Triply-Graded Link Homology and the Hilb-vs-Quot Conjecture

Minh-Tâm Quang Trinh

Massachusetts Institute of Technology

1. Links of Plane Curves

Plan of talk:

1. Links of Plane Curves
2. The Quot Schemes \mathcal{Q}_{f}^{ℓ}
3. Combinatorics
4. The Variety $\overline{\mathcal{P}}_{f} / \Lambda_{f}$

References

- M. Q. Trinh. From the Hecke Category to the Unipotent Locus (2021). 88 pp. arXiv:2106. 07444
- O. Kivinen \&. M. Q. Trinh. The Hilb-vs-Quot Conjecture (2023). 51 pp. arXiv:2310. 19633

$$
\begin{array}{ll}
\{f(x, y)=0\} & \text { for nonzero, squarefree } f \in \mathbf{C}[x, y] \\
& \text { with } f(0,0)=0
\end{array}
$$

Ex $\quad\{y=0\}$ is smooth.
Ex $\{x y=0\}$ has a node at $(0,0)$.
Ex $\quad\left\{y^{3}=x^{4}\right\}$ has a cusp at $(0,0)$.

LHS in \mathbf{R}^{2}. RHS in \mathbf{C}^{2}, but projected into \mathbf{R}^{3}.

For $\varepsilon>0$, the preimage of the circle $|x|=\varepsilon$ in $\left\{y^{3}=x^{4}\right\}$ is the torus knot $T_{3,4}$.

In general, a plane curve germ $f=0$ gives rise to
a topological link $L_{f} \subseteq S^{3}$.
If $f(x, y)=y^{n}+a_{1}(x) y^{n-1}+\cdots+a_{n-1}(x) y+a_{n}(x)$, then L_{f} is the closure of a braid on n strands.

What aspects of the geometry of $f=0$ only depend on L_{f} ?

Let $R_{f}=\mathbf{C} \llbracket x, y \rrbracket /(f)$, the completed local ring.
Consider the punctual Hilbert schemes

$$
\mathcal{H}_{f}^{\ell}=\left\{\text { ideals } I \subseteq R_{f} \mid \operatorname{dim}_{\mathbf{C}}\left(R_{f} / I\right)=\ell\right\} .
$$

Ex If f is smooth, then \mathcal{H}_{f}^{ℓ} is a point for all ℓ.
Ex If $f(x, y)=x y$, then $\mathcal{H}_{f}^{0}, \mathcal{H}_{f}^{1}$ are points, but

$$
\mathcal{H}_{f}^{2}=\left\{\left\langle x^{2}, y\right\rangle,\left\langle x, y^{2}\right\rangle\right\} \cup\{\langle x+\lambda y\rangle\} \simeq \mathbf{C P}^{1} .
$$

In general, \mathcal{H}_{f}^{ℓ} is a chain of transverse $\mathbf{C P}{ }^{1}{ }^{1}$ s.
We'll also use nested Hilbert schemes

$$
\mathcal{H}_{f}^{\ell, m}=\left\{(I, J) \in \mathcal{H}_{f}^{\ell} \times \mathcal{H}_{f}^{\ell+m} \mid\langle x, y\rangle I \subseteq J \subseteq I\right\}
$$

Picture as a stratified fiber bundle over \mathcal{H}_{f}^{ℓ}.

Consider the virtual weight polynomial

$$
\chi(-, t): K_{0}\left(\operatorname{Var}_{\mathbf{C}}\right) \rightarrow \mathbf{Z}[t] .
$$

Explicitly, $\chi(X, t)=\sum_{i, j}(-1)^{i} t^{j} \operatorname{dim} \mathrm{gr}_{j}^{\mathrm{W}} \mathrm{H}_{c}^{i}(X)$. In practice, use these facts:

$$
\begin{aligned}
\chi\left(\mathbf{C P}^{1}, t\right) & =1+t^{2}, \\
\chi(X, t) & =\chi(Z, t)+\chi(X-Z, t), \\
\chi(X \times Y, t) & =\chi(X, t) \chi(Y, t) .
\end{aligned}
$$

We'll study $\sum_{\ell} q^{\ell} \chi\left(\mathcal{H}_{f}^{\ell}, t\right)$. Also a nested version.
Ex For $f(x, y)=x y$, get

$$
\sum_{\ell} q^{\ell} \chi\left(\mathcal{H}_{f}^{\ell}, t\right)=\frac{1}{(1-q)^{2}}\left(1-q+q^{2} t^{2}\right)
$$

In general, the denominator of $\sum_{\ell} q^{\ell} \chi\left(\mathcal{H}_{f}^{\ell}, t\right)$ looks like $(1-q)^{b}$.

In fact, b is just the number of components of L_{f}.

Something stronger. There's a quantum link invariant called Khovanov-Rozansky (KhR) homology:

$$
\text { KhR : }\{\text { links up to isotopy }\} \rightarrow \text { Vect }_{3 \text {-gr }}
$$

Its graded dimension is a series in a, q, t. We'll use a normalization \bar{X} such that $\bar{X}_{\text {unknot }}=\frac{1+a}{1-q}$.

Conj (Oblomkov-Rasmussen-Shende)

$$
\bar{X}_{L_{f}}\left(a, q, q t^{2}\right)=\sum_{\ell, m} q^{\ell} a^{m} t^{m(m-1)} \chi\left(\mathcal{H}_{f}^{\ell, m}, t\right)
$$

Thm (Maulik) The conjecture holds at $t=-1$. Proof used flop identities in the resolved conifold.

Note that at $t=-1$, KhR homology specializes to the HOMFLYPT polynomial \bar{P}_{L} given by

$$
\begin{aligned}
a \bar{P}_{\nwarrow}-a^{-1} \bar{P}_{\approx} & =\left(q^{1 / 2}-q^{-1 / 2}\right) \bar{P}_{\text {K }}, \\
\bar{P}_{\text {unknot }} & =\frac{a-a^{-1}}{q^{1 / 2}-q^{-1 / 2}} .
\end{aligned}
$$

One computes KhR through a categorification of these skein relations.

Not known how to categorify Maulik's flop identities.

For experts: If L is the closure of an n-strand braid of writhe e, then $\bar{P}_{L}(a, q)=\left(a q^{-1}\right)^{e-n} \bar{X}_{L}(-a, q, q)$.

Prop (ORS) The conjecture holds for $y^{2}=x^{d}$ with d odd.

Here, the link is the torus knot $T_{2, d}$. Proof used an asymptotic formula for the \mathcal{H}_{f} side.
Also, for $3 \nmid d$, a conjectural formula for $\bar{X}_{T_{3, d}}$ implies the ORS conjecture for $y^{3}=x^{d}$.

In general, L_{f} is merely an iterated torus link.

Ex If $f(x, y)=x y$, then L_{f} is a Hopf link ©(.

$$
\bar{X}_{L_{f}}\left(a, q, q t^{2}\right)=\frac{1}{1-q}+\frac{(q+a)\left(q t^{2}\right)}{(1-q)^{2}}
$$

At $a=0$, we do recover

$$
\frac{1-q+q^{2} t^{2}}{(1-q)^{2}}=\sum_{\ell} q^{\ell} \chi\left(\mathcal{H}_{f}^{\ell}, t\right)
$$

2. The Quot Schemes \mathcal{Q}_{f}^{ℓ}

We'll factor the ORS conjecture into two statements.
Recall $b=\left|\pi_{0}\left(L_{f}\right)\right|=$ number of branches of f. Let

$$
\tilde{R}_{f}:=\mathbf{C} \llbracket t_{1} \rrbracket \times \cdots \times \mathbf{C} \llbracket t_{b} \rrbracket
$$

Have a normalization map $R_{f} \hookrightarrow \tilde{R}_{f}$.
Ex If $f(x, y)=x y$, then

$$
R_{f} \simeq \mathbf{C} \llbracket t_{1}, t_{2} \rrbracket /\left(t_{1} t_{2}\right), \quad \tilde{R}_{f} \simeq \mathbf{C} \llbracket t_{1} \rrbracket \times \mathbf{C} \llbracket t_{2} \rrbracket
$$

Ex If $f(x, y)=y^{3}-x^{4}$, then

$$
R_{f} \simeq \mathbf{C} \llbracket t^{3}, t^{4} \rrbracket, \quad \quad \tilde{R}_{f} \simeq \mathbf{C} \llbracket t \rrbracket
$$

Consider the Quot schemes of \tilde{R}_{f} as an R_{f}-module:

$$
\mathcal{Q}_{f}^{\ell}=\left\{\text { submodules } M \subseteq \tilde{R}_{f} \mid \operatorname{dim}_{\mathbf{C}} \tilde{R}_{f} / M=\ell\right\}
$$

There's a nested version $\mathcal{Q}_{f}^{\ell, m}$ analogous to $\mathcal{H}_{f}^{\ell, m}$.
Kivinen and I propose: It's easier to relate the $\mathcal{Q}_{f}^{\ell, m}$ to KhR homology. For $\mathcal{S} \in\{\mathcal{H}, \mathcal{Q}\}$, let

$$
Z_{f}^{\mathcal{S}}(a, q, t)=\sum_{\ell, m} q^{\ell} a^{m} t^{m(m-1)} \chi\left(\mathcal{S}_{f}^{\ell, m}, t\right)
$$

Conj (Kivinen-T)

$$
\bar{X}_{L_{f}}\left(a, q, q t^{2}\right) \stackrel{(1)}{=} Z_{f}^{\mathcal{Q}}\left(a, q, q^{1 / 2} t\right) \stackrel{(2)}{=} Z_{f}^{\mathcal{H}}(a, q, t)
$$

$(1)=$ "Quot ORS". (2) = "Hilb-vs-Quot".

Thm (KT) Quot ORS holds for any $y^{n}=x^{d}$ with:
(1) n, d coprime.
(2) n dividing d.

Thm (KT) Hilb-vs-Quot holds asymptotically for $y^{n}=x^{d}$ with d coprime to n, in the $d \rightarrow \infty$ limit.

Cor Hilb-vs-Quot holds for $y^{3}=x^{d}$ with $3 \nmid d$.
Cor The original ORS conjecture holds for $y^{3}=x^{d}$ with $3 \nmid d$.
Thus the conjectural closed formula for $\bar{X}_{T_{3, d}}$ is true.

Rest of this talk: Explain why $y^{n}=x^{d}$ is easier. Explain implications for nonabelian Hodge theory.

3. Combinatorics Key point:

For $y^{n}=x^{d}$ with n, d coprime, the schemes $\mathcal{H}_{f}^{\ell}, \mathcal{Q}_{f}^{\ell}$ are paved by affine spaces.

Each paving stratum is centered at an ideal/module generated by monomials in x, y.
If M is such a module, then its stratum is

$$
\mathbf{C}_{M}=\left\{N \mid \lim _{t \rightarrow 0} t \cdot N=M\right\}
$$

where $c \in \mathbf{C}^{\times}$acts by $c \cdot x=c^{n} x$ and $c \cdot y=c^{d} y$.
That is: the locus contracting to M under the flow induced by the \mathbf{C}^{\times}-action on $y^{n}=x^{d}$.

For experts: Not quite Białynicki-Birula because $\mathcal{H}_{f}^{\ell}, \mathcal{Q}_{f}^{\ell}$ could be singular.

Ex If $f(x, y)=y^{3}-x^{4}$, then

$$
R_{f} \simeq \mathbf{C} \llbracket t^{3}, t^{4} \rrbracket \quad \text { via } x=t^{3} \text { and } y=t^{4}
$$

The \mathbf{C}^{\times}-action is $c \cdot t=c t$.

\mathcal{H}_{f}^{0}	\mathcal{H}_{f}^{1}	\mathcal{H}_{f}^{2}	\mathcal{H}_{f}^{3}	\mathcal{H}_{f}^{4}	\mathcal{H}_{f}^{5}	\mathcal{H}_{f}^{6}
$p t_{0}$			\mathbf{C}_{3}^{2}	\mathbf{C}_{4}^{2}		\mathbf{C}^{3}
		$\mathbf{C}_{3,8}$	$\mathrm{C}_{4,9}$		$\mathbf{C}_{6,11}^{2}$	\mathbf{C}^{2}
	$p t_{3,4}$			$\mathbf{C}_{6,7}^{2}$	$\mathbf{C}_{7,8}^{2}$	\mathbf{C}^{2}
		$p t_{4,6}$		$\mathbf{C}_{6,8}$	$\mathbf{C}_{7,9}$	\mathbf{C}
			$p t_{6,7,8}$	$p t_{7,8,9}$	$p t_{8,9,10}$	$p t$

Above, $\mathbf{C}_{6,7}^{2}$ means $\mathbf{C}_{\left\langle t^{6}, t^{7}\right\rangle} \simeq \mathbf{C}^{2}$ in \mathcal{H}_{f}^{4}.
Rows indicate R_{f}-module isomorphism types.
Colors show which strata can be reassembled into $\mathcal{Q}_{f}^{0}, \mathcal{Q}_{f}^{1}, \mathcal{Q}_{f}^{2}, \mathcal{Q}_{f}^{3}, \ldots$

Upshot: Can express $Z_{f}^{\mathcal{H}}, Z_{f}^{\mathcal{Q}}$ purely combinatorially.
Let $\Gamma=n \mathbf{Z}_{\geq 0}+d \mathbf{Z}_{\geq 0}$. For any $S \subseteq \mathbf{Z}_{\geq 0}$, let

$$
I^{\ell}(S)=\{\Delta \subseteq S \mid \Gamma+\Delta \subseteq \Delta \text { and }|S \backslash \Delta|=\ell\}
$$

The map $\Delta \mapsto\left\langle t^{n} \mid n \in \Delta\right\rangle$ yields bijections

$$
\begin{aligned}
I^{\ell}(\Gamma) & \stackrel{\sim}{\longrightarrow}\left\{\mathbf{C}^{\times} \text {-fixed points of } \mathcal{H}_{f}^{\ell}\right\} \\
I^{\ell}\left(\mathbf{Z}_{\geq 0}\right) & \stackrel{\sim}{\longrightarrow}\left\{\mathbf{C}^{\times} \text {-fixed points of } \mathcal{Q}_{f}^{\ell}\right\}
\end{aligned}
$$

Leads to formulas that look like

$$
\begin{aligned}
Z_{f}^{\mathcal{H}} & =\sum_{\ell} \sum_{\Delta \in I^{\ell}(\Gamma)} q^{\ell} t^{2 \operatorname{codinv}_{\mathcal{H}}(\Delta)} \Pi_{n}(\Delta, a, t) \\
Z_{f}^{\mathcal{Q}} & =\sum_{\ell} \sum_{\Delta \in I^{\ell}\left(\mathbf{Z}_{\geq 0}\right)} q^{\ell} t^{2 \operatorname{codinv}_{\mathcal{Q}}(\Delta)} \Pi_{n}(\Delta, a, t)
\end{aligned}
$$

for certain functions codinv and $\Pi_{n}(-, a, t)$.

Sketch of Quot ORS for $y^{n}=x^{d}$ with n, d coprime
Can rewrite $Z_{f}^{\mathcal{Q}}$ (but not $Z_{f}^{\mathcal{H}!}$) in terms of a sum over

$$
\left\{\Delta \subseteq \mathbf{Z}_{\geq 0} \mid \Gamma+\Delta \subseteq \Delta \text { and } 0 \in \Delta\right\}
$$

Gorsky-Mazin gave a bijection between these Δ and (n, d) Dyck paths:

Rewrite codinv $\mathcal{Q}_{\mathcal{Q}}, \Pi_{n}(-, a, t)$ in terms of Dyck-path invariants well-studied in Macdonald theory.

Compare to the Gorsky-Negut formula for $\operatorname{KhR}\left(T_{n, d}\right)$ using Dyck paths, proved by Mellit.

Sketch of Hilb-vs-Quot for $y^{3}=x^{d}$ with $3 \nmid d$
Using the Δ 's, ORS computed $\lim _{d \rightarrow \infty} Z_{f}^{\mathcal{H}}$.
The key is to sort pairs of nested ideals $I \supseteq J$ in terms of a third, auxiliary ideal $I^{\prime} \supseteq I$.

Computing a similar formula for $\lim _{d \rightarrow \infty} Z_{f}^{\mathcal{Q}}$ is even easier: no auxiliary module.
$Z_{f}^{\mathcal{H}}, Z_{f}^{\mathcal{Q}}$ match the limit formulas up to $O\left(q^{d}\right)$.
Let $\delta=\frac{1}{2}(n-1)(d-1)$. As we'll explain:
(1) $q^{-\delta}(1-q) Z_{f}^{\mathcal{H}}$ has a $q^{-1} \leftrightarrow q t^{2}$ symmetry.
(2) $q^{-\delta}(1-q) Z_{f}^{\mathcal{Q}}$ has a $q^{-1} \leftrightarrow t^{2}$ symmetry.

So we can compute $Z_{f}^{\mathcal{H}}, Z_{f}^{\mathcal{Q}}$ as long as $\delta<d$.

Rem Why should there be a formula for $\operatorname{KhR}\left(T_{n, d}\right)$ in terms of (n, d) Dyck paths?
In general, KhR of iterated torus links should emerge from shuffle operators in an elliptic Hall algebra acting on q, t-Fock space. The Carlsson-Mellit theorem gives formulas for this action via sums over Dyck paths.

Rem Why does $q^{-\delta}(1-q) Z_{f}^{\mathcal{Q}}$ have symmetry? The $q^{1 / 2} \leftrightarrow-q^{-1 / 2}$ symmetry of HOMFLYPT lifts to KhR (for knots), as proved by Oblomkov-Rozansky. Now invoke Quot ORS.

Rem Why does $q^{-\delta}(1-q) Z_{f}^{\mathcal{H}}$ have symmetry?
Compare $Z_{f}^{\mathcal{H}}$ to an analogue for a projective rational curve. There the symmetry comes from Serre duality.

4. The Variety $\overline{\mathcal{P}}_{f} / \Lambda_{f}$

For general f, not of the form $y^{n}=x^{d}$, the series

$$
q^{-1 / 2-\delta}\left(q^{-1 / 2}-q^{1 / 2}\right)^{b} Z_{f}^{\mathcal{H}}
$$

still satisfies palindromic symmetry.
It can be viewed not just as Serre duality, but as a perverse hard Lefschetz symmetry for a new variety.

Note that $\operatorname{Frac}\left(R_{f}\right)=\mathbf{C}\left(\left(t_{1}\right)\right) \times \cdots \times \mathbf{C}\left(\left(t_{b}\right)\right)$. Let
$\overline{\mathcal{P}}_{f}=\left\{\left.\begin{array}{l|l}\text { finite-type } \\ M \subseteq \operatorname{Frac}\left(R_{f}\right)\end{array} \right\rvert\, \operatorname{Frac}\left(R_{f}\right) M=\operatorname{Frac}\left(R_{f}\right)\right\}$.
Let $\Lambda_{f}=\left\{t_{1}^{e_{1}} \cdots t_{b}^{e_{b}} \mid \vec{e} \in \mathbf{Z}\right\} \curvearrowright \overline{\mathcal{P}}_{f}$.
It turns out that $\overline{\mathcal{P}}_{f} / \Lambda_{f}$ is a projective variety.
$\overline{\mathcal{P}}_{f}$ is the analogue, for R_{f}, of the compactified Picard of an integral, locally planar projective curve.

It is a space of "possibly degenerating line bundles" on the germ $\operatorname{Spec}\left(R_{f}\right)$.

Laumon and others observed: If $f(x, y)=0$ is a branched n-fold cover of the x-axis, so that

$$
R_{f} \simeq \mathbf{C} \llbracket x \rrbracket^{\oplus n} \quad \text { as } \mathbf{C} \llbracket x \rrbracket \text {-modules },
$$

then any point of $\overline{\mathcal{P}}_{f}$ also forms a $\mathbf{C} \llbracket x \rrbracket$-submodule of $\mathbf{C}((x))^{\oplus n}$ with a linear operator y.

Geometrically: a rank- n vector bundle on $\operatorname{Spec}(\mathbf{C} \llbracket x \rrbracket)$ with an operator y, framed on the punctured disk.

A vector bundle with a (twisted) operator is a Higgs bundle. Generalizes to other reductive G.

Hitchin observed that moduli of Higgs bundles are fibered by (possibly degenerating) Lagrangian tori.

$$
\overline{\mathcal{P}}_{f} \quad " \hookrightarrow " \quad \mathcal{M}_{\mathrm{H}} \xrightarrow{h} \mathcal{A}_{\mathrm{H}} .
$$

Ngô used the decomposition of the sheaf complex

$$
\mathrm{R} h_{*} \mathbf{C}
$$

into perverse sheaves to prove the Fundamental Lemma for orbital integrals on $\operatorname{Lie}(G)$.

Upshot for $\overline{\mathcal{P}}$: An increasing perverse filtration

$$
\mathrm{P}_{\leq *} \quad \text { on } \quad \mathrm{H}^{*}\left(\overline{\mathcal{P}}_{f} / \Lambda_{f}\right) .
$$

For any X and filtration F on $\operatorname{gr}_{*}^{W} \mathrm{H}_{c}^{*}(X)$, let

$$
\chi^{\mathrm{F}}(X, q, t)=\sum_{i, j, k}(-1)^{i} q^{j} t^{k} \operatorname{dim} \operatorname{gr}_{j}^{\mathrm{F}} \operatorname{gr}_{k}^{\mathrm{W}} \mathrm{H}_{c}^{i}(X)
$$

Thm (Maulik-Yun, Migliorini-Shende)

$$
\frac{\chi^{\mathrm{P}}\left(\overline{\mathcal{P}}_{f} / \Lambda_{f}, q, t\right)}{(1-q)^{b}}=\sum_{\ell} q^{\ell} \chi\left(\mathcal{H}_{f}^{\ell}, t\right)
$$

Thm (Kivinen-T)

$$
\frac{\chi^{Q}\left(\overline{\mathcal{P}}_{f} / \Lambda_{f}, q, t\right)}{(1-q)^{b}}=\sum_{\ell} q^{\ell} \chi\left(\mathcal{Q}_{f}^{\ell}, t\right)
$$

for the filtration $\mathrm{Q}^{\geq \mathrm{c}}$ on $\mathrm{H}^{*}\left(\overline{\mathcal{P}}_{f} / \Lambda_{f}\right)$ induced by

$$
\overline{\mathcal{P}}_{f, \leq c}:=\left\{M \in \overline{\mathcal{P}}_{f} \mid \operatorname{dim}_{\mathbf{C}}\left(\tilde{R}_{f} M\right) / M \leq c\right\} .
$$

Hilb-vs-Quot would imply $\chi^{\mathrm{P}}(q, t)=\chi^{\mathrm{Q}}\left(q, q^{\frac{1}{2}} t\right)$.

Nonabelian Hodge theory concerns non-algebraic homeomorphisms between the spaces \mathcal{M}_{H} and Betti moduli spaces of local systems.

In 2013, Shende speculated that

$$
\mathrm{P}_{\leq *} \mathrm{H}^{*}\left(\overline{\mathcal{P}}_{f} / \Lambda_{f}\right) \simeq \mathrm{W}_{\leq * / 2} \mathrm{H}^{*}\left(\mathcal{M}_{\mathrm{B}}\right)
$$

for some wild Betti moduli space \mathcal{M}_{B} of Stokes local systems.

In 2021, I constructed a candidate for \mathcal{M}_{B} and an explicit embedding $\operatorname{KhR}\left(L_{f}\right) \hookrightarrow \mathrm{W}_{\leq * / 2} \mathrm{H}^{*}\left(\mathcal{M}_{\mathrm{B}}\right)$.

Thank you for listening.

