Homotopy Equivalences of Varieties Built from Braids

Minh-Tâm Quang Trinh

Massachusetts Institute of Technology

§1 \mathcal{U} versus $U_{+} U_{-}$

Plan of this talk:
$1 \mathcal{U}$ versus $U_{+} U_{-}$
$2 \mathcal{U}(\beta)$ versus $\mathcal{X}\left(\beta \Delta^{2}\right)$
3 Traces on the Hecke Category
$4 \mathcal{T}(\beta)$ versus $\mathcal{M}_{\gamma} / \Lambda_{\gamma}$

References:

- From the Hecke Category to the Unipotent Locus (2021)
- \mathcal{U} versus $U_{+} U_{-}$(in progress)
- Algebraic Braids and NAHT (in revision)
G semisimple algebraic group
\mathcal{U} unipotent locus

Ex \quad For $G=\mathrm{SL}_{2}$:

Explicitly, $\mathcal{U}=\left\{g \in \mathrm{SL}_{2} \mid \operatorname{tr} g=2\right\}$.

Q What is $\left|\mathcal{U}\left(\mathbf{F}_{p}\right)\right|$ for prime $p \gg 0$?

Q Fix a Borel $B_{+} \subseteq G$. How does $\mathcal{U} \cap g B_{+}$vary?
$B_{ \pm}$opposite pair of Borels
$U_{ \pm}$unipotent radicals
Conj 1 At the level of C-points,

$$
\mathcal{U}_{g}:=\mathcal{U} \cap g B_{+} \quad \text { and } \quad \mathcal{V}_{g}:=U_{+} U_{-} \cap g B_{+}
$$

are homotopy equivalent for any g.

Thm (Steinberg '68) $\left|\mathcal{U}\left(\mathbf{F}_{p}\right)\right|=\left|U_{+} U_{-}\left(\mathbf{F}_{p}\right)\right|$.
Thm (Kawanaka ${ }^{\prime} \mathbf{7 5}$) $\quad\left|\mathcal{U}_{g}\left(\mathbf{F}_{p}\right)\right|=\left|\mathcal{V}_{g}\left(\mathbf{F}_{p}\right)\right|$.
Thm 1 There's an isomorphism

$$
\operatorname{gr}_{*}^{\boldsymbol{w}} \mathrm{H}_{*}^{\mathrm{BM}, H_{g}}\left(\mathcal{U}_{g}\right) \simeq \operatorname{gr}_{*}^{\boldsymbol{w}} \mathrm{H}_{*}^{\mathrm{BM}, H_{g}}\left(\mathcal{V}_{g}\right),
$$

where $H_{g}=B_{+} \cap g B_{+} g^{-1}$. Proof uses link homology!
W Weyl group Br_{W} braid group
For each positive braid β, we'll build equivariant cartesian squares:

where $X_{0}(\beta, 1)$ is the braid variety of Mellit, CGGS.
Prop If $B_{+} \xrightarrow{w} g B_{+} g^{-1}$ and $\beta=\sigma_{w}$, then

$$
\begin{aligned}
& {\left[\mathcal{U}_{g} / H_{g}\right] \simeq[\mathcal{U}(\beta) / G],} \\
& {\left[\mathcal{V}_{g} / H_{g}\right] \approx\left[\mathcal{X}\left(\beta \Delta^{2}\right) / G\right],}
\end{aligned}
$$

where $\Delta=\sigma_{w_{0}}$ is the half twist.
§2 $\mathcal{U}(\beta)$ versus $\mathcal{X}\left(\beta \Delta^{2}\right)$
$\sigma_{w} \in B r_{W}$ is the minimal positive lift of $w \in W$.
Suppose $\beta=\sigma_{w_{1}} \cdots \sigma_{w_{k}}$. Then:

$$
\begin{aligned}
& \mathcal{U}(\beta)=\left\{\left(u, B_{1}, \ldots, B_{k}\right) \left\lvert\, \begin{array}{l}
B_{i-1} \xrightarrow{w_{i}} B_{i} \\
B_{0}=u B_{k} u^{-1}
\end{array}\right.\right\} \\
& \mathcal{X}(\beta)=\text { subvariety of } \mathcal{U}(\beta) \text { where } u=1 \\
& X_{0}(\beta, 1)=\text { subvariety of } \mathcal{X}(\beta) \text { where } B_{k}=B_{+}
\end{aligned}
$$

Ex For $1:=\sigma_{\mathrm{id}}$, we have:

$$
\begin{aligned}
& \mathcal{U}(\mathbf{1})=\left\{\left(u, B_{1}\right) \mid u \in B_{1}\right\}=\text { Springer resolution } \\
& \mathcal{X}(\mathbf{1}) \simeq G / B_{+}
\end{aligned}
$$

Suppose $B_{+} \xrightarrow{w} g B_{+} g^{-1}$ and $H_{g}=B_{+} \cap g B_{+} g^{-1}$.
Let $O_{w}=\left\{\left(B^{\prime}, B\right) \mid B^{\prime} \xrightarrow{w} B\right\} \simeq G / H_{g}$.
$1 \mathcal{U}_{g}=\mathcal{U} \cap g B_{+}$is the fiber of

$$
\mathcal{U}\left(\sigma_{w}\right) \xrightarrow{\left(B_{1}, u B_{1} u^{-1}\right)} O_{w}
$$

above $\left(B_{+}, g B_{+} g^{-1}\right)$. Thus $\left[\mathcal{U}_{g} / H_{g}\right] \simeq\left[\mathcal{U}\left(\sigma_{w}\right) / G\right]$.
$2 \mathcal{V}_{g}=U_{+} U_{-} \cap g B_{+}$bijects onto the fiber of

$$
\mathcal{X}\left(\sigma_{w} \Delta^{2}\right) \xrightarrow{\left(B_{1}, B_{3}\right)} O_{w}
$$

above $\left(B_{+}, g B_{+} g^{-1}\right)$. Thus $\left[\mathcal{V}_{g} / H_{g}\right] \approx\left[\mathcal{X}\left(\sigma_{w} \Delta^{2}\right) / G\right]$.

Thm 2 For any positive β, we have

$$
\operatorname{gr}_{*}^{\boldsymbol{w}} \mathrm{H}_{*}^{\mathrm{BM}, G}(\mathcal{U}(\beta)) \simeq \operatorname{gr}_{*}^{\boldsymbol{w}} \mathrm{H}_{*}^{\mathrm{BM}, G}\left(\mathcal{X}\left(\beta \Delta^{2}\right)\right)
$$

Pf sketch Using Springer theory, we'll show

$$
\begin{aligned}
\operatorname{gr}_{*}^{\boldsymbol{w}} \mathrm{H}_{*}^{\mathrm{BM}, G}(\mathcal{U}(\beta)) & \simeq\left[a^{|\beta|-r}\right] \operatorname{HHH}(\hat{\beta}), \\
\operatorname{gr}_{*}^{\boldsymbol{w}} \mathrm{H}_{*}^{\mathrm{BM}, G}(\mathcal{X}(\beta)) & \simeq\left[a^{|\beta|+r}\right] \operatorname{HHH}(\hat{\beta}),
\end{aligned}
$$

where HHH is triply-graded Khovanov-Rozansky homology and $r=\operatorname{rk}(W)$.

GHMN proved that for any braid β,

$$
\left[a^{|\beta|-r}\right] \operatorname{HHH}(\hat{\beta}) \simeq\left[a^{|\beta|+r}\right] \operatorname{HHH}\left(\widehat{\beta \Delta^{2}}\right)
$$

Thm $1\left(\mathcal{U}_{g}\right.$ vs $\left.\mathcal{V}_{g}\right)$ is a special case of Thm 2, which in turn will be a corollary of a stronger result.

The Steinberg variety of β is

$$
\mathcal{Z}(\beta)=\mathcal{U}(\mathbf{1}) \times_{\mathcal{U}} \mathcal{U}(\beta)
$$

Via pull-push functors,

$$
\mathrm{H}_{*}^{\mathrm{BM}, G}(\mathcal{Z}(\mathbf{1}))
$$

forms an algebra that acts on $\mathrm{H}_{*}^{\mathrm{BM}, G}(\mathcal{Z}(\beta))$.

Thm (Lusztig '88) As algebras,

$$
\mathrm{H}_{*}^{\mathrm{BM}, G}(\mathcal{Z}(\mathbf{1})) \simeq \mathbf{C}[W] \ltimes \operatorname{Sym}(\mathrm{t}),
$$

where \mathbf{t} is the Cartan algebra of $\mathbf{g}=\operatorname{Lie}(G)$.

Thm 3 For any positive β and $0 \leq k \leq r$, we have

$$
\left[\Lambda^{k}(\mathrm{t})\right] \mathrm{gr}_{*}^{\boldsymbol{w}} \mathrm{H}_{*}^{\mathrm{BM}, G}(\mathcal{Z}(\beta)) \simeq\left[a^{|\beta|-r+2 k}\right] \operatorname{HHH}(\hat{\beta})
$$

§3 Traces on the Hecke Category

Thm 3 relies on work of Webster-Williamson.

Recall that Khovanov-Rozansky homology is really a monoidal trace functor

$$
\mathrm{HHH}: \mathbf{H}_{W} \rightarrow \text { Vect }_{3},
$$

where $\mathbf{H}_{W}=\mathrm{K}^{b}\left(\mathbf{S B i m}_{W}\right)$ is the Hecke category.
Rouquier gave a "strict" categorification of $B r_{W}$:

$$
\beta \mapsto \mathcal{R}(\beta)
$$

such that $\operatorname{HHH}(\hat{\beta}) \propto \operatorname{HHH}(\mathcal{R}(\beta))$.

Webster-Williamson constructed this functor from the geometry of "mixed sheaves".

Bruhat decomposition: $\quad G=\coprod_{w \in W} B_{+} w B_{+}$
Let IC_{w} be the perverse sheaf formed by !*-extension of the constant sheaf along $B w B \hookrightarrow G$.

Soergel essentially matched $\mathbf{S B i m}_{W}$ with

$$
\left\langle\mathrm{IC}_{w}\langle m\rangle \left\lvert\, \begin{array}{l}
w \in W \\
m \in \mathbf{Z}
\end{array}\right.\right\rangle_{\oplus} \subseteq \mathrm{D}_{m}^{b}\left(B_{+} \backslash G / B_{+}\right)
$$

where D_{m}^{b} is the mixed derived category and $\langle 1\rangle$ is the shift-twist.

Roughly, pull-push through the horocycle diagram

$$
\left[B_{+} \backslash G / B_{+}\right] \leftarrow\left[G / B_{+}, \mathrm{Ad}\right] \rightarrow\left[G / G_{\mathrm{Ad}}\right]
$$

categorifies the cocenter map of the Hecke algebra.

The functor

$$
\mathrm{CH}: \mathrm{D}_{m}^{b}\left(B_{+} \backslash G / B_{+}\right) \rightarrow \mathrm{D}_{m}^{b}\left(G / G_{\mathrm{Ad}}\right)
$$

induces a monoidal trace on \mathbf{H}_{W}.
Thm (WW) For all $w \in W$, we have

$$
\operatorname{gr}_{i+j}^{\boldsymbol{w}} \mathrm{H}_{G}^{j}\left(G, \mathrm{CH}\left(\mathrm{IC}_{w}\right)\right) \simeq \operatorname{HH}^{i}\left(\mathrm{H}_{B \times B}^{i+j}\left(G, \mathrm{IC}_{w}\right)\right),
$$

where HH^{*} is Hochschild homology over $\operatorname{Sym}(\mathbf{t})$.
So HHH factors as

$$
\mathbf{H}_{W} \xrightarrow{\mathrm{CH}} \mathrm{~K}^{b}\left(\mathbf{C}_{G}\right) \xrightarrow{\mathrm{gr}_{*}^{w} \mathrm{H}_{G}^{*}} \text { Vect }_{3}
$$

where $\mathbf{C}_{G}=\left\langle\mathrm{CH}\left(\mathrm{IC}_{w}\right)\langle m\rangle: w, m\right\rangle_{\oplus} \subseteq \mathrm{D}_{m}^{b}\left(G / G_{\mathrm{Ad}}\right)$.
Want to assemble this into the homology of a variety.

Let $i: \mathcal{U} \rightarrow G$ be the inclusion. We build:

$$
\begin{array}{ccc}
\mathrm{K}^{b}\left(\mathbf{S B i m}_{W}\right) & \xrightarrow{\mathrm{CH}} \mathrm{~K}^{b}\left(\mathbf{C}_{G}\right) \xrightarrow{\iota^{*}} & \mathrm{~K}^{b}\left(\mathbf{C}_{\mathcal{U}}\right) \\
\stackrel{\rho}{ } & \downarrow \rho \\
\mathrm{D}_{m}^{b}\left(B_{+} \backslash G / B_{+}\right) \xrightarrow{\mathrm{CH}} \mathrm{D}_{m}^{b}(G / G) \xrightarrow{\iota^{*}} & \mathrm{D}_{m}^{b}(\mathcal{U} / G)
\end{array}
$$

The ρ are weight realization functors. Their existence uses an Ext-vanishing condition that fails for \mathbf{C}_{G}.

Let $\mathcal{S} \in \mathrm{D}_{m}^{b}(\mathcal{U} / G)$ be the (mixed) Springer sheaf.
Lem As contravariant functors on $\underline{\mathbf{C}}_{G}$,

$$
\left(\operatorname{gr}_{i+j}^{\boldsymbol{w}} \mathrm{H}_{G}^{j}(G,-)\right)^{\vee} \propto\left[\Lambda^{i}(\mathbf{t})\right] \underline{\operatorname{Hom}}^{0}\left(i^{*}(-), \mathcal{S}\langle j\rangle\right)
$$

Can check on summands of the Grothendieck sheaf.

Pf sketch of Thm 3 Chasing $\mathcal{R}(\beta)$ through the upper-right part and applying
$(\boldsymbol{\ell}) \quad \bigoplus_{i, j}[\Lambda(\mathbf{t})]{\underline{\operatorname{Hom}^{0}}}^{0}\left(-, \mathcal{S}\langle j\rangle[i-j]_{\triangle}\right)$, we recover $\operatorname{HHH}(\hat{\beta})^{\vee}$, by Thm (WW) and Lem.

Chasing it through the lower-left and applying
($\mathbf{~)} \quad \bigoplus_{i, j}[\Lambda(\mathbf{t})] \mathrm{gr}_{j}^{\boldsymbol{w}} \underline{\operatorname{Hom}}^{i}(-, \mathcal{S})$,
we recover $[\Lambda(\mathrm{t})] \mathrm{gr}_{*}^{w} \mathrm{H}_{*}^{\mathrm{BM}, G}(\mathcal{Z}(\beta))$.

Finally, match (\%) and ($\boldsymbol{\oplus})$ using "purity" in $\mathbf{C}_{\mathcal{U}}$.

Slogan: Difference between Springer and Grothendieck is homology of a maximal torus, i.e., $\Lambda(\mathbf{t})$.

Ex Take $G=\mathrm{SL}_{2}$ and $W=S_{2}$ and $\beta=\sigma^{3}$.
Here, $\hat{\beta}$ is a trefoil and

$$
\begin{aligned}
& \operatorname{dim}_{a, q, t} \operatorname{HHH}(\hat{\beta}) \\
& =a^{2}\left(q^{-1}+q t^{2}\right)+a^{4} t^{3} \\
& =(a t)^{|\beta|} a^{-r}\left(q^{-1} t^{-3}+q t^{-1}-\left(a^{2} q^{\frac{1}{2}} t\right) q^{-\frac{1}{2}} t^{-1}\right) .
\end{aligned}
$$

The tuples $(0,-2,3),(0,2,1),(1,-1,1)$ correspond to

$$
\operatorname{gr}_{0}^{\boldsymbol{w}} \mathrm{H}_{2}^{\mathrm{BM}, G}, \quad \operatorname{gr}_{4}^{\boldsymbol{w}} \mathrm{H}_{4}^{\mathrm{BM}, G}, \quad \operatorname{gr}_{2}^{w} \mathrm{H}_{2}^{\mathrm{BM}, G} .
$$

The red term is the difference between $\mathrm{H}_{*}^{\mathrm{BM}, G}(\mathcal{U}(\beta))$ and $\mathrm{H}_{*}^{\mathrm{BM}, G}(\mathcal{Z}(\beta))$.

Note that $[\mathcal{U}(\beta) / G]$ retracts onto a 2 -sphere.
§4 $\mathcal{M}_{\gamma} / \Lambda_{\gamma}$ versus $\mathcal{T}(\beta)$
Recall the affine Grassmannian:

$$
\mathcal{M}(\mathbf{C})=G(\mathbf{C}((x))) / G(\mathbf{C} \llbracket x \rrbracket)
$$

Any $\gamma \in \mathbf{g}(\mathbf{C}((x)))$ defines a vector field on \mathcal{M}.

If γ is regular semisimple, then the fixed-point locus

$$
\mathcal{M}_{\gamma}=\left\{[g] \in \mathcal{M} \mid \operatorname{Ad}\left(g^{-1}\right) \gamma \in \mathbf{g}(\mathbf{C} \llbracket x \rrbracket)\right\}
$$

is a finite-dimensional ind-scheme called the affine Springer fiber of γ.

Note that $G_{\gamma}:=G(\mathbf{C}((x)))_{\gamma} \curvearrowright \mathcal{M}_{\gamma}$. Let

$$
\Lambda_{\gamma}=\operatorname{Im}\left(\lambda \mapsto x^{\lambda}: \mathbf{X}_{*}\left(G_{\gamma}\right) \rightarrow G_{\gamma}\right)
$$

Kazhdan-Lusztig show $\mathcal{M}_{\gamma} / \Lambda_{\gamma}$ is a projective variety.

Let $\mathbf{c}=\mathbf{g} / / G \simeq \mathbf{t} / / W$, the Chevalley quotient.
If $\mathbf{g} \rightarrow \mathbf{c}$ sends $\gamma \mapsto a \in \mathbf{c}(\mathbf{C} \llbracket x \rrbracket)$, then the \simeq type of

$$
\left(\mathcal{M}_{\gamma}, \Lambda_{\gamma}\right)
$$

only depends on a.

At the same time, a defines an infinitesimal loop in $\mathbf{c}^{\text {reg }}=\mathbf{t}^{\text {reg }} / / W$. Turns out to give a conjugacy class

$$
[\beta] \subseteq B r_{W}
$$

How does the topology of \mathcal{M}_{γ} depend on $[\beta]$?
Conj 1 If γ is nil-elliptic ($\Longrightarrow \hat{\beta}$ is a knot), then $[\mathcal{U}(\beta) / G]$ essentially deformation retracts onto \mathcal{M}_{γ}.

Special case of a more general conjecture.

In general: Suppose $\beta=\sigma_{s_{1}} \cdots \sigma_{s_{k}}$ with s_{i} 's simple,

$$
\beta \mapsto w \in W .
$$

The rank of Λ_{γ} equals $\operatorname{dim} \mathbf{t}^{w}$.
Fix $B=T \ltimes U \subseteq G$ and a lift $W \rightarrow N(T)$. Let

$$
m_{\beta}:\left(T^{w}\right)^{\circ} \times \dot{s}_{i_{1}} U_{\alpha_{i_{1}}} \times \cdots \times \dot{s}_{i_{k}} U_{\alpha_{i_{k}}} \rightarrow G
$$

be the multiplication map, and let $\mathcal{T}(\beta)=m_{\beta}^{-1}(\mathcal{U})$.

When β contains Δ as a prefix, there is a T^{w}-bundle

$$
\mathcal{T}(\beta) \rightarrow[\mathcal{U}(\beta) / G] .
$$

Expect $\mathcal{T}(\beta)$ may be related to y-ified HHH , just as $[\mathcal{U}(\beta) / G]$ is related to usual HHH.

Conj 2 For arbitrary γ such that $\gamma(0)=0$, we have a commutative diagram

Moreover, the retraction identifies:
halved weight filtration on $\mathcal{T}(\beta)$

$$
\simeq
$$

perverse filtration on $\mathcal{M}_{\gamma} / \Lambda_{\gamma}$
View $\mathcal{T}(\beta)$ and $\mathcal{M}_{\gamma} / \Lambda_{\gamma}$ as Betti and Dolbeault sides of a nonabelian Hodge correspondence.

Thm 4 Evidence for diagram at level of q-deformed Euler characteristics, for equivalued elliptic γ.

Ex \quad Take $G=\mathrm{SL}_{2}$ and $S_{2}=\langle s\rangle$ and $B r_{2}=\langle\sigma\rangle$.

If $\beta=\sigma^{2}$, then $w=1$ and $\left(T^{w}\right)^{\circ}=T$.

$$
\begin{aligned}
\mathcal{T}(\beta) & =\left\{\left(a, z_{1}, z_{2}\right): \operatorname{tr}\left(\begin{array}{cc}
a & \frac{1}{a}
\end{array}\right)\left(\begin{array}{cc}
& -1 \\
1 & z_{1}
\end{array}\right)\left(\begin{array}{c}
-1 \\
1 \\
z_{2}
\end{array}\right)=2\right\} \\
& =\left\{\left(a, z_{1}, z_{2}\right) \in \mathbf{G}_{m} \times \mathbf{A}^{2}: z_{1} z_{2}=(1+a)^{2}\right\}
\end{aligned}
$$

deformation retracts onto a pinched torus.
Thank you for listening.
If $\beta=\sigma^{3}$, then $w=s$ and $\left(T^{w}\right)^{\circ}=1$.

$$
\begin{aligned}
\mathcal{T}(\beta) & =\left\{\left(z_{1}, z_{2}, z_{3}\right): \operatorname{tr}\left(\begin{array}{c}
-1 \\
1 \\
z_{1}
\end{array}\right)\binom{-1}{1 z_{2}}\binom{-1}{1 z_{3}}=2\right\} \\
& =\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbf{A}^{3}: z_{1} z_{2} z_{3}=2+z_{1}+z_{2}+z_{3}\right\}
\end{aligned}
$$

deformation retracts onto a sphere.

