

Catalan Combinatorics in Algebraic Geometry

Minh-Tâm Quang Trinh

Massachusetts Institute of Technology

Plan of talk:

0. Catalan Numbers

- 1. Dyck Paths
- 2. Braids

3. Deograms

4. Coda: NAHT

References for $^2-3$:

- [T] arXiv:2106.07444
- [Galashin-Lam-T-Williams] arXiv:2208.00121

§0 Catalan Numbers

The Catalan numbers generalize in several ways: rational slopes, Coxeter groups, q-numbers...

As we generalize them, we encounter two paradigms for the collections of objects they enumerate:

nonnesting versus noncrossing

nonnesting generalize to Weyl groups (Postnikov), admit Dyck-path-like statistics

noncrossing generalize to Coxeter groups (Reiner, Bessis), depend on a Coxeter element

The tension between these has interesting incarnations in algebraic geometry.

$$\begin{split} \mathfrak{C}_n &:= \frac{(2n)!}{(n+1)!n!} \\ \mathfrak{C}_{d/n} &:= \frac{(d+n-1)!}{d!n!} \end{split} \qquad \qquad \text{for coprime } d,n \end{split}$$

$$(\mathfrak{C}_{1/3},\mathfrak{C}_{2/3},\mathfrak{C}_{4/3},\mathfrak{C}_{5/3},\ldots) = (1,2,5,7,\ldots)$$

$$\begin{split} &[n] := 1 + q + \dots + q^{n-1} \\ &[n]! := [1][2] \cdots [n] \\ &\mathfrak{C}_{d/n}(q) = \frac{[d+n-1]!}{[d]![n]!} & \text{for coprime } d,n \\ &\mathfrak{C}_{4/3}(q) = 1 + q^2 + q^3 + q^4 + q^6 \end{split}$$

Lastly, a bivariate $\mathfrak{C}_{d/n}(q,t)$, more difficult to define.

§1 Dyck Paths

 $\mathfrak{C}_{d/n}$ counts the lattice paths above the diagonal in a $d\times n$ rectangle:

Above are the Dyck paths of slope $\frac{5}{3}$.

Piontkowski gave a variety stratified by $\mathfrak{C}_{d/n}\text{-many}$ affine spaces of various dimensions.

Gorsky–Mazin matched the strata with Dyck paths. Hikita interpreted $\mathfrak{C}_{d/n}(q,t)$ in this geometry.

We'll explain the construction in Lie-theoretic terms.

Let $F = \mathbf{C}((x))$ and $\mathcal{O} = \mathbf{C}[[x]]$.

Let $G = SL_n$. The affine Grassmannian of G is

$$\mathcal{G}r_n = G(F)/G(\mathcal{O}).$$

It has a Cartan decomposition

$$\mathcal{G}r_n = \prod_{\mu \in X_+^{\vee}} \underbrace{G(\mathcal{O}) x^{\mu} G(\mathcal{O}) / G(\mathcal{O})}_{\mathcal{G}r_{\mu}},$$

where $X^{\vee}_{+} = \{ \mu \in \mathbf{Z}^n \mid \mu_i \text{ decreasing and zero-sum} \},\$

$$x^{\mu} = \begin{pmatrix} x^{\mu_1} & & \\ & \ddots & \\ & & x^{\mu_n} \end{pmatrix}.$$

Any $\nu \in X_+^{\vee}$ defines an action $\mathbf{C}^{\times} \curvearrowright G(F)$:

$$c \cdot_{\nu} g(x) = c^{\nu} g(c^{2n} x) c^{-\nu}.$$

Induces an action $\mathbf{C}^{\times} \curvearrowright \mathcal{G}r_n$. Generic fixed points are cosets $[x^{w\mu}]$ for $w \in S_n$.

Also induces an action $\mathbf{C}^{\times} \curvearrowright \mathfrak{g}(F) = \mathfrak{sl}_n(F)$. Lem If $\gamma \in \mathfrak{g}(F)$ is an eigenvector of \mathbf{C}^{\times} , then

 $\mathcal{G}r_n(\gamma) = \{[g] \in \mathcal{G}r_n \mid g^{-1}\gamma g \in \mathfrak{g}(\mathcal{O})\}$

is stable under the ν -action on $\mathcal{G}r_n$.

We'll pick ν and γ so that ν -fixed points of $\mathcal{G}r_n(\gamma)$ correspond to Dyck paths of slope $\frac{d}{n}$.

Let $\{\alpha_i\}_i \subseteq \Phi^+ \subseteq \Phi$ be the simple roots.

$$\begin{split} \nu_d &= d \begin{pmatrix} \overset{n-1}{&} & \\ & \ddots & \\ & & \ddots & \\ \gamma_d &= \begin{pmatrix} 1 & & x^d \\ & \ddots & \\ & & 1 \end{pmatrix} = x^d e_{\alpha_{\mathrm{top}}} + \sum_i e_{-\alpha_i}, \end{split}$$

where $\mathfrak{g}_{\alpha} = \mathbf{C} e_{\alpha}$ and α_{top} is the highest root.

Lem (Lusztig–Smelt, Sommers) γ_d is an eigenvector of the ν_d -action on $\mathfrak{g}(F)$. Moreover,

$$\mathcal{G}r_n(\gamma_d)^{\nu_d} = \left\{ [x^{\mu}] \in \mathcal{G}r_n \left| \begin{array}{c} \mu \in X^{\vee}_+, \\ \langle \alpha_{\mathrm{top}}, \mu \rangle \leq d \end{array} \right\}.$$

Let
$$\delta = \frac{1}{2}(d-1)(n-1)$$
, and let

$$J_{d/n} = \left\{ \Delta \subseteq \mathbf{Z}_{\geq 0} \middle| \begin{array}{c} \Delta + d\mathbf{Z}_{\geq 0} + n\mathbf{Z}_{\geq 0} \subseteq \Delta, \\ |\mathbf{Z}_{\geq 0} \setminus \Delta| = \delta \end{array} \right\}.$$

Lem Explicit bijection $\mathcal{G}r_n(\gamma_d)^{\nu_d} \xrightarrow{\sim} J_{d/n}$:

$$[x^{\mu}] \mapsto \coprod_{i} (\underbrace{n\mu_{i} + d(i-1)}_{a_{i}(\mu)} + n\mathbf{Z}_{\geq 0}).$$

Ex Take
$$\frac{d}{n} = \frac{4}{3}$$
.

 μ

 $(a_1(\mu), a_2(\mu), a_3(\mu))$

$$\begin{array}{ccc} (0,0,0) & (0,4,8) \\ 2\alpha_1^{\vee}+\alpha_2^{\vee}=(2,-1,-1) & (6,1,5) \\ \alpha_1^{\vee}+2\alpha_2^{\vee}=(1,1,-2) & (3,7,2) \\ 2\alpha_1^{\vee}+2\alpha_2^{\vee}=(2,0,-2) & (6,4,2) \\ \alpha_1^{\vee}+\alpha_2^{\vee}=(1,0,-1) & (3,4,5) \end{array}$$

Lem Explicit bijection from $J_{d/n}$ to the set of Dyck paths of slope $\frac{d}{n}$.

Ex Let
$$\min(\mu) = \min_{1 \le i \le n-1} a_i(\mu)$$
.

If $\mu = (2, 0, -2)$, then $\min(\mu) = 2$ and

Lem The strata $\mathcal{G}r_{\mu}(\gamma_d) = \mathcal{G}r_{\mu} \cap \mathcal{G}r_n(\gamma_d)$ are affine spaces (when nonempty).

Thm (Gorsky–Mazin + Hikita)

$$\mathfrak{C}_{d/n}(q,t) = \sum_{[x^{\mu}] \in \mathcal{G}r_n(\gamma_d)^{\nu_d}} q^{\delta - \min(\mu)} t^{\dim(\mathcal{G}r_{\mu}(\gamma))}.$$

Both sides specialize to $\mathfrak{C}_{d/n}(q)$ when q = t.

$$\mathbf{Ex} \quad \mathfrak{C}_{4/3}(q,t) = 1 + qt + qt^2 + q^2t^2 + q^3t^3.$$

μ	$\delta - \min(\mu)$	$\dim(\mathcal{G}r_{\mu}(\gamma))$
(0, 0, 0)	3	3
(2, -1, -1)	2	2
(1, 1, -2)	1	2
(2, 0, -2)	1	1
(1, 0, -1)	0	0

Now let G be any almost-simple, simply-connected algebraic group.

We can replace $\mathcal{G}r_n$ with $\mathcal{G}r_G$, and replace *n* with the Coxeter number *h* of the Weyl group *W*.

Let d_1, \ldots, d_r be the invariant degrees and

$$\mathfrak{C}_{W,d}(q) := \prod_{1 \leq i \leq r} rac{[d + \overline{d(d_i - 1)}]}{[d_i]},$$

where $\overline{d(d_i - 1)}$ is the remainder of $d(d_i - 1) \mod h$. Set $\mathfrak{C}_{W,d} := \mathfrak{C}_{W,d}(1)$.

Thm (Oblomkov–Yun) $|\mathcal{G}r_G(\gamma_d)^{\nu_d}| = \mathfrak{C}_{W,d}$. Proof uses a cohomological rational Cherednik algebra. But Hikita's combinatorics do not generalize.

Thm (T) For $G = \text{Sp}_4$, no "reasonable" analogue of Hikita's construction recovers $\mathfrak{C}_{W,d}(q)$ from $\mathcal{G}r_G(\gamma_d)$.

Nonetheless, a construction of *noncrossing* rather than *nonnesting* flavor gives:

Thm (T) There is a *G*-variety $\mathcal{U}_{G,d}$ such that

$$\mathfrak{C}^{\mathrm{geo}}_{W,d}(q,t) \mathrel{\mathop:}= \sum_{j,k} q^{\frac{j}{2}} t^k \operatorname{gr}_j^{\mathsf{W}} \operatorname{H}_{c,G}^k(\mathcal{U}_{G,d})$$

satisfies:

$$\begin{split} &1. \ \mathfrak{C}_{W,d}^{\text{geo}}(q,t) = \mathfrak{C}_{d/n}(q,qt^2) \text{ when } G = \mathrm{SL}_n. \\ &2. \ \mathfrak{C}_{W,d}^{\text{geo}}(q,-1) = |\mathcal{U}_{G,d}(\mathbf{F}_q)|/|G(\mathbf{F}_q)| = \mathfrak{C}_{W,d}(q). \end{split}$$

Above, W is a so-called weight filtration.

§2 Braids

 $\mathcal{U} \subseteq G$ unipotent variety, \mathcal{B} flag variety

For $B, B' \in \mathcal{B}$, we write $B \xrightarrow{w} B'$ to mean $B' \subseteq B\dot{w}B$. For any tuple of simple reflections $\vec{s} = (s_1, \dots, s_\ell)$, let $\mathcal{U}(\vec{s}) = \{(u, \vec{B}) \in \mathcal{U} \times \mathcal{B}^\ell \mid B_\ell \xrightarrow{s_1} B_1 \xrightarrow{s_2} \dots \xrightarrow{s_\ell} B_\ell\}$

where $B^u = u^{-1}Bu$. Action of G by conjugation.

Lem If \vec{s} changes by a braid move, then $\mathcal{U}(\vec{s})$ changes by a fixed isomorphism that preserves u.

Up to these isomorphisms, $\mathcal{U}(\vec{s})$ only depends on the underlying braid β of \vec{s} , so we write $\mathcal{U}(\beta)$.

G also acts on

$$\begin{aligned} \widetilde{\mathcal{U}}(\beta) &= \{ (u, \vec{B}, B') \in \mathcal{U}(\beta) \times \mathcal{B} \mid u \in B' \}, \\ \mathcal{X}(\beta) &= \{ (1, \vec{B}) \in \mathcal{U}(\beta) \} \\ &= \{ \vec{B} \in \mathcal{B}^{\ell} \mid B_{\ell} \xrightarrow{s_1} B_1 \xrightarrow{s_2} \cdots \xrightarrow{s_{\ell}} B_{\ell} \}. \end{aligned}$$

The fibers of $\widetilde{\mathcal{U}}(\beta) \to \mathcal{U}(\beta)$ are *Springer fibers*, which have a *W*-action on cohomology.

Thm (T) There's a *W*-action on $\operatorname{H}^*_{c,G}(\widetilde{\mathcal{U}}(\beta))$ such that:

1. The invariants are $H^*_{c,G}(\mathcal{U}(\beta))$.

2. The anti-invariants (sgn-isotypics) are $\operatorname{H}^*_{c,G}(\mathcal{X}(\beta))$.

(We actually need a derived version of $\tilde{\mathcal{U}}(\beta)$.)

The superpolynomial is an isotopy invariant

 $\mathbf{P}: \{\text{links in } \mathbf{R}^3\} \to \mathbf{Z}[\![q]\!][a^{\pm 1}, t^{\pm 1}]$

 $\mathbf{P}|_{t\to-1}$ is the HOMFLYPT series in a and $q^{\frac{1}{2}}$.

 ${\bf P}$ is itself the graded dimension of HOMFLYPT or Khovanov–Rozansky homology.

For $V \in \operatorname{Rep}(S_n)$, let $V[\wedge^i] = \operatorname{Hom}_{S_n}(\bigwedge^i(\mathbf{C}^{n-1}), V)$. Note that $[\wedge^0] = \text{invariants}, [\wedge^{n-1}] = \text{anti-invariants}.$

Thm (T) Take $G = SL_n$, so that $W = S_n$. If $\hat{\beta}$ is the link closure of β , then

$$\mathbf{P}(\hat{\beta}) \propto \sum_{i,j,k} (a^2 q^{\frac{1}{2}} t)^i q^{\frac{i-j}{2}} t^{k-j} \operatorname{gr}_j^{\mathsf{W}} \mathrm{H}_{c,G}^k(\widetilde{\mathcal{U}}(\beta))[\wedge^i].$$

Let β_d be a braid on *n* strands whose link closure is the (d, n) torus knot $T_{d,n}$.

Mellit, building on Elias–Hogancamp, computed $\mathbf{P}(T_{d,n})$. Lowest *a*-degree part is $q^{-\delta}\mathfrak{C}_{d/n}(q, qt^2)$.

Cor (T) $\operatorname{gr}^{W}_{*} \operatorname{H}^{*}(\mathcal{U}(\beta_{d}))$ encodes $\mathfrak{C}_{d/n}(q, qt^{2})$.

Nakagane, building on Kálmán, showed that

lowest *a*-degree of $\mathbf{P}(T_{d,n})$ \propto highest *a*-degree of $\mathbf{P}(T_{d+n,n})$

(GHMN generalized to the full twist of any braid.)

Cor (T) $\operatorname{gr}^{W}_{*} \operatorname{H}^{*}(\mathcal{U}(\beta_{d})) \simeq \operatorname{gr}^{W}_{*} \operatorname{H}^{*}(\mathcal{X}(\beta_{d+n})).$

Ex Take $\frac{d}{n} = \frac{3}{2}$, so that $\vec{s} = (s_1, s_1, s_1)$. The link closure $\hat{\beta}$ is a trefoil, for which

$$\mathbf{P}(\hat{\beta}) = a^2 q^{-1} + a^2 q t^2 + a^4 t^3$$

Note that $[a^{-2}q \mathbf{P}(\hat{\beta})]|_{a\to 0} = \mathfrak{C}_{3/2}(q, qt^2).$

Meanwhile, $\operatorname{gr}^{\mathsf{W}}_{*} \operatorname{H}^{*}_{c,G}(\widetilde{\mathcal{U}}(\beta_d))$ looks like:

$$\begin{array}{ccc} & \operatorname{gr}_0^{\mathsf{W}} & \operatorname{gr}_2^{\mathsf{W}} & \operatorname{gr}_4^{\mathsf{W}} \\ \operatorname{H}_c^2 & \bigwedge^0 & & & \operatorname{where} & \bigwedge^0 = \operatorname{triv}, \\ \operatorname{H}_c^4 & & \bigwedge^1 & \bigwedge^0 & & & \bigwedge^1 = \operatorname{sgn} \end{array}$$

The generating function for $\operatorname{gr}_{i}^{\mathsf{W}} \operatorname{H}_{c,G}^{k}[\wedge^{i}]$ is

 $q^{\frac{1}{2}}t^{2} + (a^{2}q^{\frac{1}{2}}t)q^{-1}t^{2} + q^{-\frac{3}{2}}.$

We can generalize β_d to any G, using the Coxeter number h in place of n.

Thm (T) The Armstrong–Reiner–Rhoades parking space of (W, d) is

$$\bigoplus_{j} \operatorname{gr}_{j}^{\mathsf{W}} \operatorname{H}_{c,G}^{*}(\widetilde{\mathcal{U}}(\boldsymbol{\beta_{d}})).$$

Cor (T) $|\mathcal{U}(\beta_d)(\mathbf{F}_q)/G(\mathbf{F}_q)| \propto \mathfrak{C}_{W,d}(q,-1)$ in all types.

Sommers defined a certain decomposition

$$C_{W,d}(q) = \sum_{[\boldsymbol{u}] \in \mathcal{U}/G} Kr_{[\boldsymbol{u}],d}(q),$$

recovering the usual Kreweras numbers for $W = S_n$. **Cor (T)** If $\mathcal{U}(\beta_d, [\boldsymbol{u}]) \subseteq \mathcal{U}(\beta_d)$ is the preimage of $[\boldsymbol{u}]$, then $|\mathcal{U}(\beta_d, [\boldsymbol{u}])(\mathbf{F}_q)/G(\mathbf{F}_q)| \propto Kr_{[\boldsymbol{u}],d}(q)$.

§3 Deograms

We know much more about $\mathcal{X}(\beta)$ than $\mathcal{U}(\beta), \widetilde{\mathcal{U}}(\beta)$. Fix $B_+ \in \mathcal{B}$ and $w \in W$. Let

$$X_+(\beta,w) = \left\{ \vec{B} \left| \begin{array}{c} B_+ \xrightarrow{s_1} B_1 \xrightarrow{s_2} \cdots \xrightarrow{s_\ell} B_\ell, \\ B_\ell^w = B_+ \end{array} \right\}.$$

Lem $[\mathcal{X}(\beta\sigma_w)/G] \simeq [X_+(\beta, w)/(B_+ \cap B^w_+)].$

Thm (CGGLSS, GLSB) $X_+(\beta, w)$ is a cluster variety.

For $u \in W$, the open Richardson variety of GLTW is

$$R_{u,\beta}^{\circ} := X_+(\beta \sigma_{w_0 u^{-1}}, w_0),$$

where $w_0 \in W$ is the longest element and σ_w is the braid lift of w.

A *u*-Deogram of $\vec{s} = (s_1, \ldots, s_\ell)$ is

$$\vec{x} = (x_1, \dots, x_\ell) \quad \text{s.t.} \begin{cases} x_i \in \{e, s_i\} \, \forall i, \\ x_1 \cdots x_i \leq x_1 \cdots x_{i-1} s_i \, \forall i, \\ u = x_1 \cdots x_\ell \end{cases}$$

Let $\mathcal{D}_u(\vec{s})$ be the set of all *u*-Deograms of \vec{s} . Let

 $\mathbf{e}_{\vec{x}} = \{i \mid x_i = e\}, \quad \mathbf{d}_{\vec{x}} = \{i \mid x_1 \cdots x_i < x_1 \cdots x_{i-1}\}.$

Let $\mathcal{M}_u(\vec{s}) \subseteq \mathcal{D}_u(\vec{s})$ consist of \vec{x} that minimize $|\mathbf{e}_{\vec{x}}|$.

Thm (Deodhar) If β arises from \vec{s} , then

$$R_{u,\beta}^{\circ} = \coprod_{\vec{x} \in \mathcal{D}_u(\vec{s})} ((\mathbf{C}^{\times})^{\mathbf{e}_{\vec{x}}} \times \mathbf{C}^{\mathbf{d}_{\vec{x}}}).$$

Thm (GLTW) If $\beta = \beta_d$, then $|\mathcal{M}_e(\vec{s})| = \mathfrak{C}_{W,d}$. In fact, $(q-1)^{-\mathrm{rk}(G)}|R_{e,\beta_d}^{\circ}(\mathbf{F}_q)| = \mathfrak{C}_{W,d}(q)$.

Lusztig's truncated F.T. on Irr(W) essential to proof.

§4 Coda

How is $\mathcal{U}_{G,d} := \mathcal{U}(\beta_d)$ related to $\mathcal{G}r_G(\gamma_d)$?

Bezrukavnikov–Boxeida–McBreen–Yun recently constructed a "wild Hitchin fibration"

$$f_{G,d}: \mathcal{M}_{G,d} \to \mathcal{A}_{G,d}$$

and an action $\mathbf{C}^{\times} \curvearrowright \mathcal{M}_{G,d}$, which contracts it onto a fiber of $f_{G,d}$ homeomorphic to $\mathcal{G}r_G(\gamma_d)$.

Writing-in-progress $[\mathcal{U}_{G,d}/G]$ and $\mathcal{M}_{G,d}$ are homeomorphic at the level of coarse spaces.

Arises from nonabelian Hodge theory on ${\bf CP}^1$ with:

- a regular singularity at x = 0 of nilpotent residue,
- a wild singularity of type $\gamma_d \frac{dx}{x}$ at $x = \infty$.

 $\mathcal{N} \subseteq \mathfrak{g}$ nilpotent variety

There are spaces $\mathcal{F}l_G(\gamma_d)$ and $\widetilde{\mathcal{M}}_{G,d}$ that we expect to fit into a diagram:

$$\begin{array}{cccc} \mathcal{F}l_{G}(\gamma_{d}) & \xleftarrow{retract} & \widetilde{\mathcal{M}}_{G,d} & \stackrel{\sim}{\longrightarrow} & \widetilde{\mathcal{U}}_{G,d}/G \\ & & & \downarrow & & \downarrow \\ \mathcal{G}r_{G}(\gamma_{d}) & \xleftarrow{retract} & \mathcal{M}_{G,d} & \stackrel{\sim}{\longrightarrow} & \mathcal{U}_{G,d}/G \\ & & & \downarrow & & \downarrow \\ & & & \downarrow & & \downarrow \\ \mathcal{N}/G & = & \mathcal{N}/G & = & \mathcal{U}/G \end{array}$$

The first row is "parking". The second is "Catalan".

