Catalan Combinatorics in Algebraic Geometry

Minh-Tâm Quang Trinh

Massachusetts Institute of Technology

§0 Catalan Numbers

Plan of talk:
0. Catalan Numbers

1. Dyck Paths
2. Braids
3. Deograms
4. Coda: NAHT

References for §2-3:

- [T] arXiv:2106.07444
- [Galashin-Lam-T-Williams] arXiv:2208.00121

The Catalan numbers generalize in several ways: rational slopes, Coxeter groups, q-numbers...

As we generalize them, we encounter two paradigms for the collections of objects they enumerate:
nonnesting versus noncrossing
nonnesting generalize to Weyl groups (Postnikov), admit Dyck-path-like statistics
noncrossing generalize to Coxeter groups (Reiner, Bessis), depend on a Coxeter element

The tension between these has interesting incarnations in algebraic geometry.

§1 Dyck Paths

$$
\begin{aligned}
& \mathfrak{C}_{n}:=\frac{(2 n)!}{(n+1)!n!} \\
& \mathfrak{C}_{d / n}:=\frac{(d+n-1)!}{d!n!}
\end{aligned}
$$

for coprime d, n
$\left(\mathfrak{C}_{1 / 3}, \mathfrak{C}_{2 / 3}, \mathfrak{C}_{4 / 3}, \mathfrak{C}_{5 / 3}, \ldots\right)=(1,2,5,7, \ldots)$
$[n]:=1+q+\cdots+q^{n-1}$
$[n]!:=[1][2] \cdots[n]$
$\mathfrak{C}_{d / n}(q)=\frac{[d+n-1]!}{[d]![n]!}$
for coprime d, n
$\mathfrak{C}_{4 / 3}(q)=1+q^{2}+q^{3}+q^{4}+q^{6}$

Lastly, a bivariate $\mathfrak{C}_{d / n}(q, t)$, more difficult to define.
$\mathfrak{C}_{d / n}$ counts the lattice paths above the diagonal in a $d \times n$ rectangle:

Above are the Dyck paths of slope $\frac{5}{3}$.

Piontkowski gave a variety stratified by $\mathfrak{C}_{d / n}$-many affine spaces of various dimensions.
Gorsky-Mazin matched the strata with Dyck paths. Hikita interpreted $\mathfrak{C}_{d / n}(q, t)$ in this geometry.

We'll explain the construction in Lie-theoretic terms.

Let $F=\mathbf{C}((x))$ and $\mathcal{O}=\mathbf{C} \llbracket x \rrbracket$.
Let $G=\mathrm{SL}_{n}$. The affine Grassmannian of G is

$$
\mathcal{G} r_{n}=G(F) / G(\mathcal{O})
$$

It has a Cartan decomposition

$$
\mathcal{G} r_{n}=\coprod_{\mu \in X_{+}^{\vee}} \underbrace{G(\mathcal{O}) x^{\mu} G(\mathcal{O}) / G(\mathcal{O})}_{\mathcal{G} r_{\mu}}
$$

where $X_{+}^{\vee}=\left\{\mu \in \mathbf{Z}^{n} \mid \mu_{i}\right.$ decreasing and zero-sum $\}$,

$$
x^{\mu}=\left(\begin{array}{lll}
x^{\mu_{1}} & & \\
& \ddots & \\
& & x^{\mu_{n}}
\end{array}\right)
$$

Any $\nu \in X_{+}^{\vee}$ defines an action $\mathbf{C}^{\times} \curvearrowright G(F)$:

$$
c \cdot \nu g(x)=c^{\nu} g\left(c^{2 n} x\right) c^{-\nu} .
$$

Induces an action $\mathbf{C}^{\times} \curvearrowright \mathcal{G} r_{n}$.
Generic fixed points are cosets $\left[x^{w \mu}\right]$ for $w \in S_{n}$.

Also induces an action $\mathbf{C}^{\times} \curvearrowright \mathfrak{g}(F)=\mathfrak{s l}_{n}(F)$.
Lem If $\gamma \in \mathfrak{g}(F)$ is an eigenvector of \mathbf{C}^{\times}, then

$$
\mathcal{G} r_{n}(\gamma)=\left\{[g] \in \mathcal{G} r_{n} \mid g^{-1} \gamma g \in \mathfrak{g}(\mathcal{O})\right\}
$$

is stable under the ν-action on $\mathcal{G} r_{n}$.

We'll pick ν and γ so that ν-fixed points of $\mathcal{G} r_{n}(\gamma)$ correspond to Dyck paths of slope $\frac{d}{n}$.

Let $\left\{\alpha_{i}\right\}_{i} \subseteq \Phi^{+} \subseteq \Phi$ be the simple roots.

$$
\begin{aligned}
& \nu_{d}=d\left(\begin{array}{cccc}
n-1 & & & \\
& & n-3 & \\
& & & \ddots \\
& & & \\
& & 1-n
\end{array}\right)=\sum_{\alpha \in \Phi^{+}} d \alpha^{\vee} \\
& \gamma_{d}=\left(\begin{array}{ccc}
1 & & x^{d} \\
& \ddots & \\
& & 1
\end{array}\right)=x^{d} e_{\alpha_{\text {top }}}+\sum_{i} e_{-\alpha_{i}},
\end{aligned}
$$

where $\mathfrak{g}_{\alpha}=\mathbf{C} e_{\alpha}$ and $\alpha_{\text {top }}$ is the highest root.

Lem (Lusztig-Smelt, Sommers) γ_{d} is an eigenvector of the ν_{d}-action on $\mathfrak{g}(F)$. Moreover,

$$
\mathcal{G} r_{n}\left(\gamma_{d}\right)^{\nu_{d}}=\left\{\left[x^{\mu}\right] \in \mathcal{G} r_{n} \left\lvert\, \begin{array}{l}
\mu \in X_{+}^{\vee}, \\
\left\langle\alpha_{\mathrm{top}}, \mu\right\rangle \leq d
\end{array}\right.\right\} .
$$

Let $\delta=\frac{1}{2}(d-1)(n-1)$, and let

$$
J_{d / n}=\left\{\begin{array}{l|l}
\Delta \subseteq \mathbf{Z}_{\geq 0} & \begin{array}{l}
\Delta+d \mathbf{Z}_{\geq 0}+n \mathbf{Z}_{\geq 0} \subseteq \Delta \\
\left|\mathbf{Z}_{\geq 0} \backslash \Delta\right|=\delta
\end{array}
\end{array}\right\}
$$

Lem Explicit bijection $\mathcal{G} r_{n}\left(\gamma_{d}\right)^{\nu_{d}} \xrightarrow{\sim} J_{d / n}$:

$$
\left[x^{\mu}\right] \mapsto \coprod_{i}(\underbrace{n \mu_{i}+d(i-1)}_{a_{i}(\mu)}+n \mathbf{Z}_{\geq 0})
$$

Ex Take $\frac{d}{n}=\frac{4}{3}$.

$$
\begin{array}{rlr}
& \mu & \left(a_{1}(\mu), a_{2}(\mu), a_{3}(\mu)\right) \\
& (0,0,0) & (0,4,8) \\
2 \alpha_{1}^{\vee}+\alpha_{2}^{\vee}= & (2,-1,-1) & (6,1,5) \\
\alpha_{1}^{\vee}+2 \alpha_{2}^{\vee}= & (1,1,-2) & (3,7,2) \\
2 \alpha_{1}^{\vee}+2 \alpha_{2}^{\vee}= & (2,0,-2) & (6,4,2) \\
\alpha_{1}^{\vee}+\alpha_{2}^{\vee}= & (1,0,-1) & (3,4,5)
\end{array}
$$

Lem Explicit bijection from $J_{d / n}$ to the set of Dyck paths of slope $\frac{d}{n}$.

Ex Let $\min (\mu)=\min _{1 \leq i \leq n-1} a_{i}(\mu)$.
If $\mu=(2,0,-2)$, then $\min (\mu)=2$ and

$$
\coprod_{i}\left(a_{i}(\mu)-\min (\mu)+3 \mathbf{Z}_{\geq 0}\right)=\{0,2,3,4,5, \ldots\}
$$

$\Longrightarrow \quad$| \vdots | \vdots | \vdots |
| :---: | :---: | :---: |
| 11 | 7 | 3 |
| 8 | 4 | 0 |
| 5 | 1 | |
| 2 | | |
| | | |
| | | |

Cor $\quad\left|\mathcal{G} r_{n}\left(\gamma_{d}\right)^{\nu_{d}}\right|=\mathfrak{C}_{d / n}$.

Lem The strata $\mathcal{G} r_{\mu}\left(\gamma_{d}\right)=\mathcal{G} r_{\mu} \cap \mathcal{G} r_{n}\left(\gamma_{d}\right)$ are affine spaces (when nonempty).

Thm (Gorsky-Mazin + Hikita)

$$
\mathfrak{C}_{d / n}(q, t)=\sum_{\left[x^{\mu}\right] \in \mathcal{G} r_{n}\left(\gamma_{d}\right)^{\nu} d} q^{\delta-\min (\mu)} t^{\operatorname{dim}\left(\mathcal{G} r_{\mu}(\gamma)\right)}
$$

Both sides specialize to $\mathfrak{C}_{d / n}(q)$ when $q=t$.
Ex $\quad \mathfrak{C}_{4 / 3}(q, t)=1+q t+q t^{2}+q^{2} t^{2}+q^{3} t^{3}$.

μ	$\delta-\min (\mu)$	$\operatorname{dim}\left(\mathcal{G} r_{\mu}(\gamma)\right)$
$(0,0,0)$	3	3
$(2,-1,-1)$	2	2
$(1,1,-2)$	1	2
$(2,0,-2)$	1	1
$(1,0,-1)$	0	0

Now let G be any almost-simple, simply-connected algebraic group.

We can replace $\mathcal{G} r_{n}$ with $\mathcal{G} r_{G}$, and replace n with the Coxeter number h of the Weyl group W.

Let d_{1}, \ldots, d_{r} be the invariant degrees and

$$
\mathfrak{C}_{W, d}(q):=\prod_{1 \leq i \leq r} \frac{\left[d+\overline{d\left(d_{i}-1\right)}\right]}{\left[d_{i}\right]},
$$

where $\overline{d\left(d_{i}-1\right)}$ is the remainder of $d\left(d_{i}-1\right) \bmod h$. Set $\mathfrak{C}_{W, d}:=\mathfrak{C}_{W, d}(1)$.

Thm (Oblomkov-Yun) $\quad\left|\mathcal{G} r_{G}\left(\gamma_{d}\right)^{\nu_{d}}\right|=\mathfrak{C}_{W, d}$.
Proof uses a cohomological rational Cherednik algebra.

But Hikita's combinatorics do not generalize.

Thm (T) For $G=\mathrm{Sp}_{4}$, no "reasonable" analogue of Hikita's construction recovers $\mathfrak{C}_{W, d}(q)$ from $\mathcal{G} r_{G}\left(\gamma_{d}\right)$.

Nonetheless, a construction of noncrossing rather than nonnesting flavor gives:

Thm (T) There is a G-variety $\mathcal{U}_{G, d}$ such that

$$
\mathfrak{C}_{W, d}^{\text {geo }}(q, t):=\sum_{j, k} q^{\frac{j}{2}} t^{k} \operatorname{gr}_{j}^{\mathrm{W}} \mathrm{H}_{c, G}^{k}\left(\mathcal{U}_{G, d}\right)
$$

satisfies:

1. $\mathfrak{C}_{W, d}^{\text {geo }}(q, t)=\mathfrak{C}_{d / n}\left(q, q t^{2}\right)$ when $G=\mathrm{SL}_{n}$.
2. $\mathfrak{C}_{W, d}^{\text {geo }}(q,-1)=\left|\mathcal{U}_{G, d}\left(\mathbf{F}_{q}\right)\right| /\left|G\left(\mathbf{F}_{q}\right)\right|=\mathfrak{C}_{W, d}(q)$.

Above, W is a so-called weight filtration.

§2 Braids

$\mathcal{U} \subseteq G$ unipotent variety,

\mathcal{B} flag variety

For $B, B^{\prime} \in \mathcal{B}$, we write $B \xrightarrow{w} B^{\prime}$ to mean $B^{\prime} \subseteq B \dot{w} B$. For any tuple of simple reflections $\vec{s}=\left(s_{1}, \ldots, s_{\ell}\right)$, let $\mathcal{U}(\vec{s})=\left\{(u, \vec{B}) \in \mathcal{U} \times \mathcal{B}^{\ell} \mid B_{\ell}^{u} \xrightarrow{s_{1}} B_{1} \xrightarrow{s_{2}} \cdots \xrightarrow{s_{\ell}} B_{\ell}\right\}$ where $B^{u}=u^{-1} B u$. Action of G by conjugation.

Lem If \vec{s} changes by a braid move, then $\mathcal{U}(\vec{s})$ changes by a fixed isomorphism that preserves u.

Up to these isomorphisms, $\mathcal{U}(\vec{s})$ only depends on the underlying braid β of \vec{s}, so we write $\mathcal{U}(\beta)$.
G also acts on

$$
\begin{aligned}
\tilde{\mathcal{U}}(\beta) & =\left\{\left(u, \vec{B}, B^{\prime}\right) \in \mathcal{U}(\beta) \times \mathcal{B} \mid u \in B^{\prime}\right\} \\
\mathcal{X}(\beta) & =\{(1, \vec{B}) \in \mathcal{U}(\beta)\} \\
& =\left\{\vec{B} \in \mathcal{B}^{\ell} \mid B_{\ell} \xrightarrow{s_{1}} B_{1} \xrightarrow{s_{2}} \cdots \xrightarrow{s_{\ell}} B_{\ell}\right\} .
\end{aligned}
$$

The fibers of $\tilde{\mathcal{U}}(\beta) \rightarrow \mathcal{U}(\beta)$ are Springer fibers, which have a W-action on cohomology.

Thm (T) There's a W-action on $\mathrm{H}_{c, G}^{*}(\widetilde{\mathcal{U}}(\beta))$ such that:

1. The invariants are $\mathrm{H}_{c, G}^{*}(\mathcal{U}(\beta))$.
2. The anti-invariants (sgn-isotypics) are $\mathrm{H}_{c, G}^{*}(\mathcal{X}(\beta))$.
(We actually need a derived version of $\tilde{\mathcal{U}}(\beta)$.)

The superpolynomial is an isotopy invariant

$$
\mathbf{P}:\left\{\text { links in } \mathbf{R}^{3}\right\} \rightarrow \mathbf{Z} \llbracket q \rrbracket\left[a^{ \pm 1}, t^{ \pm 1}\right]
$$

$\left.\mathbf{P}\right|_{t \rightarrow-1}$ is the HOMFLYPT series in a and $q^{\frac{1}{2}}$.
\mathbf{P} is itself the graded dimension of HOMFLYPT or Khovanov-Rozansky homology.

For $V \in \operatorname{Rep}\left(S_{n}\right)$, let $V\left[\wedge^{i}\right]=\operatorname{Hom}_{S_{n}}\left(\bigwedge^{i}\left(\mathbf{C}^{n-1}\right), V\right)$. Note that $\left[\wedge^{0}\right]=$ invariants, $\left[\wedge^{n-1}\right]=$ anti-invariants.

Thm (T) Take $G=\mathrm{SL}_{n}$, so that $W=S_{n}$.
If $\hat{\beta}$ is the link closure of β, then

$$
\mathbf{P}(\hat{\beta}) \propto \sum_{i, j, k}\left(a^{2} q^{\frac{1}{2}} t\right)^{i} q^{\frac{i-j}{2}} t^{k-j} \operatorname{gr}_{j}^{\mathrm{W}} \mathrm{H}_{c, G}^{k}(\tilde{\mathcal{U}}(\beta))\left[\wedge^{i}\right] .
$$

Let β_{d} be a braid on n strands whose link closure is the (d, n) torus knot $T_{d, n}$.

Mellit, building on Elias-Hogancamp, computed $\mathbf{P}\left(T_{d, n}\right)$. Lowest a-degree part is $q^{-\delta} \mathfrak{C}_{d / n}\left(q, q t^{2}\right)$.

Cor (T) $\quad \mathrm{gr}_{*}^{\mathrm{W}} \mathrm{H}^{*}\left(\mathcal{U}\left(\beta_{d}\right)\right)$ encodes $\mathfrak{C}_{d / n}\left(q, q t^{2}\right)$.
Nakagane, building on Kálmán, showed that

$$
\begin{gathered}
\text { lowest } a \text {-degree of } \mathbf{P}\left(T_{d, n}\right) \\
\propto
\end{gathered}
$$

$$
\text { highest } a \text {-degree of } \mathbf{P}\left(T_{d+n, n}\right)
$$

(GHMN generalized to the full twist of any braid.)
Cor (T) $\operatorname{gr}_{*}^{W} \mathrm{H}^{*}\left(\mathcal{U}\left(\beta_{d}\right)\right) \simeq \operatorname{gr}_{*}^{W} \mathrm{H}^{*}\left(\mathcal{X}\left(\beta_{d+n}\right)\right)$.

Ex Take $\frac{d}{n}=\frac{3}{2}$, so that $\vec{s}=\left(s_{1}, s_{1}, s_{1}\right)$. The link closure $\hat{\beta}$ is a trefoil, for which

$$
\mathbf{P}(\hat{\beta})=a^{2} q^{-1}+a^{2} q t^{2}+a^{4} t^{3} .
$$

Note that $\left.\left[a^{-2} q \mathbf{P}(\hat{\beta})\right]\right|_{a \rightarrow 0}=\mathfrak{C}_{3 / 2}\left(q, q t^{2}\right)$.
Meanwhile, $\mathrm{gr}_{*}^{\mathrm{W}} \mathrm{H}_{c, G}^{*}\left(\tilde{\mathcal{U}}\left(\beta_{d}\right)\right)$ looks like:

$$
\begin{array}{lllll}
& \operatorname{gr}_{0}^{\mathrm{W}} & \operatorname{gr}_{2}^{\mathrm{W}} & \operatorname{gr}_{4}^{\mathrm{W}} &
\end{array} \begin{aligned}
& \text { where } \\
& \mathrm{H}_{c}^{2}
\end{aligned} \bigwedge^{0} \begin{array}{llll}
& & \bigwedge^{0}=\operatorname{triv} \\
\mathrm{H}_{c}^{4} & & \bigwedge^{1} & \bigwedge^{0}
\end{array} \quad \bigwedge^{1}=\operatorname{sgn}
$$

The generating function for $\operatorname{gr}_{j}^{W} \mathrm{H}_{c, G}^{k}\left[\wedge^{i}\right]$ is

$$
q^{\frac{1}{2}} t^{2}+\left(a^{2} q^{\frac{1}{2}} t\right) q^{-1} t^{2}+q^{-\frac{3}{2}}
$$

We can generalize β_{d} to any G, using the Coxeter number h in place of n.

Thm (T) The Armstrong-Reiner-Rhoades parking space of (W, d) is

$$
\bigoplus_{j} \operatorname{gr}_{j}^{\mathrm{w}} \mathrm{H}_{c, G}^{*}\left(\widetilde{\mathcal{U}}\left(\beta_{d}\right)\right) .
$$

Cor (T) $\left|\mathcal{U}\left(\beta_{d}\right)\left(\mathbf{F}_{q}\right) / G\left(\mathbf{F}_{q}\right)\right| \propto \mathfrak{C}_{W, d}(q,-1)$ in all types.

Sommers defined a certain decomposition

$$
C_{W, d}(q)=\sum_{[u] \in \mathcal{U} / G} K r_{[u], d}(q)
$$

recovering the usual Kreweras numbers for $W=S_{n}$.
Cor (T) If $\mathcal{U}\left(\beta_{d},[u]\right) \subseteq \mathcal{U}\left(\beta_{d}\right)$ is the preimage of $[u]$, then $\left|\mathcal{U}\left(\beta_{d},[u]\right)\left(\mathbf{F}_{q}\right) / G\left(\mathbf{F}_{q}\right)\right| \propto K r_{[u], d}(q)$.

§3 Deograms

We know much more about $\mathcal{X}(\beta)$ than $\mathcal{U}(\beta), \tilde{\mathcal{U}}(\beta)$.
Fix $B_{+} \in \mathcal{B}$ and $w \in W$. Let

$$
X_{+}(\beta, w)=\left\{\begin{array}{l|l}
\vec{B} & \begin{array}{l}
B_{+} \xrightarrow{s_{1}} B_{1} \xrightarrow{s_{2}} \cdots \xrightarrow{s_{\ell}} B_{\ell} \\
B_{\ell}^{w}=B_{+}
\end{array}
\end{array}\right\}
$$

Lem $\left[\mathcal{X}\left(\beta \sigma_{w}\right) / G\right] \simeq\left[X_{+}(\beta, w) /\left(B_{+} \cap B_{+}^{w}\right)\right]$.
Thm (CGGLSS, GLSB) $\quad X_{+}(\beta, w)$ is a cluster variety.

For $u \in W$, the open Richardson variety of GLTW is

$$
R_{u, \beta}^{\circ}:=X_{+}\left(\beta \sigma_{w_{0} u^{-1}}, w_{0}\right),
$$

where $w_{0} \in W$ is the longest element and σ_{w} is the braid lift of w.

A u-Deogram of $\vec{s}=\left(s_{1}, \ldots, s_{\ell}\right)$ is

$$
\vec{x}=\left(x_{1}, \ldots, x_{\ell}\right) \quad \text { s.t. }\left\{\begin{array}{l}
x_{i} \in\left\{e, s_{i}\right\} \forall i, \\
x_{1} \cdots x_{i} \leq x_{1} \cdots x_{i-1} s_{i} \forall i, \\
u=x_{1} \cdots x_{\ell}
\end{array}\right.
$$

Let $\mathcal{D}_{u}(\vec{s})$ be the set of all u-Deograms of \vec{s}. Let

$$
\mathbf{e}_{\vec{x}}=\left\{i \mid x_{i}=e\right\}, \quad \mathbf{d}_{\vec{x}}=\left\{i \mid x_{1} \cdots x_{i}<x_{1} \cdots x_{i-1}\right\} .
$$

Let $\mathcal{M}_{u}(\vec{s}) \subseteq \mathcal{D}_{u}(\vec{s})$ consist of \vec{x} that minimize $\left|\mathbf{e}_{\vec{x}}\right|$.

Thm (Deodhar) If β arises from \vec{s}, then

$$
R_{u, \beta}^{\circ}=\coprod_{\vec{x} \in \mathcal{D}_{u}(\vec{s})}\left(\left(\mathbf{C}^{\times}\right)^{\mathbf{e}_{\vec{x}}} \times \mathbf{C}^{\mathbf{d}_{\vec{x}}}\right)
$$

Thm (GLTW) If $\beta=\beta_{d}$, then $\left|\mathcal{M}_{e}(\vec{s})\right|=\mathfrak{C}_{W, d}$. In fact, $(q-1)^{-\operatorname{rk}(G)}\left|R_{e, \beta_{d}}^{\circ}\left(\mathbf{F}_{q}\right)\right|=\mathfrak{C}_{W, d}(q)$.

Lusztig's truncated F.T. on $\operatorname{Irr}(W)$ essential to proof.

$\S 4$ Coda

How is $\mathcal{U}_{G, d}:=\mathcal{U}\left(\beta_{d}\right)$ related to $\mathcal{G} r_{G}\left(\gamma_{d}\right)$?

Bezrukavnikov-Boxeida-McBreen-Yun recently constructed a "wild Hitchin fibration"

$$
f_{G, d}: \mathcal{M}_{G, d} \rightarrow \mathcal{A}_{G, d}
$$

and an action $\mathbf{C}^{\times} \curvearrowright \mathcal{M}_{G, d}$, which contracts it onto a fiber of $f_{G, d}$ homeomorphic to $\mathcal{G} r_{G}\left(\gamma_{d}\right)$.

Writing-in-progress $\quad\left[\mathcal{U}_{G, d} / G\right]$ and $\mathcal{M}_{G, d}$ are homeomorphic at the level of coarse spaces.

Arises from nonabelian Hodge theory on $\mathbf{C P}{ }^{1}$ with:

- a regular singularity at $x=0$ of nilpotent residue,
- a wild singularity of type $\gamma_{d} \frac{d x}{x}$ at $x=\infty$.
$\mathcal{N} \subseteq \mathfrak{g}$ nilpotent variety
There are spaces $\mathcal{F} l_{G}\left(\gamma_{d}\right)$ and $\widetilde{\mathcal{M}}_{G, d}$ that we expect to fit into a diagram:

The first row is "parking". The second is "Catalan". Thank you for listening.

