UNIPOTENT ELEMENTS AND TWISTING IN LINK HOMOLOGY

MINH-TÂM QUANG TRINH

ABSTRACT. Let \(\mathcal{U} \) be the unipotent variety of a complex reductive group \(G \). Fix opposed Borel subgroups \(B_+ \subseteq G \) with unipotent radicals \(U_+ \). The map that sends \(x_+x_- \mapsto x_+x_-x_+^{-1} \) for all \(x_+ \in U_+ \) restricts to a map from \(U_+U_- \cap gB_+ \) into \(\mathcal{U} \cap gB_+ \), for any \(g \). We conjecture that the restricted map forms half of a homotopy equivalence between these varieties, and thus, induces a weight-preserving isomorphism between their compactly-supported cohomologies. Noting that the map is equivariant with respect to certain actions of \(B_+ \cap gB_+g^{-1} \), we prove for type \(A \) that an equivariant analogue of this isomorphism exists. Curiously, this follows from a certain duality in Khovanov–Rozansky homology, a tool from knot theory.

1. Introduction

1.1. Let \(G \) be a complex, connected, reductive algebraic group. Let \(B_+ \) and \(B_- \) be opposed Borel subgroups of \(G \), and let \(U_\pm \) be the unipotent radical of \(B_\pm \). For instance, if \(G \) is the group of invertible \(n \times n \) matrices \(GL_n \), then we can choose \(U_+ \), resp. \(U_- \), to be the subgroup of upper-triangular, resp. lower-triangular, matrices with 1’s along the diagonal. Every element of \(U_+U_- \) can be written uniquely in the form \(x_+x_- \), where \(x_+ \in U_+ \).

Let \(\mathcal{U} \subseteq G \) be the closed subvariety of unipotent elements. With the notation above, there is a map \(\Phi : U_+U_- \to \mathcal{U} \) defined by

\[
\Phi(x_+x_-) = x_+x_-x_+^{-1}.
\]

Note that \(U_+U_- \) is an affine space, whereas \(\mathcal{U} \) is usually singular. Nonetheless, in the analytic topology, the sets \(U_+U_-(C) \) and \(\mathcal{U}(C) \) are homotopy equivalent, as they are both contractible.

For any \(g \in G(C) \), the map \(\Phi \) restricts to a map \(\Phi_g : \mathcal{U}_g \to \mathcal{U}_g \), where

\[
\mathcal{U}_g = \mathcal{U} \cap gB_+,
\]

\[
\mathcal{V}_g = U_+U_- \cap gB_+.
\]

Note that \(\mathcal{U}_g, \mathcal{V}_g, \Phi_g \) only depend on the coset \(gB_+ \). We endow \(\mathcal{U}_g(C) \) and \(\mathcal{V}_g(C) \) with the analytic topology. The new idea proposed in this note is:

Conjecture 1. The map \(\Phi_g \) defines half of a homotopy equivalence between \(\mathcal{U}_g(C) \) and \(\mathcal{V}_g(C) \).

The simplest case is \(g \in B_+(C) \). Here, \(\mathcal{U}_g(C) = U_+(C) = \mathcal{V}_g(C) \) and \(\Phi_g \) is a retract from the affine space \(U_+(C) \) onto the point corresponding to the identity of \(G(C) \). In general, neither \(\mathcal{U}_g(C) \) nor \(\mathcal{V}_g(C) \) will be contractible, as we will show in Section 3 through examples.
We emphasize that for an arbitrary map of varieties $\Phi : Y \to X$ that induces a homotopy equivalence on \mathbb{C}-points, there may not exist a nonconstant map of varieties $X \to S$ such that Φ induces a homotopy equivalence of fibers $Y_s(\mathbb{C}) \to X_s(\mathbb{C})$ for every $s \in S(\mathbb{C})$. For instance, take Φ to be the projection from a quadric cone onto its axis of symmetry. Both total spaces are contractible, so Φ is automatically a homotopy equivalence. For the map of fibers over s to be a homotopy equivalence as well, $X_s(\mathbb{C})$ must contract onto the origin of $X(\mathbb{C}) = \mathbb{C}$.

Since $X \to S$ is nonconstant, some s must violate this condition.

1.2. Some motivation for Conjecture 1 comes from classical results about finite groups of Lie type. To state them, let us implicitly replace G with its split form over a finite field \mathbb{F} of good characteristic.

In [S, Thm. 15.1], Steinberg showed the identity $|U(\mathbb{F})| = |U_+U_-(\mathbb{F})|$. In [Ka, §4], Kawanaka showed an identity equivalent to $|U_g(\mathbb{F})| = |V_g(\mathbb{F})|$; (1.1) see Remark 22. More recently, Lusztig has given a new proof of (1.1) in [L].

Conjecture 1 essentially implies (1.1). Indeed, once one checks that U_g and V_g have the same dimension, Conjecture 1 implies that Φ_g induces an isomorphism between the rational, compactly-supported cohomologies of U_g and V_g. Since Φ_g is algebraic, this isomorphism must match their weight filtrations in the sense of mixed Hodge theory. One can further check that both sides of (1.1) are polynomial functions of $|\mathbb{F}|$, so by the results explained in [Kat], the virtual weight polynomials of U_g and V_g specialize to their \mathbb{F}-point counts.

Our main result is evidence for an equivariant analogue of Conjecture 1. Let $T = B_+ \cap B_-$, so that $B_+ = TU_+ \simeq T \times U_+$. The map Φ transports the B_+-action on $U_+ U_-$ defined by

$$tu \cdot x = (txu(t^{-1}))(txu(t^{-1}))$$

for all $(t, u) \in T \times U_+$ onto the B_+-action on U by left conjugation. Setting

$$H_g = B_+ \cap gB_+ g^{-1},$$

we find that these B_+-actions restrict to H_g-actions on V_g and U_g, respectively. The B_+-equivariance of Φ thus restricts to H_g-equivariance of Φ_g. Though we do not have a general theorem about Φ_g itself, we prove:

Theorem 2. If G is a split reductive group of type A over \mathbb{F}, then for all $g \in G(\mathbb{F})$, there is an isomorphism of bigraded vector spaces

$$\text{gr}_W^* H^*_{c,H_g}(U_g, \mathbb{Q}_\ell) \simeq \text{gr}_W^* H^*_{c,H_g}(V_g, \mathbb{Q}_\ell),$$

where $H^*_{c,H_g}(-, \mathbb{Q}_\ell)$ denotes H_g-equivariant, compactly-supported ℓ-adic cohomology and W denotes its weight filtration.

The proof in Sections 4–5 uses ideas from the rather different world of low-dimensional topology, as we now explain.
Let \mathcal{X}_g be the variety of Borel subgroups of G in generic position with respect to both B_+ and gB_+g^{-1}. In Section 4, we will construct an isomorphism $\mathcal{X}_g \rightarrow \mathcal{Y}_g$ that transports the H_g-action on \mathcal{X}_g by left conjugation to the H_g-action on \mathcal{Y}_g described above.

The variety \mathcal{X}_g is closely related to the so-called braid varieties that have been studied recently by several authors, including [M, SW, CGGS, GL]. To be more precise: Let W be the Weyl group of G, and let Br^+_W be the positive braid monoid of W. By definition, Br^+_W is generated by elements σ_w for each $w \in W$ modulo $\sigma_{ww'} = \sigma_w \sigma_{w'}$ whenever $\ell(ww') = \ell(w) + \ell(w')$, where ℓ is the Bruhat length function on W. A braid variety is a configuration space of tuples of Borels, where the relative positions of cyclically consecutive Borels have constraints determined by a fixed element $\beta \in Br^+_W$. Note that there is a central element $\pi \in Br^+_W$ known as the full twist and given by $\pi = \sigma_{w_0}^2$, where w_0 is the longest element of W. In the notation of [T, Appendix B], the variety \mathcal{X}_g is isomorphic to the braid variety attached to $\sigma_w \pi$, where w is the relative position of the pair (B_+, gB_+g^{-1}).

In [T], it was shown that the weight filtration on the equivariant, compactly-supported cohomology of the braid variety of β encodes a certain summand of a certain triply-graded vector space attached to β, known as its HOMFLYPT or Khovanov–Rozansky (KR) homology. When W is the symmetric group S_n, the braid β represents the isotopy class of a topological braid on n strands, and the KR homology of β is an isotopy invariant of the link closure of β, up to grading shifts [KR, Kh].

At the same time, when w is the relative position of (B_+, gB_+g^{-1}), it turns out that \mathcal{U}_g is closely related to another variety attached to σ_w in [T]. Just as \mathcal{X}_g encodes the “highest a-degree” of the KR homology of $\sigma_w \pi$, so \mathcal{U}_g encodes the “lowest a-degree” of the KR homology of σ_w. For $W = S_n$, Gorsky–Hogancamp–Mellit–Nagakane have established an isomorphism between these bigraded vector spaces for general braids β, not just σ_w, which they deduce from an analogue of Serre duality for the homotopy category of Soergel bimodules for S_n [GHMN]. Our Theorem 2 follows from this isomorphism.

This proof suggests that we regard Conjecture 1 as a geometric realization of the (purely algebraic) Serre duality of [GHMN]. Moreover, it suggests an extension of Conjecture 1 with positive braids in place of elements of W. We state the extended conjecture in Section 5.

The isomorphism of ibid. categorifies an earlier identity of Kálmán, relating the bivariate HOMFLY series of the link closures of β and $\beta \pi$. In [T], we generalized Kálmán’s theorem to the braids associated with arbitrary finite Coxeter groups. (We expect, but do not show, that [GHMN] admits a similar generalization.) For Weyl groups, we also interpreted our result as an identity of \mathbb{F}-point counts. In Section 6, we review these results, and explain how they recover (1.1).

1.3. Acknowledgments. I thank George Lusztig and Zhiwei Yun for helpful discussions. During this work, I was supported by a Mathematical Sciences Postdoctoral Fellowship (grant #2002238) from the National Science Foundation.
2. Reductions

In this section, we collect lemmas about easy reductions and special cases of the conjecture.

Lemma 3. If \(G = G_1 \times G_2 \), where \(G_1, G_2 \) are again reductive, then Conjecture 1 holds if and only if it holds with \(G_1 \) in place of \(G \) and with \(G_2 \) in place of \(G \).

Proof. We can factor \(U_{\pm} = U_{\pm,1} \times U_{\pm,2} \) and \(\mathcal{U} = \mathcal{U}_1 \times \mathcal{U}_2 \) and \(\Phi = \Phi^{(1)} \times \Phi^{(2)} \), where \(U_{\pm,i}, \mathcal{U}_i, \Phi^{(i)} \) are the analogues of \(U_{\pm}, \mathcal{U}, \Phi \) with \(G_i \) in place of \(G \). \(\square \)

Lemma 4. Both \(U_g \) and \(V_g \) are contained within the derived subgroup \(G_{\text{der}} \subseteq G \). In particular, we can assume \(G \) is semisimple in Conjecture 1.

Proof. It is enough to show \(U \subseteq G_{\text{der}} \), because in that case, we also have \(U_+ U_- \subseteq G_{\text{der}} G_{\text{der}} = G_{\text{der}} \). Suppose instead that \(U \not\subseteq G_{\text{der}} \). Then \(G/G_{\text{der}} \) contains nontrivial unipotent elements, because homomorphisms of algebraic groups preserve Jordan decompositions [Mi, §9.21]. But \(G/G_{\text{der}} \) is isogeneous to the center of \(G \) by [Mi, Ex. 19.25], so it is a torus, in which the only unipotent element is the identity. \(\square \)

Lemma 5. The map \(\Phi_g \) is unchanged, up to composition with maps that induce homeomorphisms on \(\mathbb{C} \)-points, when we replace \(G \) with the adjoint group \(G_{\text{ad}} = G/Z(G) \) and \(g \) with its image in \(G_{\text{ad}} \). In particular, Conjecture 1 is equivalent to its analogue where we replace \(G \) with any quotient by a central isogeny, and \(g \) with its image in that quotient.

Proof. Let \(\bar{U}_{\pm} \) and \(\bar{\mathcal{U}} \) be the respective analogues of \(U_{\pm} \) and \(\mathcal{U} \) with \(G_{\text{ad}} \) in place of \(G \). Again using the preservation of Jordan decomposition, and the fact that central elements of \(G \) are semisimple, we can check that the quotient map \(G \to G_{\text{ad}} \) restricts to maps \(U_{\pm} \to \bar{U}_{\pm} \) and \(\mathcal{U} \to \bar{\mathcal{U}} \) that give rise to bijections on field-valued points. Writing \(\bar{\Phi} : \bar{U}_+ \bar{U}_- \to \bar{\mathcal{U}} \) for the analogue of \(\Phi \), we see that the diagram

\[
\begin{array}{ccc}
U_+ U_- & \xrightarrow{\Phi} & \mathcal{U} \\
\downarrow \quad & & \downarrow \\
\bar{U}_+ \bar{U}_- & \xrightarrow{\bar{\Phi}} & \bar{\mathcal{U}}
\end{array}
\]

commutes. Now the result follows. \(\square \)

The following lemma is motivated by the Bruhat decomposition

\[
G = \coprod_{w \in W} U_{\pm} \dot{w} B_+,
\]

where \(w \mapsto \dot{w} \) is any choice of set-theoretic lift from \(W \simeq N_G(T)/T \) into \(N_G(T) \). Note that \(\dot{w} B_+ \) only depends on \(w \) because \(T \subseteq B_+ \).

Lemma 6. If Conjecture 1 holds for some \(g \in G(\mathbb{C}) \), then it holds with \(u g \) in place of \(g \), for all \(u \in U_+(\mathbb{C}) \). In particular, if Conjecture 1 holds for all \(g \in N_G(T)(\mathbb{C}) \), then it holds in general.
Proof. We can factor Φ_{ug} as a composition

$$\gamma_{ug} \overset{\sim}{\rightarrow} \gamma_g \overset{\Phi_g}{\rightarrow} \mathcal{U}_g \overset{\sim}{\rightarrow} \mathcal{U}_{ug},$$

where the first arrow is left multiplication by u^{-1}, and the last arrow is left conjugation by u. Since these are both isomorphisms of varieties, we get the first assertion of the lemma. The second follows from the first via Bruhat. \hfill \square

If P_+ and P_- are opposed parabolic subgroups of G containing B_+ and B_-, respectively, and $L = P_+ \cap P_-$ is their common Levi subgroup, then we write $U_{\pm, P}$ for the unipotent radical of P_{\pm}, and write $B_{\pm, L}, U_{\pm, L}, \mathcal{U}_L$ for the analogues of $B_\pm, U_\pm, \mathcal{U}$ with L in place of G. Thus we have

$$P_\pm = LU_{\pm, P} \simeq L \ltimes U_{\pm, P},$$
$$B_\pm = B_{\pm, L}U_{\pm, P} \simeq B_{\pm, L} \ltimes U_{\pm, P},$$
$$U_\pm = U_{\pm, L}U_{\pm, P} \simeq U_{\pm, L} \ltimes U_{\pm, P}. $$

If $g \in L$, then we write $\mathcal{U}_{L,g}, \mathcal{V}_{L,g}, \Phi_{L,g}$ for the analogues of $\mathcal{U}_g, \mathcal{V}_g, \Phi_g$ with L in place of G.

Lemma 7. Let $P_\pm \supseteq B_\pm$ be opposed parabolic subgroups of G, and let $L = P_+ \cap P_-$. Then for all $g \in L(C)$, we have isomorphisms of algebraic varieties

$$\mathcal{U}_g \simeq \mathcal{U}_{L,g}U_{+, P} \simeq \mathcal{U}_{L,g} \times U_{+, P},$$
$$\mathcal{V}_g \simeq \mathcal{V}_{L,g}U_{+, P} \simeq \mathcal{V}_{L,g} \times U_{+, P}. $$

In particular, if $g \in G(C)$ belongs to a Levi subgroup of G, then in Conjecture 1, we can replace G with that Levi subgroup.

Proof. Since the decomposition $P_+ \simeq L \ltimes U_{+, P}$ preserves Jordan decompositions, we have $U \cap P_+ = \mathcal{U}_{L}U_{+, P} \simeq \mathcal{U}_{L} \times U_{+, P}$. Intersecting with gB_+, we get

$$\mathcal{U} \cap gB_+ = (\mathcal{U}_L \cap gB_{+, L})U_{+, P} \simeq (\mathcal{U}_L \cap gB_{+, L}) \times U_{+, P}. $$

Next, $U_+U_- \cap gB_+ \subseteq gB_+ \subseteq P_+$ and $U_- \cap P_+ = U_{-, L} \cap P_+$ together imply $U_+U_- \cap gB_+ = U_+U_{-, L} \cap gB_+$, from which

$$U_+U_- \cap gB_+ = U_+U_{-, L}U_{+, P}U_{-, L} \cap gB_+U_{+, P}$$
$$= (U_{+, L}U_{-, L} \cap gB_{+, L})U_{+, P}$$
$$\simeq (U_{+, L}U_{-, L} \cap gB_{+, L}) \times U_{+, P}. $$

So it remains to prove the last assertion in the lemma. For this, it is more convenient to use the decomposition $\gamma_g = U_{+, P} \mathcal{V}_{L,g} \simeq U_{+, P} \times \mathcal{V}_{L,g}$. For all $(x, y_+, y_-) \in U_{+, P} \times U_{+, L} \times U_{-, L}$, observe that

$$\Phi_g(xy+y^{-1}x^{-1} = \text{Ad}_x(\Phi_{L,g}(y+y_-),$$

where $\text{Ad}_x(u) = xux^{-1}$. A choice of deformation retract from $U_{+, P}(C)$ onto $\{1\}$ induces a homotopy from $\text{Ad}_x : \mathcal{U}_g \rightarrow \mathcal{U}_g$ onto $\text{id} : \mathcal{U}_g \rightarrow \mathcal{U}_g$, which in turn
induces a homotopy from $\Phi_g : V_g \to U_g$ onto the composition

$$V_g \xrightarrow{p_{L,g}} V_{L,g} \xrightarrow{\Phi_{L,g}} U_{L,g} \xrightarrow{i_{L,g}} U_g,$$

where $p_{L,g} : V_g \to V_{L,g}$ is the retract induced by the projection $U_{+,p}(C) \to \{1\}$ and $i_{L,g} : U_{L,g} \to U_g$ is the section induced by the inclusion $\{1\} \to U_{+,p}(C)$. Therefore, $\Phi_{L,g}$ being half of a homotopy equivalence is equivalent to Φ_g being half of a homotopy equivalence. □

Lemma 8. Conjecture 1 holds for $g \in B_+(C)$.

As observed in the introduction, this can be proved by computing $U_g(C), V_g(C),$ and Φ_g directly. Alternatively:

Proof. Since U_g, V_g, Φ_g only depend on gB_+, we can assume $g = 1$. Then Lemma 7 reduces us to the case $G = T$, where $U_g = \{1\} = V_g$. □

3. Examples

3.1. By Lemmas 3–5, it suffices to check Conjecture 1 for one representative G from each central isogeny class of semisimple algebraic group with connected Dynkin diagram. Moreover, by Lemma 6, it suffices to fix a lift $w \mapsto \dot{w}$ from W into $N_G(T)$ and check Conjecture 1 for cosets of the form $gB_+ = \dot{w}B_+$. In this section, we settle the conjecture completely for $G \in \{\text{SL}_2, \text{SL}_3\}$, and check one further case in which $G = \text{Sp}_4$.

Without loss of generality, we can always take $U_+, \text{resp.} U_-$, to be the group of unipotent upper-triangular, resp. unipotent lower-triangular, matrices in G. To produce defining equations for U, we use the coefficients of the map that sends $g \in G$ to its characteristic polynomial. We write e for the identity element of W.

3.2. The Group SL_2. We have $U = \{g \in \text{SL}_2 \mid \text{tr}(g) = 2\}$.

The map $\Phi : U_+ U_- \to U$ is

$$\Phi \left(\begin{pmatrix} 1 & b \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ b' \end{pmatrix} \right) = \begin{pmatrix} 1 + bb' & -b'^2 \\ b' & 1 - bb' \end{pmatrix}.$$

We can write $W = \{e, w_0\}$. By Lemmas 6 and 8, it suffices to check $gB_+ = \dot{w}_0B_+$. The varieties U_g and V_g are

$$U_g = \left\{ \begin{pmatrix} X \\ -\frac{1}{2} \end{pmatrix} \right\} \bigg| X \neq 0,$$

$$V_g = \left\{ \begin{pmatrix} b' \\ -\frac{1}{b'} \end{pmatrix} \right\} \bigg| b' \neq 0.$$

The coordinates define isomorphisms $b' : U_g \xrightarrow{\sim} \mathbb{G}_m$ and $X : V_g \xrightarrow{\sim} \mathbb{G}_m$. The map Φ_g is an isomorphism of varieties, corresponding to setting $X = b'$.

3.3. The Group SL_3. Let $\Lambda^2(g)$ denote the exterior square of a matrix g. From the identity $2 \text{tr}(\Lambda^2(g)) = \text{tr}(g)^2 - \text{tr}(g^2)$, we have

$$\mathcal{U} = \left\{ g \in \text{SL}_3 \mid \begin{array}{l}
\text{tr}(g) = 3, \\
\text{tr}(\Lambda^2(g)) = 3
\end{array} \right\} = \left\{ g \in \text{SL}_3 \mid \begin{array}{l}
\text{tr}(g) = 3, \\
\text{tr}(g^2) = 3
\end{array} \right\}.$$

The map $\Phi : U_+ U_- \to \mathcal{U}$ is

$$\Phi \left(\begin{pmatrix} 1 & a & b \\ 1 & c & a' \\ 1 & b' & c' \end{pmatrix} \right) = \begin{pmatrix} 1 + aa' + bb' & ba' - a^2a' - abb' & -aca'b + a^2ca' + abc' \\
abla' + cb' & 1 - aa' + cc' - acb' & -ba' + ac'a - bcb' - c^2c + ac^2b' \\
b' & c' - ab' & 1 - bb' - cc' + abc' \end{pmatrix}.$$

We can write $W = \{ e, s, t, ts, st, w_0 \}$, where s and t are the simple reflections. The simple reflections lift to elements of $N_G(T)$ contained in proper Levi subgroups of G, so by the SL_2 case and Lemmas 4, 6, and 7, it remains to consider $gB_+ = \bar{w}B_+$ for $w \in \{ ts, st, w_0 \}$. In what follows, we choose s, t so that

$$sB_+ \subseteq \left\{ \begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \right\} \text{ and } tB_+ \subseteq \left\{ \begin{pmatrix} * & * \\ * & * \end{pmatrix} \right\}.$$

3.3.1. If $w = ts$, then the varieties \mathcal{U}_g and \mathcal{V}_g are

$$\mathcal{U}_g = \left\{ \begin{array}{l}
Y \\
\frac{1}{Y}Z \\
\frac{1}{Z} \left(3 + \frac{C}{Y} \right)
\end{array} \bigg| \begin{array}{l}
Y, Z \neq 0 \\
Z > \frac{1}{Y} \end{array} \right\},$$

$$\mathcal{V}_g = \left\{ \begin{array}{l}
-\frac{1}{\alpha'} b \\
\frac{1}{\alpha'} (2 - \frac{b}{c}) c
\end{array} \bigg| \begin{array}{l}
\alpha', c \neq 0 \\
\alpha' > -\frac{1}{\alpha'} \end{array} \right\}.$$

The coordinates define isomorphisms $(Y, Z, C) : \mathcal{U}_g \xrightarrow{\sim} G^2_m \times A^1$ and $(c, \alpha', b) : \mathcal{V}_g \xrightarrow{\sim} G^2_m \times A^1$. The map

$$\Phi_g(x_+ x_-) = \begin{pmatrix} -\frac{1}{\alpha'} & b + \frac{c}{\alpha'} \\
-\frac{1}{\alpha'} & c
\end{pmatrix}$$

is an isomorphism of varieties, corresponding to $(Y, Z, C) = (-\frac{1}{\alpha'}, c, b + \frac{c}{\alpha'})$.

3.3.2. If $w = st$, then the varieties are

$$\mathcal{U}_g = \left\{ \begin{array}{l}
X \\
Y \\
\frac{1}{Y} \left(3 - 3A + A^2 \right)
\end{array} \bigg| \begin{array}{l}
X, Y \neq 0 \\
X > Y \end{array} \right\},$$

$$\mathcal{V}_g = \left\{ \begin{array}{l}
\alpha' + \frac{c}{\alpha'} b \\
\frac{1}{\alpha'} c
\end{array} \bigg| \begin{array}{l}
b, \alpha' \neq 0 \\
\alpha' > -\frac{1}{\alpha'} \end{array} \right\}.$$
The coordinates define isomorphisms \((X,Y,A): \mathcal{U}_g \xrightarrow{\sim} G_m^2 \times \mathbb{A}^1\) and \((b,a',c): \mathcal{V}_g \xrightarrow{\sim} G_m^2 \times \mathbb{A}^1\). The map

\[
\Phi_g(x+x^-) = \begin{pmatrix}
a' & 2 + \frac{c}{b} \\
-ba' + \frac{c}{b} & 1 - \frac{c}{b}
\end{pmatrix}
\]

is an isomorphism of varieties, corresponding to \((X,Y,A) = (a', \frac{1}{b}, 1 + \frac{c}{b})\).

3.3.3. If \(w = w_0\), then the varieties are

\[
\mathcal{U}_g = \left\{ \begin{pmatrix} X & Z \\ A & C \end{pmatrix} \right| XZ \neq 0, (1 + \frac{A}{XZ})^3 + \frac{AC}{XZ} = 0 \right\},
\mathcal{V}_g = \left\{ \begin{pmatrix} b \\ 1 + cc' \\ c' \\
bb' + (bb')(cc') \right| b, b' \neq 0, b, b' \neq 0 \right\}.
\]

The coordinates define isomorphisms

\[
\mathcal{U}_g \xrightarrow{\sim} \{ (X, A, C) \in G_m^2 \times \mathbb{A}^2 | (1 + \frac{1}{XZ})^3 + \frac{AC}{XZ} = 0 \}
\]

\[
\mathcal{V}_g \xrightarrow{\sim} \{ (b, b', c, c') \in G_m^2 \times \mathbb{A}^2 | 1 + bb' + (bb')(cc') = 0 \}.
\]

The map

\[
\Phi_g(x+x^-) = \begin{pmatrix}
1 + cc' & b \\
(1 + bb')c' & 2 - cc'
\end{pmatrix}
\]

corresponds to setting \((X, Y, A, C) = (b, b, (1 + bb')c', (1 + \frac{1}{bb'})c)\). Note that \(\mathcal{U}_g\) and \(\mathcal{V}_g\) are not isomorphic as varieties.

Proposition 9. For \(G = SL_3\) and \(gG_+ = w_0B_+\), the map \(\Phi_g\) is neither injective nor surjective on \(\mathbb{C}\)-points, but does define half of a homotopy equivalence.

Proof. Let

\[
\mathcal{U}_g^1 = \{ (u, A, C) \in G_m \times \mathbb{A}^2 | AC = -(1 + u)(1 + \frac{1}{u})^2 \}
\]

\[
\mathcal{V}_g^1 = \{ (u, c, c') \in G_m \times \mathbb{A}^2 | cc' = -(1 + \frac{1}{u}) \}.
\]

Let \(\Phi_g^1: \mathcal{V}_g^1 \to \mathcal{U}_g^1\) be the map \(\Phi_g^1(u, c, c') = (u, (1 + u)c', (1 + \frac{1}{u})c)\). Then \(\Phi_g\) is a pullback of \(\Phi_g^1\), so it suffices to show the claim of the proposition with \(\mathcal{U}_g^1, \mathcal{V}_g^1, \Phi_g^1\) in place of \(\mathcal{U}_g, \mathcal{V}_g, \Phi_g\).

Observe that \(\Phi_g^1\) preserves \(u \in G_m\). Over the subvariety of \(G_m\) where \(u \neq -1\), the fibers of \(\mathcal{U}_g^1\) and \(\mathcal{V}_g^1\) are copies of \(G_m\): say, via the coordinates \(A\) and \(c\). In these coordinates, \(\Phi_g^1\) amounts to rotating \(G_m\) by \(1 + u\). Over the point \(u = -1\), the fibers are copies of the transverse intersection of two lines. Altogether, \(\mathcal{U}_g^1(C)\) and \(\mathcal{V}_g^1(C)\) are both homotopic to pinched tori, and \(\Phi_g^1\) induces a self-map of the pinched torus that preserves its longitude and top homology. Thus \(\Phi_g^1\) fits into a homotopy equivalence. It is neither injective nor surjective because \(\Phi_g^1(-1, c, c') = (-1, 0, 0)\). \(\square\)
3.4. The Group Sp_4. We set $\text{Sp}_4 = \{g \in \text{GL}_4 \mid g^t J g = J\}$, where

$$J = \begin{pmatrix} 1 & 1 \\ -1 & 1 \\ -1 & 0 \\ 0 & 0 \end{pmatrix}.$$

For Sp_4, the only nontrivial coefficients of the characteristic polynomial are $\text{tr}(g) = \text{tr}(A^3(g))$ and $\text{tr}(A^2(g))$, so similarly to SL_3, we have:

$$\mathcal{U} = \left\{ g \in \text{Sp}_4 \mid \begin{array}{l} \text{tr}(g) = 4, \\
\text{tr}(A^2(g)) = 4 \end{array} \right\} = \left\{ g \in \text{Sp}_4 \mid \text{tr}(g^2) = 4 \right\}.$$

The map $\Phi : U_4 U_4 \to \mathcal{U}$ is

$$\Phi = \begin{pmatrix} 1 + f_1 + g_1 & f_{1,2} + g_{1,2} & f_{1,3} + g_{1,3} & h_{1,4} \\ f_{2,1} + g_{2,1} & 1 - f_1 + g_2 & h_{2,3} & f_{1,3} - g_{1,3} \\ f_{3,1} + g_{3,1} & h_{3,2} & 1 - f_1 - g_2 & f_{1,2} - g_{1,2} \\ h_{4,1} & f_{3,1} - g_{3,1} & f_{2,1} - g_{2,1} & 1 + f_1 - g_1 \end{pmatrix},$$

where we set

$$f_1 = ba'd' + ada'd',
\quad g_1 = a'a' + bb' + cc' + adb',
\quad g_2 = -aa' + bb' + 4dd' - abc' - 3adb' + a^2 dc'$$

and

$$f_{1,2} = -(c + ab + a^2d)a'd',
\quad g_{1,2} = 2bd' + cb' - a(aa' + bb' + cc' - 2dd' + adb'),
\quad f_{1,3} = -ca' - b(aa' + bb' + cc' + 4dd') - 2cdb' + ad(aa' + cc' - 4dd' + adb'),
\quad g_{1,3} = -(b^2 - 2cd - a^2d^2)a'd',
\quad f_{2,1} = 2da'd',
\quad g_{2,1} = a' + be' + 2db' - ade',
\quad f_{3,1} = b' - ac',
\quad g_{3,1} = a'd'$$

and

$$h_{1,4} = -c(2aa' + 2bb' + cc') - 2b^2 d' - 2ad(cb' + 2bd' + add'),
\quad h_{2,3} = -2a'd' + 2d(aa' - 2bb' - 4dd') - b^2 c' + ad(2be' + 4db' - ade'),
\quad h_{3,2} = 2d' - 2ab' + a^2 c',
\quad h_{4,1} = c'.$$
We can write $W = \{ e, s, t, ts, st, sts, tst, w_0 \}$, where s and t are the simple reflections. By the SL$_2$ case and Lemmas 4, 6, and 7, it remains to consider $gB_+ = \check{w}B_+$ for $w \in \{ ts, st, sts, tst, w_0 \}$.

Below, we will only check $w = sts$. Without loss of generality, we can assume

$$stsB_+ = \left\{ \begin{pmatrix} Y & 2YD & \frac{1}{Y} \\ -X & -XA & -X(B + AD) \end{pmatrix} \right\} \quad X, Y \neq 0 \}.$$

The varieties \mathcal{U}_g and \mathcal{V}_g are

$$\mathcal{U}_g = \left\{ \begin{pmatrix} Y & 2YD & \frac{1}{Y} \\ -X & -XA & -X(B + AD) \end{pmatrix} \right\} \quad X, Y \neq 0, \quad XA(Y(B - AD) - \frac{1}{Y}(B + AD)) = \frac{1}{Y}(1 - Y)^4,$$

$$\mathcal{V}_g = \left\{ \begin{pmatrix} c \ |
2(1 + aa')d - c(a')^2 & ca' - 2ad \\
1 + aa' & -a \\
-\frac{1}{c} & -\frac{a}{c(1 + aa')} \\
\end{pmatrix} \right\} \quad c, 1 + aa' \neq 0 \}.$$

The coordinates define isomorphisms

$$\mathcal{U}_g \xrightarrow{\phi} \left\{ (X, Y, A, B, D) \in G_m^2 \times A^3 \mid XA(Y(B - AD) - \frac{1}{Y}(B + AD)) = \frac{1}{Y}(1 - Y)^4 \right\},$$

$$\mathcal{V}_g \xrightarrow{\phi} \{ (c, a, d, a') \in G_m \times A^3 \mid 1 + aa' \neq 0 \}.$$

The map

$$\Phi_g(x_+x_-) = \begin{pmatrix} c \\
1 + aa' & 2a(a' + \frac{1}{1 + aa'}) - c(a')^2 \\
\frac{1}{c} & \frac{a^2a'}{c(1 + aa')} \\
\frac{1}{1 + aa'} & 2a^2d'a' - \frac{a^2c(a')^3}{1 + aa'} \\
\end{pmatrix}$$

corresponds to setting

$$\begin{pmatrix} X \\
Y \\
A \\
B \\
D \end{pmatrix} = \begin{pmatrix} \frac{1}{c} \\
\frac{1}{1 + aa'} \\
-\frac{a^2a'}{1 + aa'} \\
a^2d'(1 + aa' + \frac{1}{1 + aa'}) - \frac{1}{2}a^2c(a')^3 \\
\end{pmatrix}.$$

Proposition 10. For $G = \text{Sp}_4$ and $gB_+ = stsB_+$, the map Φ_g is neither injective nor surjective on \mathbb{C}-points, but does define half of a homotopy equivalence.
Proof. The map Φ_g fits into a commutative diagram

\[\begin{array}{ccc}
\mathcal{V}_g & \xrightarrow{\Phi_g} & \mathcal{U}_g \\
\Psi_v & \downarrow & \Psi_u \\
\mathcal{V}_g^\dagger & \xrightarrow{\Phi_g^\dagger} & \mathcal{U}_g^\dagger
\end{array} \]

where the new varieties are

\[\mathcal{U}_g^1 = \{(X,Y,A,B_-,B_+) \in G_m^2 \times A^3 \mid XA(YB_- - \frac{B_+}{Y}) = \frac{1}{Y^2}(1 - Y)^4\}, \]

\[\mathcal{V}_g^1 = \{(c,u,a_1,a_2,d') \in G_m^2 \times A^3 \mid (u - 1)^4 = a_1a_2\}, \]

and the new maps are

\[\Phi_g^1(c,u,a_1,a_2,d') = (\frac{1}{u}, \frac{1}{u}, -\frac{a_2}{u}, 2ud' - ca_2, \frac{2d'}{u}), \]

\[\Psi_{uv}(X,Y,A,B) = (X, Y, A, B - AD, B + AD), \]

\[\Psi_v(c,a,d,a') = (c, 1 + aa', a^2a', a^2(a')^3, a^2da'). \]

The map Φ_g^1 is algebraically invertible, so to show that Φ_g induces a homotopy equivalence, it remains to study the topology of the maps Ψ_{uv} and Ψ_v.

To show that Ψ_{uv} induces a homotopy equivalence, we first note that it preserves $(X, A) \in A^2$. Over the subvariety of A^2 where $A \neq 0$, it is invertible. Over the line $A = 0$, the defining equations of \mathcal{U}_g and \mathcal{U}_g^1 both simplify to $(1 - Y)^4 = 0$, which has the unique solution $Y = 1$ over C, so over this line, the fibers of $\mathcal{U}_g(C)$ and $\mathcal{U}_g^1(C)$ are contractible, being copies of C^2.

To show that Ψ_v induces a homotopy equivalence, it suffices to show the same for the map from $\{(a,a') \in A^2 \mid aa' \neq -1\}$ into $\{(u,a_1,a_2) \in G_m \times A^2 \mid (u - 1)^4 = a_1a_2\}$. Indeed, this map restricts to an isomorphism from the subvariety where $aa' \neq 0$ onto the subvariety where $a_1a_2 \neq 0$, and collapses the subvariety where $aa' = 0$ onto the point $(u,a_1,a_2) = (1,0,0)$. The set of C-points in the domain where $aa' = 0$ is contractible, and the set of C-points in the target where $a_1a_2 = 0$ admits a deformation retract onto $\{(1,0,0)\}$. Therefore, Φ_g induces a homotopy equivalence on C-points. It is not injective because $\Phi_g(c,a,d,0) = (\frac{1}{c},1,0,0,0) = \Phi_g(c,0,d,a')$ for all (c,d,a,a') such that $aa' \neq -1$, and it is not surjective because the points of the form $(X,1,0,B,D) \in \mathcal{V}_g(C)$ with $B \neq 0$ do not appear in the image. \hfill \Box

4. Configurations of Flags

4.1. In this section, we relate \mathcal{U}_g and \mathcal{V}_g to varieties that were studied in [T]. Henceforth, we fix any field F of good characteristic for G, and replace G with its split form over F. We also assume that B_+ is defined over F.

Let B be the flag variety of G, i.e., the variety that parametrizes its Borel subgroups. As these subgroups are all self-normalizing and conjugate to one another, there is an isomorphism of varieties:

\[G/B_+ \xrightarrow{\sim} B \]

\[xB_+ \mapsto xB_+x^{-1} \]
It transports the G-action on G/B_+ by left multiplication to the G-action on B by left conjugation.

The orbits of the diagonal G-action on $B \times B$ can be indexed by the Weyl group W. The closure order on the orbits corresponds to the Bruhat order on W induced by the Coxeter presentation. For all $(B_1, B_2) \in B \times B$ and $w \in W$, we write $B_1 \xrightarrow{w} B_2$ to indicate that (B_1, B_2) belongs to the wth orbit, in which case we say that it is in relative position w. In particular, note that $B_+ \xrightarrow{w_0^{-1}} B_-$ because $B_\pm = \hat{w}_0 B_+ \hat{w}_0^{-1}$.

Under the Bruhat decomposition, (4.1) restricts to an isomorphism

\begin{equation}
U_+ \hat{w} B_+/B_+ \xrightarrow{\sim} \{ B \in B \mid B_+ \xrightarrow{w_0} B \},
\end{equation}

Each side is isomorphic to an affine space of dimension $\ell(w)$, where $\ell : W \to \mathbb{Z}_{\geq 0}$ is the Bruhat length function.

4.2. Fix $g \in G(F)$. Recall that $H_g = B_+ \cap gB_+ g^{-1}$ acts on $\mathcal{V}_g = U_+ U_- \cap gB_+$ according to (1.2). Let

$$
\mathcal{V}_g = \{ B \in B : B_+ \xrightarrow{w_0} B \xrightarrow{w_0} gB_+ g^{-1} \},
$$

and let H_g act on \mathcal{V}_g by left conjugation. We will prove:

Proposition 11. There is a H_g-equivariant isomorphism of varieties $\mathcal{V}_g \to \mathcal{V}_g$.

We give the proof in two steps. For convenience, we set $\mathcal{Y}_g = gU_+ \hat{w}_0 B_+/B_+ \subseteq G/B_+$. Let H_g act on $\mathcal{Y}_1 \cap \mathcal{Y}_g$ by left multiplication.

Lemma 12. The isomorphism (4.2) for $w = w_0$ restricts to an H_g-equivariant isomorphism $\mathcal{Y}_1 \cap \mathcal{Y}_g \xrightarrow{\sim} \mathcal{V}_g$.

Proof. Recall that (4.2) is G-equivariant. Under the action of an element x, the $w = w_0$ case is transported to an isomorphism

$$
\mathcal{Y}_g \xrightarrow{\sim} \{ B \in B \mid xB_+ x^{-1} \xrightarrow{w_0} B \}.
$$

On the right-hand side, the direction of the arrow $\xrightarrow{w_0}$ can be reversed because $w_0^{-1} = w_0$. Now take the fiber product of the isomorphisms for $x = 1$ and $x = g$ over the isomorphism (4.1).

In what follows, recall that via the decomposition $B_+ \simeq U_+ \rtimes T$, any element of B_+ can be written as ut for some uniquely determined $(u, t) \in U_+ \times T$. As a consequence, we also get a decomposition $\hat{w}_0 B_+ = U_- \hat{w}_0 T = U_- T \hat{w}_0$.

Lemma 13. The map

$$
\mathcal{V}_g = U_+ U_- \cap gB_+ \quad \to \quad \mathcal{Y}_1 \cap \mathcal{Y}_g \quad \xrightarrow{x_+ x_- = \text{gut}} \quad x_+ x_- t^{-1} \hat{w}_0 B_+ = g u \hat{w}_0 B_+
$$

is an H_g-equivariant isomorphism of varieties.

Proof. Let $\mathcal{V}_g' = U_+ \hat{w}_0 B_+ \cap gU_+ \hat{w}_0$. Since the map

$$
\mathcal{V}_g \quad \to \quad \mathcal{V}_g'
$$

$$
x_+ x_- = \text{gut} \quad \to \quad x_+ x_- t^{-1} \hat{w}_0 = g u \hat{w}_0$$
is an isomorphism, it remains to show that the map \(f : \mathcal{V}_g' \to \mathcal{Y}_1 \cap \mathcal{Y}_g \) given by

\[
\mathcal{V}_g' \to \mathcal{V}_g'B_+ \to (\mathcal{V}_g'B_+)/B_+ = \mathcal{Y}_1 \cap \mathcal{Y}_g
\]
is bijective on \(R \)-points for every \(\mathbf{F} \)-algebra \(R \). For convenience, we suppress \(R \) in the notation below.

Let \(yB_+ \in (\mathcal{V}_g'B_+)/B_+ \). Then we can write \(y = uw_0b = gu'u_0b' \) for some \(u, u' \in U_+ \) and \(b, b' \in B_+ \). Therefore, \(yB_+ = f(y(b')^{-1}) \), where \(y(b')^{-1} = gu'u_0 \in \mathcal{V}_g' \). This proves \(f^{-1}(yB_+) \) is nonempty. We claim that \(f^{-1}(yB_+) \) contains only one point. Recall that the map \(U_+ \to U_+\bar{w}_0B_+/B_+ \) that sends \(v \mapsto v\bar{w}_0B_+ \) is an isomorphism. Thus, \(v \neq u \) implies \(v\bar{w}_0B_+ \neq u\bar{w}_0B_+ \). We deduce that

\[
f^{-1}(yB_+) = f^{-1}(uw_0B_+)
\]
\[
\subseteq \bar{u}u_0B_+ \cap gU_+\bar{w}_0
\]
\[
\simeq (\bar{w}_0^{-1}g^{-1}uw_0)B_+ \cap U_+.
\]
But the intersection of \(U_+ \) with any coset of \(B_+ \) contains only one point. \(\square \)

4.3. Let \(\mathcal{O}_w, \mathcal{U}_w, \mathcal{X}_w \) be the varieties defined by

\[
\mathcal{O}_w = \{(B', B'') \in B \times B \mid B' \xrightarrow{w} B''\},
\]
\[
\mathcal{U}_w = \{(u, B') \in \mathcal{U} \times B \mid B' \xrightarrow{w} uB'u^{-1}\},
\]
\[
\mathcal{X}_w = \{(B, B', B'') \in B \times B \times B \mid B' \xrightarrow{w} B \xrightarrow{w_0} B'' \xrightarrow{w} B'\}.
\]
Let \(G \) act on these varieties by \(\text{diagonal} \) left conjugation. We regard \(\mathcal{U}_w \) and \(\mathcal{X}_w \) as varieties over \(\mathcal{O}_w \) via the \(G \)-equivariant maps \((u, B') \mapsto (B', uB'u^{-1}) \) and \((B, B', B'') \mapsto (B', B'') \), respectively.

Let \(H_g \) act on \(G \) by right multiplication. For any variety \(X \) with an \(H_g \)-action, let \(H_g \) act diagonally on \(X \times G \), and let \(G \) act on \((X \times G)/H_g \) by left multiplication on the second factor. Finally, fix a prime \(\ell > 0 \) invertible in \(\mathbf{F} \), so that we can form the equivariant \(\ell \)-adic compactly-supported cohomology groups

\[
H^*_c,\mathcal{H}_g(X) \simeq H^*_c,\mathcal{G}((X \times G)/H_g).
\]

With these conventions, we have:

Proposition 14. If \(B_+ \xrightarrow{w} gB_+g^{-1} \), then there are \(G \)-equivariant isomorphisms

\[
(\mathcal{O}_g \times G)/H_g \xrightarrow{\sim} \mathcal{U}_w,
\]
\[
(\mathcal{O}_g \times G)/H_g \xrightarrow{\sim} \mathcal{X}_w.
\]

In particular, they induce isomorphisms on compactly-supported cohomology:

\[
H^*_c,\mathcal{H}_g(\mathcal{O}_g, \mathcal{Q}_\ell) \xrightarrow{\sim} H^*_c,\mathcal{G}(\mathcal{U}_w, \mathcal{Q}_\ell),
\]
\[
H^*_c,\mathcal{H}_g(\mathcal{O}_g, \mathcal{Q}_\ell) \xrightarrow{\sim} H^*_c,\mathcal{G}(\mathcal{X}_w, \mathcal{Q}_\ell).
\]

Proof. The maps \((\mathcal{O}_g \times G)/H_g \to \mathcal{U}_w \) and \((\mathcal{O}_g \times G)/H_g \to \mathcal{X}_w \) are

\[
[u, x] \mapsto (xux^{-1}, xB_+x^{-1}),
\]
\[
[B, x] \mapsto (xBx^{-1}, xB_+x^{-1}, xgB_+g^{-1}x^{-1}),
\]
respectively. To show that they are isomorphisms: Observe that \(G \) acts transitively on \(G_w \), and the stabilizer of \((B_{+},gB_{+}g^{-1})\) is precisely \(H_g \). The preimage of this point in \(\mathcal{U}_w \), resp. \(\mathcal{F}_w \), is \(\mathcal{U}_g \), resp. \(\mathcal{F}_g \). Therefore, the maps above are the respective pullbacks to \(\mathcal{U}_w \) and \(\mathcal{F}_w \) of the isomorphism \(G/H_g \xrightarrow{\sim} G_w \) that sends \(xH_g \mapsto (xB_{+}x^{-1},gB_{+}x^{-1}) \).

Note that when \(F = C \), the maps on cohomology in Proposition 14 preserve weight filtrations because the maps that induce them are algebraic.

5. Khovanov–Rozansky Homology

5.1. In this section, we prove Theorem 2 by way of more general constructions motivated by knot theory.

Let \(Br^+_W \) be the positive braid monoid of \(W \). It is the monoid freely generated by a set of symbols \(\{\sigma_w\}_{w \in W} \), modulo the relations \(\sigma_{ww'} = \sigma_w \sigma_{w'} \) for all \(w, w' \in W \) such that \(\ell(ww') = \ell(w) + \ell(w') \). The full twist is the element \(\pi = \sigma_{w_0}^2 \in Br^+_W \).

For all \(\beta = \sigma_{w_1} \cdots \sigma_{w_k} \in Br^+_W \), we set

\[
\mathcal{U}(\beta) = \{(u, B_1, \ldots, B_k) \in \mathcal{U} \times \mathcal{B}^k \mid u^{-1}B_k u \xrightarrow{w_1} B_1 \xrightarrow{w_2} \cdots \xrightarrow{w_k} B_k\},
\]

\[
\mathcal{F}(\beta) = \{(B_1, \ldots, B_k) \in \mathcal{B}^k \mid B_k \xrightarrow{w_1} B_1 \xrightarrow{w_2} \cdots \xrightarrow{w_k} B_k\}.
\]

Let \(G \) act on these varieties by left conjugation. We regard \(\mathcal{U}(\beta) \) and \(\mathcal{F}(\beta) \) as \(G \)-varieties over \(G_w \), where \(w = w_1 \cdots w_k \in W \), via the equivariant maps \((u, (B_1)_i) \mapsto (B_k, B_1)\) and \((B_1)_i \mapsto (B_k, B_1)\), respectively. Deligne showed that up to isomorphism over \(\mathcal{B} \times \mathcal{B} \), these varieties only depend on \(\beta \), not on the sequence of elements \(w_i \). His full result describes the extent to which the isomorphism can be pinned down uniquely; see [D] for details.

In particular, we have equivariant identifications

\[
\mathcal{U}_w \xrightarrow{\sim} \mathcal{U}(\sigma_w),
\]

\[
\mathcal{F}_w \xrightarrow{\sim} \mathcal{F}(\sigma_w \pi)
\]

via \((u, B_1) = (u, B')\) and \((B_1, B_2, B_3) = (B', B'', B)\).

5.2. If \(W \) is the symmetric group on \(n \) letters, denoted \(S_n \), then the group completion of \(Br_W \) is the group of topological braids on \(n \) strands, denoted \(Br_n \). Any braid can be closed up end-to-end to form a link: that is, an embedding of a disjoint union of circles into 3-dimensional space. Thus there is a close relationship between isotopy invariants of links and functions on the groups \(Br_n \).

In [KR], Khovanov and Rozansky introduced a link invariant valued in triply-graded vector spaces. Its graded dimension can be written as a formal series in variables \(a, q^{\frac{1}{2}}, t \). In [Kh], Khovanov showed how to construct it in terms of class functions on the groups \(Br_n \), and more precisely, in terms of functors on monoidal additive categories attached to the groups \(S_n \). When we set \(t = -1 \), the Khovanov–Rozansky invariant of a link specializes to its so-called HOMFLYPT series, and Khovanov’s functors specialize to class functions originally introduced by Jones and Ocneanu.
The positive braid monoid Br_W^+ and its group completion Br_W can actually be defined for any Coxeter group W, not just Weyl groups. In [G], Y. Gomi extended the construction of Jones–Ocneanu to finite Coxeter groups. There is a similar extension of Khovanov’s construction, up to a choice of a (faithful) representation on which W acts as a reflection group.

Fix such a representation V. For any braid $\beta \in Br_W$, we write $\operatorname{HHH}_V(\beta)$ to denote the Khovanov–Rozansky (KR) homology of β with respect to V. We will use the grading conventions in [T], so that

$$P_V(\beta) = (at)^{|\beta|}a^{-\dim(V)} \sum_{i,j,k} (a^2q^{\frac{i}{2}}t)^{\dim(V)-i} q^{\frac{i}{2}t-k} \dim \operatorname{HHH}_V^{i+j,k}(\beta)$$

is an isotopy invariant of the link closure of β. In the case where $W = S_n$, taking V to be the $(n-1)$-dimensional reflection representation yields what is usually called reduced KR homology and denoted HHH, while taking V to be the n-dimensional permutation representation yields what is usually called unreduced KR homology and denoted HHH. They are related by

$$\left(\frac{a^{-1} + at}{q^{-2} - q^2}\right) P(\beta) = P(\beta),$$

where P and P denote the series P_V for these respective choices of V.

Henceforth, let $r = \dim(V)$ and $N = \dim(\mathcal{R})$. The results below are [T, Cor. 4] and [GHMN, Thm. 1.9].

Theorem 15. Suppose that W is the Weyl group of a split reductive group G over F with root lattice Φ, and that $V = \mathbb{Z}\Phi \otimes \mathbb{Z} Q$. Then for any $\beta \in Br_W^+$, we have isomorphisms

$$\begin{align*}
\gr_{\beta}^W H_{c,G}^{j+k+2r}(\mathcal{U}(\beta), \mathcal{Q}_c) &\simeq \operatorname{HHH}_V^{0,j,k}(\beta), \\
\gr_{\beta}^W H_{c,G}^{j+k+2(r+N)}(\mathcal{F}(\beta), \mathcal{Q}_c) &\simeq \operatorname{HHH}_V^{r+j,k}(\beta)
\end{align*}$$

for all j, k.

Theorem 16 (Gorsky–Hogancamp–Mellit–Nakagane). For any integer $n \geq 1$ and $\beta \in Br_n$, we have

$$\operatorname{HHH}^{0,j,k}(\beta) \simeq \operatorname{HHH}^{r+j,k}(\beta \pi)$$

for all j, k.

Proof of Theorem 2. We must have $B_+ \xrightarrow{w} gB_+g^{-1}$ for some $w \in W$. Combining Proposition 11, Proposition 14, and Theorem 15, we get isomorphisms

$$\begin{align*}
\gr_{\beta}^W H_{c,H}^{j+k+2n}(\mathcal{U}_g, \mathcal{Q}_c) &\simeq \operatorname{HHH}_V^{0,j,k}(\sigma_w), \\
\gr_{\beta}^W H_{c,H}^{j+k+2(n+N)}(\mathcal{F}_g, \mathcal{Q}_c) &\simeq \operatorname{HHH}_V^{r+j,k}(\sigma_w \pi),
\end{align*}$$

where $V = \mathbb{Z}\Phi \otimes \mathbb{Z} Q$ and Φ is the root lattice of G.

If $G = \text{GL}_n$, then V is the permutation representation of S_n. So in this case, $\operatorname{HHH}_V = \operatorname{HHH}$, and we are done by Theorem 16. Finally, we bootstrap from GL_n to any other split reductive group of type A using Lemmas 4 and 5. □
5.3. Theorems 15–16 suggest the following generalization of Conjecture 1.

Conjecture 17. For any $\beta \in Br_{W}^{+}$, there is a homotopy equivalence between $\mathcal{U}(\beta)(C)$ and $\mathcal{X}(\beta\pi)(C)$ that matches the weight filtrations on their compactly-supported cohomology.

Remark 18. It would be desirable to generalize the map of stacks $[Y_{g}/H_{g}] \rightarrow [\mathcal{U}_{g}/H_{g}]$ that arises from Φ_{g} to an explicit map $[\mathcal{X}(\beta\pi)/G] \rightarrow [\mathcal{U}(\beta)/G]$ for any positive braid β. Due to the inexplicit nature of Lemma 13, we have not yet found such a generalization.

6. Point Counts over Finite Fields

6.1. For any braid $\beta \in Br_{n}$, we write $\hat{\beta}$ to denote its link closure. The reduced HOMFLYPT series $P(\hat{\beta})$ is related to the KR homology of β by

$$P(\hat{\beta}) = P(\beta)|_{t \rightarrow -1}.$$

This is an element of $\mathbb{Z}[q^{\pm 1}]|_{t \rightarrow -1}$. We write $[a^{i}]P(\hat{\beta})$ to denote the coefficient of a^{i} in $P(\hat{\beta})$, viewed as an element of $\mathbb{Z}[q^{\pm 1}]|_{t \rightarrow -1}$.

If $\beta = \sigma_{s_{1}} \cdots \sigma_{s_{t}}$, where the elements $s_{1}, \ldots, s_{t} \in W$ are all simple reflections, then we set $|\beta| = t$. This number only depends on β. Theorem 16 then specializes to the following result from [K].

Theorem 19 (Kálmán). For any integer $n \geq 1$ and $\beta \in Br_{n}$, we have

$$[a^{[\beta]+1}]P(\hat{\beta}) = [a^{[\beta]-1}]P(\hat{\beta}\pi).$$

In [T, §8], we generalized Kálmán’s result from Br_{n} to Br_{W}. In this section, we review the statement, then explain its relation to the point-counting identity (1.1).

6.2. Let H_{W} be the Iwahori–Hecke algebra of W. For our purposes, H_{W} is the quotient of the group algebra $\mathbb{Z}[q^{\pm 1/2}]|Br_{W}|$ by the two-sided ideal

$$\langle (\sigma_{s} - q^{\frac{1}{2}})(\sigma_{s} + q^{-\frac{1}{2}}) \mid \text{simple reflections } s \rangle.$$

For any element $\beta \in Br_{W}$, we abuse notation by again writing β to denote its image in H_{W}.

The sets $\{\sigma_{w}\}_{w \in W}$ and $\{\sigma_{w}^{-1}\}_{w \in W}$ are bases for H_{W} as a free $\mathbb{Z}[q^{\pm 1/2}]$-module. Let $\tau^{\pm} : H_{W} \rightarrow \mathbb{Z}[q^{\pm 1/2}]$ be the $\mathbb{Z}[q^{\pm 1/2}]$-linear functions defined by:

$$\tau^{\pm}(\sigma_{w}) = \begin{cases} 1 & w = e \\ 0 & w \neq e \end{cases}$$

For $W = S_{n}$, comparing τ^{\pm} with the Jones–Ocneanu trace on H_{W} shows that

$$[a^{[\beta]+1}]P(\hat{\beta}) = (q^{-\frac{1}{2}} - q^{\frac{1}{2}})^{-(n-1)}(-1)^{|[\beta]|}\tau^{\pm}(\beta)$$

for all $\beta \in Br_{n}$. Therefore the following result from [T, §8] generalizes Kálmán’s theorem to arbitrary W.

Theorem 20. For any finite Coxeter group W and braid $\beta \in Br_{W}$, we have

$$\tau^{-}(\beta) = \tau^{+}(\beta\pi).$$
6.3. We return to the setting of Section 5, so that \(W \) is the Weyl group of \(G \). Under the hypotheses of Theorem 15, the following identities from loc. cit. relate Theorem 20 to point counting:

\[
\frac{|\mathcal{U}(\beta)(F)|}{|G(F)|} = (q - 1)^{-r} (q^{\frac{1}{2}})^{\tau^-(\beta)},
\]
\[
\frac{|\mathcal{X}(\beta)(F)|}{|G(F)|} = (q - 1)^{-r} (q^{\frac{1}{2}})^{\tau^+(\beta)}.
\]

Together they imply:

Corollary 21. Keep the hypotheses of Theorem 15. Then for any \(\beta \in Br^+_W \), we have

\[
|U(\beta)(F)| = |X(\beta\pi)(F)|.
\]

We claim that when \(B_+ \) is defined over \(F \), Corollary 21 implies (1.1) from the introduction. The key is that the proof of Proposition 14 also works at the level of \(F \)-points. Thus there are \(G \)-equivariant bijections

\[
(U_g(F) \times G(F))/H_g(F) \to U_w(F),
\]
\[
(X_g(F) \times G(F))/H_g(F) \to X_w(F)
\]

for any \(g \in G(F) \) such that \(B_+ \to gB_+g^{-1} \). Since the quotients are free, we deduce that

\[
|U_g(F)||G(F)| = |U_w(F)||H_g(F)| = |X_w(F)||H_g(F)| = |X_g(F)||G(F)|.
\]

Applying Proposition 11, we arrive at

\[
|U_g(F)| = |X_g(F)| = |Y_g(F)|, \text{ which is (1.1).}
\]

Remark 22. The original identity proved by Kawanaka was

\[
|(\mathcal{U} \cap U_+ \mathcal{w} B_+)(F)| = |(U_- \cap U_+ \mathcal{w} B_+)(F)|
\]

for all \(w \in W \) [Ka, Cor. 4.2]. This is equivalent to (1.1) as long as \(B_+ \) is defined over \(F \). For when the latter holds, an argument similar to the proof of Lemma 6 shows that the \(F \)-point counts of \(\mathcal{U}_g \) and \(\mathcal{X}_g \) remain constant as \(g \) runs over elements of \(U_+ \mathcal{w} B_+(F) \).

References

Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139

Email address: mqt@mit.edu