Braids, Unipotent Representations, and Nonabelian Hodge Theory

Minh-Tâm Quang Trinh

Massachusetts Institute of Technology

The curve below is singular at the origin:

$$
y^{3}=x^{4} .
$$

Its real solutions vs. its complex solutions:

On the right, the self-intersections only exist in the projection to \mathbf{R}^{3}.

For small $\varepsilon>0$, the preimage of the circle $|x|=\varepsilon$ is actually a braided circle in the curve.

In general, a plane curve singularity $a(x, y)$ gives rise to a knot or link. For

$$
y^{n}+a_{1}(x) y^{n-1}+\cdots+a_{n-1}(x) y+a_{n}(x),
$$

the link is the closure of a braid on n strands.

The curve $y^{3}=x^{4}$ gives rise to the torus knot $T_{3,4}$.
How do invariants of the link relate to invariants of a ?

The local germ $C_{a}=\operatorname{Spec} \mathbf{C} \llbracket x, y \rrbracket / a(x, y)$ bears analogies with a global curve.

The scheme

$$
\mathcal{J}_{a}=\left\{\begin{array}{l}
\left(C_{a}-0\right) \text {-framed, torsion-free coherent } \\
\text { sheaves of degree } 0 \text { and generic rank } 1
\end{array}\right\}
$$ is the analogue of a Jacobian.

If a is irreducible, then \mathcal{J}_{a} is a projective variety.

Conj (Oblomkov-Rasmussen-Shende)

If a is irreducible, then the homology of \mathcal{J}_{a} embeds in the HOMFLYPT homology of the link of C_{a}.

Ex If $a(x, y)=y^{3}-x^{4}$, then

$$
\left[\mathcal{J}_{a}\right]=[p t]+[\mathbf{C}]+\left[\mathbf{C}^{2}\right]+\left[\mathbf{C}^{2}\right]+\left[\mathbf{C}^{3}\right] .
$$

In general, if $a(x, y)=y^{n}-x^{m}$ with m, n coprime, then \mathcal{J}_{a} is paved by affine cells.

$$
\text { Pf sketch } \quad \mathbf{C} \llbracket x, y \rrbracket / a(x, y) \simeq \mathbf{C} \llbracket t^{m}, t^{n} \rrbracket .
$$

Points of \mathcal{J}_{a} correspond to $\mathbf{C} \llbracket t^{m}, t^{n} \rrbracket$-submodules $M \subseteq \mathbf{C} \llbracket t \rrbracket$ that satisfy

$$
\begin{aligned}
\operatorname{codim}(M) & =\operatorname{codim}\left(\mathbf{C} \llbracket t^{m}, t^{n} \rrbracket\right) & & (\text { degree } 0) \\
M \otimes \mathbf{C}((t)) & \simeq \mathbf{C}((t)) & & (\operatorname{rank} 1) .
\end{aligned}
$$

Rotating t induces $\mathbf{C}^{\times} \curvearrowright \mathcal{J}_{a}$. The fixed points are monomial modules; their attracting loci are cells.

Khovanov-Rozansky's HOMFLYPT homology:
HHH : $\left\{\right.$ links in $\left.\mathbf{R}^{3}\right\} /$ isotopy \rightarrow Vect $_{3}$
Let $\mathbf{P}(-)=\sum_{i, j, k} a^{i} q^{\frac{j}{2}} t^{k} \operatorname{dim} \mathrm{HHH}^{i, j, k}(-)$.

Ex For the (3,4) torus knot,

$$
\begin{aligned}
\mathbf{P}\left(T_{3,4}\right)=a^{6} & q^{-3}\left(1+q^{2} \mathbf{t}^{2}+q^{3} \mathbf{t}^{4}+q^{4} \mathrm{t}^{4}+q^{6} \mathrm{t}^{6}\right) \\
& +a^{8} q^{-2}\left(t^{3}+q t^{5}+q^{2} t^{5}+q^{3} t^{7}+q^{4} t^{7}\right) \\
& +a^{10} t^{8} .
\end{aligned}
$$

In general, $\mathrm{H}_{*}\left(\mathcal{J}_{a}\right)$ should be the "lowest a-degree" of HHH (link of C_{a}).

The q-variable tracks a perverse filtration that we'll discuss later.

Both sides can be interpreted in terms of $G=\mathrm{SL}_{n}$.

Let $F=\mathbf{C}((x))$ and $\mathcal{O}=\mathbf{C} \llbracket x \rrbracket$.
Recall the affine Grassmannian $\mathcal{G} r=G(F) / G(\mathcal{O})$.

If $\gamma \in \mathfrak{g}(\mathcal{O})=\mathfrak{s l}_{n}(\mathcal{O})$ has characteristic polynomial

$$
a(x, y)=\operatorname{det}(y I-\gamma),
$$

then the affine Springer fiber

$$
\mathcal{G} r_{\gamma}=\{[g] \in \mathcal{G} r \mid \gamma \in \operatorname{Ad}(g) \cdot \mathfrak{g}(\mathcal{O})\} \subseteq \mathcal{G} r
$$

is isomorphic to \mathcal{J}_{a} via the map $[g] \mapsto M=g\left(\mathcal{O}^{n}\right)$.

Interpreting HHH via $G=\mathrm{SL}_{n}$ is more involved.

First, every link can be written as a braid closure $\hat{\beta}$.

If $\beta \in B r_{n}$, then we can compute $\left.\mathbf{P}(\hat{\beta})\right|_{t=-1}$ from the value of β under

$$
B r_{n} \rightarrow H_{n} \xrightarrow{\operatorname{tr}} \mathbf{Z}\left(q^{\frac{1}{2}}\right)\left[a^{ \pm 1}\right],
$$

where H_{n} is the Iwahori-Hecke algebra of S_{n} and tr is a certain $q^{\frac{1}{2}}$-linear trace.

To get $\mathbf{P}(\hat{\beta})$ itself, we must categorify H_{n} and tr.

Let \mathcal{B} be the flag variety.

Each G-orbit of $\mathcal{B} \times \mathcal{B}$ gives rise to a (pure) perverse sheaf called its intersection complex.

Their shift-twists generate an additive subcategory

$$
\mathrm{C}(\mathcal{B} \times \mathcal{B}) \subseteq \mathrm{D}_{G . m}^{b, \text { const }}(\mathcal{B} \times \mathcal{B})
$$

Under a certain monoidal product, the Hecke category

$$
\mathrm{H}=\mathrm{K}^{b}(\mathrm{C}(\mathcal{B} \times \mathcal{B}))
$$

categorifies H_{n}. We can compute $\mathbf{P}(\hat{\beta})$ from

$$
B r_{n} \xrightarrow{\mathcal{R}} \mathbf{H} \xrightarrow{\mathrm{Tr}} \text { Vect }_{3},
$$

where \mathcal{R} is due to Rouquier and Tr is a monoidal trace functor.

Let \mathfrak{t} be the Cartan of \mathfrak{g}. We'll introduce a trace

$$
\widetilde{\operatorname{Tr}}: \mathbf{H} \rightarrow \operatorname{Mod}_{2}\left(\mathbf{C}[W] \ltimes \operatorname{Sym}^{*}(\mathfrak{t})\right) .
$$

Thm $1 \quad \operatorname{Tr} \simeq \operatorname{Hom}_{S_{n}}\left(\Lambda^{*}(\mathfrak{t}), \widetilde{\operatorname{Tr}}\right)$.

Let $\mathcal{U} \subseteq G$ be the unipotent locus. To each positive β, we'll assign a G-equivariant map

$$
\mathcal{U}(\beta) \rightarrow \mathcal{U} .
$$

For $\beta=\mathbf{1}$, it's the Springer resolution.
Thm $2 \widetilde{\operatorname{Tr}}(\mathcal{R}(\beta)) \simeq \mathrm{gr}_{*}^{\mathrm{W}} \mathrm{H}_{*}^{\mathrm{BM}, G}\left(\mathcal{U}(\mathbf{1}) \times_{\mathcal{U}} \mathcal{U}(\beta)\right)$.
By Springer theory, we deduce that $\mathrm{gr}_{*}^{\mathrm{W}} \mathrm{H}_{*}^{\mathrm{BM}, G}(\mathcal{U}(\beta))$ is the lowest a-degree of $\operatorname{HHH}(\hat{\beta})$.

Suppose that:

- $\hat{\beta}$ is the link of (generically separable) $a(x, y)$.
- a is the characteristic polynomial of $\gamma \in \mathfrak{s l}_{n}(\mathbf{C} \llbracket x \rrbracket)$.

Prop The following are equivalent:

- a is irreducible.
- $\mathcal{G} r_{\gamma}$ is a projective variety.
- $[\mathcal{U}(\beta) / G]$ has finite stabilizers.

Conj 1 Under the hypotheses above,

$$
\mathcal{G} r_{\gamma} \stackrel{\text { deformation retract }}{\longleftarrow}[\mathcal{U}(\beta) / G] .
$$

Moreover the halved weight filtration on $\mathrm{H}_{*}^{\mathrm{BM}, G}(\mathcal{U}(\beta))$ should match a "perverse" filtration on $\mathrm{H}_{*}\left(\mathcal{G} r_{\gamma}\right)$.

Motivated by a 2013 unpublished research statement of Shende's.

- B.-C. Ngô noticed that $\mathcal{G} r_{\gamma}$ resembles the fibers of Hitchin's integrable system.
- Boalch and Shende-Treumann-Williams-Zaslow related varieties similar to $\mathcal{U}(\beta)$ to wild character varieties, for special choices of β.

Nonabelian Hodge theory is about diffeomorphisms

$$
\mathcal{M}_{\text {Hitchin }} \sim \mathcal{M}_{\text {deRham }} \sim \mathcal{M}_{\text {Betti }}
$$

The dCHM " $\mathrm{P}=\mathrm{W}$ " conjecture is roughly:

$$
\begin{array}{ccc}
\text { perverse filtrations } \\
\text { on } \mathcal{M}_{\text {Hitchin }} & \simeq & \text { halved weight filtrations } \\
\text { on } \mathcal{M}_{\text {Betti }}
\end{array}
$$

Let's describe $\mathcal{U}(\beta)$.
Let $w \mapsto \sigma_{w}$ be the canonical section to $B r_{n} \rightarrow S_{n}$.
Let $O_{w} \subseteq \mathcal{B} \times \mathcal{B}$ be the G-orbit indexed by $w \in S_{n}$.
Deligne showed that if $\beta=\sigma_{w_{1}} \cdots \sigma_{w_{k}}$, then

$$
O(\beta)=O_{w_{1}} \times_{\mathcal{B}} \cdots \times_{\mathcal{B}} O_{w_{k}}
$$

only depends on β up to strict isomorphisms.
Form Cartesian squares:

Next, let's describe $\widetilde{\mathrm{Tr}}$.
The cocenter $H_{n} \rightarrow H_{n} /\left[H_{n}, H_{n}\right]$ is geometrized by pulling and pushing through

$$
\mathcal{B} \times \mathcal{B} \stackrel{a c t}{\longleftarrow} G \times \mathcal{B} \xrightarrow{p r} G .
$$

Let $\mathbf{C h}: \mathrm{D}_{G, m}^{b}\left(\mathcal{B}^{2}\right) \rightarrow \mathrm{D}_{G, m}^{b}(G)$ be

$$
\mathbf{C h}=\bigoplus_{i}{ }^{p} \mathcal{H}^{i} \circ p r_{*} a c t^{!}[-i] .
$$

The essential images of $\mathrm{C}\left(\mathcal{B}^{2}\right)$ under $\mathbf{C h}$ and $\iota^{*} \circ \mathbf{C h}$ generate subcategories

$$
\mathrm{C}(G) \subseteq \mathrm{D}_{G, m}^{b}(G), \quad \mathrm{C}(\mathcal{U}) \subseteq \mathrm{D}_{G, m}^{b}(\mathcal{U})
$$

of shifted pure perverse sheaves.
In particular, $\mathrm{C}(\mathcal{U})$ contains the Springer sheaf \mathcal{S}.

Using weight realization functors

$$
\rho: \mathrm{K}^{b}(\mathrm{C}(-)) \rightarrow \mathrm{D}_{G, m}^{b}(-),
$$

we can build

$$
\begin{aligned}
& \mathrm{K}^{b}\left(\mathrm{C}\left(\mathcal{B}^{2}\right)\right) \xrightarrow{\mathrm{Ch}} \mathrm{~K}^{b}(\mathrm{C}(G)) \xrightarrow{\iota^{*}} \mathrm{~K}^{b}(\mathrm{C}(\mathcal{U})) \\
& \quad \stackrel{\rho}{ } \\
& \mathrm{D}_{G, m}^{b}\left(\mathcal{B}^{2}\right) \xrightarrow{\mathbf{C h}} \mathrm{D}_{G, m}^{b}(G) \xrightarrow{\iota^{*}} \underset{\mathrm{D}_{G, m}^{b}(\mathcal{U})}{ }
\end{aligned}
$$

Up to shifts, $\widetilde{\operatorname{Tr}}$ is the composition

$$
\mathrm{K}^{b}\left(\mathrm{C}\left(\mathcal{B}^{2}\right)\right) \rightarrow \mathrm{D}_{G, m}^{b}(\mathcal{U}) \rightarrow \operatorname{Mod}_{2}(\mathbf{C}[W] \ltimes \operatorname{Sym}),
$$

where the second arrow is $\mathrm{gr}_{*}^{W} \operatorname{Ext}^{*}(-, \mathcal{S})$.

Proving $\operatorname{Tr} \simeq \operatorname{Hom}_{S_{n}}\left(\Lambda^{*}(\mathfrak{t}), \widetilde{\operatorname{Tr}}\right)$ amounts to relating this setup over \mathcal{U} with Webster-Williamson's over G. (Their use of weights is qualitatively different.)

Proving $\widetilde{\operatorname{Tr}}(\mathcal{R}(\beta)) \simeq \operatorname{gr}_{*}^{\mathrm{W}} \mathrm{H}_{*}^{\mathrm{BM}, G}\left(\mathcal{U}(\mathbf{1}) \times_{\mathcal{U}} \mathcal{U}(\beta)\right)$ relies on intertwining K^{b} degree with weight degree. Note that $\rho(\mathcal{R}(\beta))=\left(O(\beta) \rightarrow \mathcal{B}^{2}\right)!\mathbf{C}$.

All this generalizes to any connected semisimple G.
Even the conjecture about $\mathcal{G} r_{\gamma}$ generalizes! Instead of charpolys and links, use

$$
\gamma \mapsto a: \mathfrak{g}(\mathcal{O}) \rightarrow(\mathfrak{t} / / W)(\mathcal{O})
$$

and the generalized braid group $B r_{W}=\pi_{1}\left(\mathfrak{t}^{\text {reg }} / / W\right)$.

Finally, we consider the decategorification of $\widetilde{\mathbf{T r}}$.

Let $[\beta]_{q}=\left.\widetilde{\operatorname{Tr}}(\mathcal{R}(\beta))\right|_{t=-1}$, abusing notation.
Let $\mathcal{B}_{u} \subseteq \mathcal{B}$ be the Springer fiber above $u \in \mathcal{U}$.

Thm 3 Specializing q to a prime power,

$$
[\beta]_{q}= \pm \frac{1}{\left|G\left(\mathbf{F}_{q}\right)\right|} \sum_{u \in \mathcal{U}\left(\mathbf{F}_{q}\right)}\left|\mathcal{U}(\beta)_{u}\left(\mathbf{F}_{q}\right)\right|\left[\mathcal{B}_{u}\right]_{q}
$$

in $\boldsymbol{\operatorname { R e p }}(W)$, where $\left[\mathcal{B}_{u}\right]_{q}=\sum_{i} q^{i} \mathrm{H}^{2 i}\left(\mathcal{B}_{u}\right)$.

Not just a corollary of Thm 2.
The virtual weight series of $[X / G]$ need not be the quotient of that of X by that of G.

Instead, the proof uses a strange formula
$[\beta]_{q}=q^{|\beta| / 2} \varepsilon \cdot \sum_{i} q^{i} \operatorname{Sym}^{i}(\mathfrak{t}) \cdot \sum_{\phi, \psi \in \operatorname{Irr}(W)}\{\phi, \psi\} \phi_{q}(\beta) \psi$,
where $\{-,-\}: \operatorname{Irr}(W) \times \operatorname{Irr}(W) \rightarrow \mathbf{Q}$ is Lusztig's "exotic Fourier transform."

Ex Writing $r=\operatorname{rk}(W)$, we have

$$
[\mathbf{1}]_{q}=\frac{1}{(1-q)^{r}} \mathbf{C}[W]
$$

For $W=S_{n}$, recovers:

$$
\mathbf{P}(n \text {-unlink })_{t=-1}=\left(\frac{a-a^{-1}}{q^{1 / 2}-q^{-1 / 2}}\right)^{n-1} .
$$

The full twist is a central element $\pi=\sigma_{w_{0}}^{2} \in B r_{W}^{+}$:

A braid β is periodic of slope $\frac{m}{n}$ iff $\beta^{n}=\pi^{m}$.
Thm 4 If β is periodic of slope ν, then

$$
[\beta]_{q}=\sum_{\phi \in \operatorname{Irr}(W)} q^{\nu \mathrm{c}(\phi)} \operatorname{Deg}_{\phi}\left(e^{2 \pi i \nu}\right) \phi \cdot \sum_{i} q^{i} \operatorname{Sym}^{i}(\mathfrak{t}),
$$

where:

- $\operatorname{Deg}_{\phi}(q)$ is the degree of the unipotent principal series of $G\left(\mathbf{F}_{q}\right)$ attached to ϕ.
- $\mathrm{c}(\phi)$ is the content of ϕ. For $W=S_{n}$, the content of the corresponding partition.

The key to Thm 4: π acts on irreps by scalars, and the traces $\phi_{q}(\beta)$ can be bootstrapped from $\phi_{q}(\pi)$.

Goes back to Jones's calculation of HOMFLYPT for torus knots.

Cor For W irreducible and n cuspidal,

$$
[\beta]_{q}= \begin{cases}{\left[L_{\nu}(1)\right]_{q}+\left[L_{\nu}(\mathfrak{t})\right]_{q}} & (W, n)=\left(E_{8}, 15\right) \text { or } \\ {\left[L_{\nu}(1)\right]_{q}} & \text { else }\end{cases}
$$

Thank you for listening.
where $\left[L_{\nu}(\phi)\right]_{q}$ is the graded W-character of the simple rational Cherednik module indexed by ϕ.

Combined with work of Oblomkov-Yun, this is evidence for the $\mathcal{G} r_{\gamma}$ conjecture.

