.

Writing Irr(S3) = {1, φ, ε}, we compute

[σw]q =


(1− q)−2(1 + 2φ+ ε) w = 1
(1− q)−1(1 + φ) w ∈ {s, t}
1 w ∈ {st, ts}
(1− q)−1(1− q + q2 + qφ) w = sts

A braid β is periodic of slope m
n
∈ Q iff: βn = πm.

Using the “exotic” formula, we can show:

Lem If β is periodic of slope ν ∈ Q, then

[β]q =
∑

φ∈Irr(W )

qνc(φ)Degφ(e2πiν)φ ·
∑
i

qi Symi(V ),

where:

• Degφ(q) ∈ Q[q] is the degree of the unipotent
principal series of G(Fq) attached to φ.

• c(φ) is the content of φ. For W = Sn, it’s the
content of the corresponding partition.

The key is that the traces φq(β) are computable.

This goes back to Jones’s formula for HOMFLY of
torus knots.
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The rational DAHA is a deformation of C[W ] nD(V ),
where D(V ) is the Weyl algebra of V :

Drat
ν =

C[W ] n (C[V ]⊗C[V ∨])
[x, y]− 〈x, y〉 − ν

∑
α∈Φ+ 〈x, α∨〉〈α, y〉sα

.

It enjoys a well-behaved “category O” of modules
where:

• Simple modules Lν(φ) are indexed by φ ∈ Irr(W ).

• Each module M admits a W -stable grading, giving
us [M ]q ∈ RW (q1/2).

There is a Knizhnik–Zamolodchikov functor

Mod(Drat
ν )→Mod(HW |q1/2=eπiν ),

hinting that the lemma is related to Drat
ν .

Each simple Lν(φ) is the quotient of a Verma ∆ν(φ).

If β is periodic of slope ν, then

[β]q = (q1/2)ν|Φ|−r ·
∑

φ∈Irr(W )

Deg(e2πiν)[∆ν(φ)]q .

Let n be the denominator of ν ∈ Q in lowest terms.

• If n is elliptic, then [β]q ∈ RW [q] by our earlier
result. This implies Varagnolo–Vasserot’s result

n elliptic =⇒ dimLν(1) <∞.

• Thm 4. For W irreducible and n cuspidal,

[β]q =
{

[Lν(1)] + [Lν(V )] (W,n) = (E8, 15), (H4, 15)
[Lν(1)] else

The proof uses the KZ functor and the block
theory of HW .
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Does this character come from Drat
ν y H!,G

∗ (Z(β))?

More complicated:

• AW = AW,0, where AW,$ = H!,G×Gm
∗ (Z(1)).

• Drat
ν = Drat

ν,1 for some Drat
ν,$.

Conj There is a flat C[$]-deformation

AH$(R(β)) AH(R(β))

AW,$ y AH$(R(β)) AW y AH0(β)

such that:

• The AW,$-action is weight-filtered and degenerates
to a weight-graded AW -action on AH$(R(β)).

• In the regular elliptic case, the latter extends to a
Drat
ν,$-action.

arXiv:2106.07444

Thank you for listening.
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