from \mathbf{H} to \mathcal{U}

Minh-Tâm Quang Trinh

Massachusetts Institute of Technology
$G \quad$ split semisimple group
W Weyl group
$B r_{W} \quad$ braid group
$V \quad$ reflection representation of W

Motivations for this talk:

- Invariants of braids and knots/links
- Topology of varieties related to G
- Representations of algebras related to $W \curvearrowright V$

$$
\mathbf{A}_{W}=\mathbf{C}[W] \ltimes \operatorname{Sym}(V)
$$

We'll study a monoidal trace

$$
\mathrm{AH}: \mathbf{H}_{W}^{o p} \rightarrow \operatorname{Mod}_{2}\left(\mathbf{A}_{W}\right)
$$

and its decategorification

$$
[-]_{q}=\varepsilon \cdot \sum_{i, j}(-1)^{i} q^{i+j}\left(\mathrm{AH}^{i, j}\right)^{\vee}: H_{W} \rightarrow R_{W} \llbracket q \rrbracket
$$

where:

- \mathbf{H}_{W} is the Hecke category of W
- $\operatorname{Mod}_{2}\left(\mathbf{A}_{W}\right)$ is a category of bigraded \mathbf{A}_{W}-modules
- H_{W} is the Hecke algebra of W
- R_{W} is the representation ring of W

Thm 1 Khovanov-Rozansky's HHH factors as
$\mathbf{H}_{W} \xrightarrow{\mathrm{AH}^{\vee}} \operatorname{Mod}_{2}\left(\mathbf{A}_{W}\right) \xrightarrow{\operatorname{Hom}_{W}\left(\Lambda^{*}(V),-\right)} \operatorname{Vect}_{3}$.
Thus, AH is related to link invariants when $W=S_{n}$.

$\widetilde{\mathcal{U}} \rightarrow \mathcal{U}$ the Springer resolution

Thm 2 For a positive braid $\beta \in B r_{W}^{+}$,

$$
\mathrm{AH}^{i, j}(\mathcal{R}(\beta))=\operatorname{gr}_{j}^{\mathbf{W}} \mathrm{H}_{i}^{!, G}(\mathcal{Z}(\beta))
$$

where:

- $\mathcal{R}(\beta) \in \mathbf{H}_{W}$ is the Rouquier complex of β
- $\mathcal{Z}(\beta)=\widetilde{\mathcal{U}} \times_{\mathcal{U}} \mathcal{U}(\beta)$ is a generalized Steinberg variety

Example A topological braid β has a link closure $\hat{\beta}$:

A link has a superpolynomial $\mathbf{P} \in \mathbf{Z}\left(q^{ \pm 1 / 2}\right)\left[a^{ \pm 1}, t^{ \pm 1}\right]$.
If $\beta=\left(\sigma_{1} \sigma_{2} \sigma_{3}\right)^{3} \in B r_{4}$, then $\hat{\beta}$ is the $(3,4)$ torus knot and

$$
\begin{aligned}
\mathbf{P}(\hat{\beta})=a^{6} & q^{-3}\left(1+q^{2} t^{2}+q^{3} t^{4}+q^{4} t^{4}+q^{6} t^{6}\right) \\
& +a^{8} q^{-2}\left(t^{3}+q t^{5}+q^{2} t^{5}+q^{3} t^{7}+q^{4} t^{8}\right) \\
& +a^{10} t^{8}
\end{aligned}
$$

Thms 1, 2 imply that up to a shift, the red term is

$$
\sum_{i, j} q^{j} t^{i} \operatorname{gr}_{j}^{\mathbf{W}} \mathrm{H}_{i}^{!, G}(\mathcal{U}(\beta))
$$

Thm 3 For positive β,

$$
[\beta]_{q}= \pm \frac{1}{\left|G\left(\mathbf{F}_{q}\right)\right|} \sum_{u \in \mathcal{U}\left(\mathbf{F}_{q}\right)}\left|\mathcal{U}(\beta)_{u}\left(\mathbf{F}_{q}\right)\right|\left[\mathcal{B}_{u}\right]_{q},
$$

where \mathcal{B}_{u} is the Springer fiber over u and

$$
\left[\mathcal{B}_{u}\right]_{q}=\sum_{i} q^{i} \mathrm{H}^{2 i}\left(\mathcal{B}_{u}\right),
$$

an element of $R_{W}[q]$.

$$
\mathbf{D}_{\nu}^{\text {rat }} \supseteq \mathbf{A}_{W} \quad \text { rational DAHA of slope } \nu \in \mathbf{Q}
$$

Thm 4 For periodic β of "good" slope $\nu>0$, $[\beta]_{q}$ is the q-character of an explicit $\mathbf{D}_{\nu}^{\text {rat }}$-module.

Example Write $\operatorname{Irr}\left(S_{4}\right)=\{1, \phi, \psi, \varepsilon \phi, \varepsilon\}$ with $\phi=\operatorname{tr}(-\mid V)$.

If $\beta=\left(\sigma_{1} \sigma_{2} \sigma_{3}\right)^{3} \in B r_{4}$, as before, then

$$
\left.\left.\begin{array}{rl}
{[\beta]_{q}=} & (1
\end{array}+q^{2}+q^{3}+q^{4}+q^{6}\right) \cdot 1 ~=~\left(q+q^{2}+q^{3}+q^{4}+q^{5}\right) \cdot \phi ~=~\left(q^{2}+q^{4}\right) \cdot \psi\right) .
$$

Thm 3 claims this is a sum of $\left[\mathcal{B}_{u}\right]_{q}$. Indeed:

$$
\begin{aligned}
{[\beta]_{q}=q^{6} } & \cdot\left[\mathcal{B}_{4}\right]_{q}+\left(q^{3}+q^{4}\right) \cdot\left[\mathcal{B}_{3,1}\right]_{q}+q^{2} \cdot\left[\mathcal{B}_{2,2}\right]_{q} \\
& +1 \cdot\left[\mathcal{B}_{2,1,1}\right]_{q}+0 \cdot\left[\mathcal{B}_{1,1,1,1}\right]_{q} .
\end{aligned}
$$

Thm 4 claims this is also the q-character of a certain $\mathbf{D}_{3 / 4}^{\text {rat }}$-module. It's the simple quotient of $\operatorname{Sym}(V)$.

Thm 1 was inspired by Webster-Williamson's geometric model for Khovanov-Rozansky homology.

We expect AH to match the (underived) horizontal trace on \mathbf{H}_{W} studied by Gorsky-Hogancamp-Wedrich and others.

Thms 2, 3 came from asking how Springer theory interacts with nonabelian Hodge phenomena, which certain stacks $\mathcal{U}(\beta) / G$ and $\mathcal{Z}(\beta) / G$ should exhibit.

Inspired by Yun, Oblomkov-Rasmussen-Shende, Shende-Treumann-Zaslow. . .

Thm 4 came from
Gorsky-Oblomkov-Rasmussen-Shende's conjectures relating $\mathbf{D}_{\nu}^{\text {rat }}$-modules and KR of torus knots.

To describe AH, we interpret the Hecke category geometrically. Henceforth, subscript 0 means "over \mathbf{F}_{q}." No subscript means "over $\overline{\mathbf{F}}_{q}$."

$\mathcal{B}_{0} \quad$ flag variety of (the split form) G_{0}

By a theorem of Iwahori, the Hecke algebra is

$$
\begin{aligned}
H_{W} \otimes \mathbf{C}\left(q^{1 / 2}\right) & \simeq \operatorname{End}_{G\left(\mathbf{F}_{q}\right)}\left(\mathbf{C}\left[\mathcal{B}\left(\mathbf{F}_{q}\right)\right]\right) \\
& \simeq \mathbf{C}\left[\mathcal{B}\left(\mathbf{F}_{q}\right) \times \mathcal{B}\left(\mathbf{F}_{q}\right)\right]^{G\left(\mathbf{F}_{q}\right)}
\end{aligned}
$$

Similarly, the Hecke category is built from

$$
\mathrm{D}_{G, m}^{b}\left(\mathcal{B}_{0} \times \mathcal{B}_{0}\right)
$$

the bounded derived category of G_{0}-equivariant mixed complexes of sheaves over $\mathcal{B}_{0} \times \mathcal{B}_{0}$ with constructible cohomology.

The G-orbits of $\mathcal{B} \times \mathcal{B}$ are indexed by W :

$$
\mathcal{B}_{0} \times \mathcal{B}_{0}=\coprod_{w \in W} O_{w, 0}
$$

Each $O_{w, 0}$ defines an intersection complex $I C_{w, 0}$.
The Hecke category is $\mathbf{H}_{W}=\mathrm{K}^{b}\left(\mathrm{C}\left(\mathcal{B}_{0} \times \mathcal{B}_{0}\right)\right)$, where

$$
\begin{aligned}
\mathrm{C}\left(\mathcal{B}_{0} \times \mathcal{B}_{0}\right) & =\left\langle I C_{w, 0}\langle n\rangle: \begin{array}{l}
w \in W, \\
n \in \mathbf{Z}
\end{array}\right\rangle_{\oplus} \\
& \subseteq \mathrm{D}_{G, m}^{b}\left(\mathcal{B}_{0} \times \mathcal{B}_{0}\right) .
\end{aligned}
$$

There is a geometric convolution on $\mathrm{C}\left(\mathcal{B}_{0} \times \mathcal{B}_{0}\right)$.
The $I C_{w, 0}$ decategorify to the Kazhdan-Lusztig basis. The shift-twist $\langle 1\rangle=[1]\left(\frac{1}{2}\right)$ decategorifies to $q^{-1 / 2}$.

Lusztig introduced the diagram below to study unipotent representations of G :

$$
\mathcal{B}_{0} \times \mathcal{B}_{0} \stackrel{a c t}{\longleftarrow} G_{0} \times \mathcal{B}_{0} \xrightarrow{p r} G_{0}
$$

The functor
$\mathrm{CH}=\bigoplus^{p} \mathcal{H}^{i}[-i] \circ p r_{!} \circ a c t^{*}: \mathrm{D}_{G, m}^{b}\left(\mathcal{B}_{0}^{2}\right) \rightarrow \mathrm{D}_{G, m}^{b}\left(G_{0}\right)$
descends to a monoidal trace on \mathbf{H}_{W}.

Webster-Williamson showed that

$$
\operatorname{gr}_{i+j}^{\mathbf{W}} \mathrm{H}_{G}^{i}\left(G, \mathrm{CH}\left(I C_{w}\right)\right) \simeq \operatorname{HH}^{j}\left(\mathrm{H}_{G}^{i+j}\left(\mathcal{B} \times \mathcal{B}, I C_{w}\right)\right)
$$

$H H^{*}$ is Hochschild homology over $\mathrm{H}_{G}^{*}(\mathcal{B}) \simeq \operatorname{Sym}(V)$.

So, Khovanov-Rozansky's HHH factors as
$\mathbf{H}_{W}=\mathrm{K}^{b}\left(\mathrm{C}\left(\mathcal{B}_{0} \times \mathcal{B}_{0}\right)\right) \xrightarrow{\mathrm{CH}} \mathrm{K}^{b}\left(\mathrm{C}\left(G_{0}\right)\right) \xrightarrow{\mathrm{gr}_{*}^{\mathbf{W}} \mathrm{H}_{G}^{*}}$ Vect $_{3}$
where
$\mathrm{C}\left(G_{0}\right)=\left\langle\begin{array}{ll}E_{0}: & \begin{array}{l}E_{0} \text { is a subquotient } \\ \text { of CH }\left(I C_{w, 0}\right)\langle n\rangle \\ \text { for some } w, n\end{array}\end{array}\right\rangle_{\oplus} \subseteq \mathrm{D}_{G, m}^{b}\left(G_{0}\right)$.
But the objects of the $\mathrm{K}^{b}(\mathrm{C}(-))$ are not directly related to the topology of actual varieties, in general.

We need a realization functor

$$
\rho: \mathrm{K}^{b}(\mathrm{C}(-)) \rightarrow \mathrm{D}_{G, m}^{b}(-)
$$

to relate them to actual geometric objects.

A sufficient condition for ρ to exist is:

$$
i \text { nonzero } \Longrightarrow \operatorname{gr}_{0}^{\mathbf{W}} \operatorname{Ext}^{i}(K, L)=0
$$

for all $K_{0}, L_{0} \in \mathrm{C}(-)$.
This fails for $\mathrm{C}\left(G_{0}\right)$. But by work of Lusztig and Rider-Russell, it holds for

$$
\mathrm{C}\left(\mathcal{U}_{0}\right)=\left\langle\iota^{*} E_{0}: E_{0} \in \mathrm{C}\left(G_{0}\right)\right\rangle_{\oplus} \subseteq \mathrm{D}_{G, m}^{b}\left(\mathcal{U}_{0}\right)
$$

where $\iota: \mathcal{U}_{0} \rightarrow G_{0}$ is the inclusion. Thus a diagram:

There are special objects in $\mathrm{C}\left(G_{0}\right)$ and $\mathrm{C}\left(\mathcal{U}_{0}\right)$:

- $\mathcal{G}_{0} \in \mathrm{C}\left(G_{0}\right)$, the Grothendieck-Springer sheaf
- $\mathcal{S}_{0} \in \mathrm{C}\left(\mathcal{U}_{0}\right)$, the Springer sheaf

By a theorem of Lusztig, $\mathbf{A}_{W} \simeq \operatorname{Ext}^{*}(\mathcal{S}, \mathcal{S})$.
Our functor AH is the composition

$$
\begin{aligned}
\mathbf{H}_{W}^{o p}=\mathrm{K}^{b}\left(\mathrm{C}\left(\mathcal{B}_{0}^{2}\right)\right)^{o p} & \rightarrow \mathrm{D}_{G, m}^{b}\left(\mathcal{U}_{0}\right)^{o p} \\
& \xrightarrow{\operatorname{gr}_{*}^{\mathbf{w}} \operatorname{Ext}^{*}(-, \mathcal{S})} \operatorname{Mod}_{2}\left(\mathbf{A}_{W}\right) .
\end{aligned}
$$

Use the top half of the diagram to show Thm 1:

$$
\operatorname{Hom}_{W}\left(\Lambda^{*}(V), \mathrm{AH}^{\vee}\right) \simeq \operatorname{HHH}
$$

Key step is $\bigoplus_{i} \operatorname{gr}_{i} \mathbf{W} \operatorname{Ext}^{i}(\mathcal{G}, \mathcal{G}) \simeq \operatorname{Ext}^{*}(\mathcal{S}, \mathcal{S})$.

Thm 2: For positive β,

$$
\operatorname{AH}(\mathcal{R}(\beta)) \simeq \operatorname{gr}_{*}^{\mathbf{W}} \mathrm{H}_{*}^{!, G}(\mathcal{Z}(\beta)) .
$$

We need to define $\mathcal{R}(\beta)$ and $\mathcal{Z}(\beta)$.
Broué-Michel and Deligne introduced a map

$$
O: B r_{W}^{+} \rightarrow\left\{\begin{array}{l}
G_{0} \text {-varieties over } \mathcal{B}_{0} \times \mathcal{B}_{0} \\
\text { up to strict isomorphism }
\end{array}\right\}
$$

such that $O(\alpha \beta)_{0} \simeq O(\alpha)_{0} \times_{\mathcal{B}_{0}} O(\beta)_{0}$.
The complex $\mathcal{R}(\beta) \in \mathbf{H}_{W}$ is characterized by

$$
\rho(\mathcal{R}(\beta))=\left(O(\beta)_{0} \rightarrow \mathcal{B}_{0} \times \mathcal{B}_{0}\right)_{!} \mathbf{C} .
$$

The variety $\mathcal{Z}(\beta)_{0}$ is a certain pullback of $O(\beta)_{0}$.

We define $\mathcal{U}(\beta)_{0}$ and $\mathcal{Z}(\beta)_{0}$ by cartesian squares:

$$
\mathcal{B}_{0} \times \mathcal{B}_{0} \stackrel{a c t}{\longleftarrow} \mathcal{U}_{0} \times \mathcal{B}_{0} \longleftarrow \tilde{\mathcal{U}}_{0} \times \mathcal{B}_{0}
$$

In particular, $\widetilde{\mathcal{U}}_{0}=\mathcal{U}(\mathbf{1})_{0}$ for the identity braid $\mathbf{1}$.
$\mathbf{A}_{W} \curvearrowright \operatorname{AH}(\mathcal{R}(\beta))$ from $H_{*}^{!, G}(\mathcal{Z}(\mathbf{1})) \curvearrowright \mathrm{H}_{*}^{!, G}(\mathcal{Z}(\beta))$.
Cor Up to (pure) shifts,

- The bottom a-degree of HHH matches $\mathrm{gr}_{*}^{\mathbf{W}} \mathrm{H}_{*}^{!, G}(\mathcal{U}(\beta))$.
- The top a-degree of HHH matches $\operatorname{gr}_{*}^{\mathbf{W}} \mathrm{H}_{*}^{!, G}(\mathcal{X}(\beta))$, where

$$
\mathcal{X}(\beta)_{0}=\mathcal{U}(\beta)_{0} \times_{\mathcal{U}_{0}}\{1\}
$$

The full twist is a central element $\pi=\sigma_{w_{0}}^{2} \in B r_{W}^{+}$:

Gorsky-Hogancamp-Mellit-Nakagane proved bottom a-degree of $\operatorname{HHH}(\beta) \simeq$ top a-degree of $\operatorname{HHH}(\beta \pi)$, refining a theorem of Kálmán.

Cor For positive β,

$$
\operatorname{gr}_{*}^{\mathbf{W}} \mathrm{H}_{*}^{!, G}(\mathcal{U}(\beta)) \simeq \mathrm{gr}_{*}^{\mathbf{W}} \mathrm{H}_{*}^{!, G}(\mathcal{X}(\beta \pi))
$$

What is a geometric explanation for this isomorphism?
It's not induced by a homemorphism of stacks, in general.

Thm 3 is a decategorified analogue of Thm 2:

$$
[\beta]_{q}= \pm \frac{1}{\left|G\left(\mathbf{F}_{q}\right)\right|} \sum_{u \in \mathcal{U}\left(\mathbf{F}_{q}\right)}\left|\mathcal{U}(\beta)_{u}\left(\mathbf{F}_{q}\right)\right|\left[\mathcal{B}_{u}\right]_{q}
$$

where $\left[\mathcal{B}_{u}\right]_{q}=\sum_{i} q^{i} \mathrm{H}^{2 i}\left(\mathcal{B}_{u}\right)$. However, it is not just a corollary.

The virtual weight series of $[X / G]$ need not be the quotient of the virtual weight polynomial of X by that of G.

Instead, the proof uses a strange formula
$[\beta]_{q}=q^{|\beta| / 2} \varepsilon \cdot \sum_{i} q^{i} \operatorname{Sym}^{i}(V) \cdot \sum_{\phi, \psi \in \operatorname{Irr}(W)}\{\phi, \psi\} \phi_{q}(\beta) \psi$,
where $\{-,-\}: \operatorname{Irr}(W)^{2} \rightarrow \mathbf{Q}$ is Lusztig's "exotic Fourier transform."

Cor For parabolic $W^{\prime} \subseteq W$, we have a commutative diagram

$$
\begin{array}{rll}
H_{W^{\prime}} & \xrightarrow{[-]_{q}} R_{W^{\prime}} \llbracket q \rrbracket \\
\downarrow & & \\
H_{W} & \xrightarrow{[-]_{q}} & R_{W} \llbracket q \rrbracket
\end{array}
$$

where $d=\operatorname{rk}(W)-\operatorname{rk}\left(W^{\prime}\right)$.

This is a kind of Markov property for $[-]_{q}$. The proof uses an induction formula for the $\left[\mathcal{B}_{u}\right]_{q}$.

Cor If $\beta \mapsto w$ under $B r_{W}^{+} \rightarrow W$, then

$$
[\beta]_{q} \in \frac{1}{(1-q)^{\operatorname{dim}\left(V^{w}\right)}} R_{W}[q] .
$$

The proof uses a result of Lusztig on the sizes of G-stabilizers.

Example Writing $r=\operatorname{rk}(W)$, we compute

$$
[\mathbf{1}]_{q}=\frac{1}{(1-q)^{r}} \operatorname{Ind}_{\{1\}}^{W}\left([\mathbf{1}]_{q}\right)=\frac{1}{(1-q)^{r}} \mathbf{C}[W] .
$$

For $W=S_{n}$, recovers:
$\mathbf{P}(n \text {-unlink })_{t=-1}=\left(\frac{a-a^{-1}}{q^{1 / 2}-q^{-1 / 2}}\right)^{n-1}$.

Example Let

$W=S_{3}=\left\langle s, t: s^{2}=t^{2}=(s t s)^{2}=1\right\rangle$.
Writing $\operatorname{Irr}\left(S_{3}\right)=\{1, \phi, \varepsilon\}$, we compute
$\left[\sigma_{w}\right]_{q}= \begin{cases}(1-q)^{-2}(1+2 \phi+\varepsilon) & w=1 \\ (1-q)^{-1}(1+\phi) & w \in\{s, t\} \\ 1 & w \in\{s t, t s\} \\ (1-q)^{-1}\left(1-q+q^{2}+q \phi\right) & w=s t s\end{cases}$

A braid β is periodic of slope $\frac{m}{n} \in \mathbf{Q}$ iff: $\quad \beta^{n}=\pi^{m}$.
Using the "exotic" formula, we can show:
Lem If β is periodic of slope $\nu \in \mathbf{Q}$, then
$[\beta]_{q}=\sum_{\phi \in \operatorname{Irr}(W)} q^{\nu \mathbf{c}(\phi)} \operatorname{Deg}_{\phi}\left(e^{2 \pi i \nu}\right) \phi \cdot \sum_{i} q^{i} \operatorname{Sym}^{i}(V)$,
where:

- $\operatorname{Deg}_{\phi}(q) \in \mathbf{Q}[q]$ is the degree of the unipotent principal series of $G\left(\mathbf{F}_{q}\right)$ attached to ϕ.
- $\mathrm{c}(\phi)$ is the content of ϕ. For $W=S_{n}$, it's the content of the corresponding partition.
The key is that the traces $\phi_{q}(\beta)$ are computable. This goes back to Jones's formula for HOMFLY of torus knots.

The rational $D A H A$ is a deformation of $\mathbf{C}[W] \ltimes \mathcal{D}(V)$, where $\mathcal{D}(V)$ is the Weyl algebra of V :

$$
\mathbf{D}_{\nu}^{\mathrm{rat}}=\frac{\mathbf{C}[W] \ltimes\left(\mathbf{C}[V] \otimes \mathbf{C}\left[V^{\vee}\right]\right)}{[x, y]-\langle x, y\rangle-\nu \sum_{\alpha \in \Phi^{+}}\left\langle x, \alpha^{\vee}\right\rangle\langle\alpha, y\rangle s_{\alpha}}
$$

It enjoys a well-behaved "category O" of modules where:

- Simple modules $L_{\nu}(\phi)$ are indexed by $\phi \in \operatorname{Irr}(W)$.
- Each module M admits a W-stable grading, giving us $[M]_{q} \in R_{W}\left(q^{1 / 2}\right)$.

There is a Knizhnik-Zamolodchikov functor

$$
\operatorname{Mod}\left(\mathbf{D}_{\nu}^{\text {rat }}\right) \rightarrow \operatorname{Mod}\left(\left.H_{W}\right|_{q^{1 / 2}=e^{\pi i \nu}}\right)
$$

hinting that the lemma is related to $\mathbf{D}_{\nu}^{\text {rat }}$.

Each simple $L_{\nu}(\phi)$ is the quotient of a Verma $\Delta_{\nu}(\phi)$.
If β is periodic of slope ν, then

$$
[\beta]_{q}=\left(q^{1 / 2}\right)^{\nu|\Phi|-r} \cdot \sum_{\phi \in \operatorname{Irr}(W)} \operatorname{Deg}\left(e^{2 \pi i \nu}\right)\left[\Delta_{\nu}(\phi)\right]_{q}
$$

Let n be the denominator of $\nu \in \mathbf{Q}$ in lowest terms.

- If n is elliptic, then $[\beta]_{q} \in R_{W}[q]$ by our earlier result. This implies Varagnolo-Vasserot's result

$$
n \text { elliptic } \Longrightarrow \operatorname{dim} L_{\nu}(1)<\infty
$$

- Thm 4. For W irreducible and n cuspidal,
$[\beta]_{q}= \begin{cases}{\left[L_{\nu}(1)\right]+\left[L_{\nu}(V)\right]} & (W, n)=\left(E_{8}, 15\right),\left(H_{4}, 15\right) \\ {\left[L_{\nu}(1)\right]} & \text { else }\end{cases}$
The proof uses the KZ functor and the block theory of H_{W}.

Does this character come from $\mathbf{D}_{\nu}^{\text {rat }} \curvearrowright \mathrm{H}_{*}^{!, G}(\mathcal{Z}(\beta))$?
More complicated:

- $\mathbf{A}_{W}=\mathbf{A}_{W, 0}$, where $\mathbf{A}_{W, \varpi}=\mathrm{H}_{*}^{!, G \times \mathbf{G}_{m}}(\mathcal{Z}(\mathbf{1}))$.
- $\mathbf{D}_{\nu}^{\mathrm{rat}}=\mathbf{D}_{\nu, 1}^{\mathrm{rat}}$ for some $\mathbf{D}_{\nu, \varpi}^{\mathrm{rat}}$.

Conj There is a flat $\mathbf{C}[\varpi]$-deformation

$$
\begin{aligned}
\mathrm{AH}_{\varpi}(\mathcal{R}(\beta)) & \rightsquigarrow \mathrm{AH}(\mathcal{R}(\beta)) \\
\mathbf{A}_{W, \varpi} \curvearrowright \mathrm{AH}_{\varpi}(\mathcal{R}(\beta)) & \rightsquigarrow \mathbf{A}_{W} \curvearrowright \mathrm{AH}_{0}(\beta)
\end{aligned}
$$

such that:

- The $\mathbf{A}_{W, \varpi \text {-action is weight-filtered and degenerates }}$ to a weight-graded \mathbf{A}_{W}-action on $\mathrm{AH}_{\varpi}(\mathcal{R}(\beta))$.
- In the regular elliptic case, the latter extends to a $\mathbf{D}_{\nu, w}^{\mathrm{rat}}$-action.

