

Triply-Graded Link Homology and the Hilb-vs-Quot Conjecture

Minh-Tâm Quang Trinh

Massachusetts Institute of Technology

Plan of talk:

- 1. Links of Plane Curves
- 2. The Quot Schemes \mathcal{Q}_f^ℓ
- 3. Combinatorics
- 4. The Variety $\overline{\mathcal{P}}_f/\Lambda_f$

References

- M. Q. Trinh. From the Hecke Category to the Unipotent Locus (2021). 88 pp. arXiv:2106.07444
- O. Kivinen &. M. Q. Trinh. The Hilb-vs-Quot Conjecture (2023). 51 pp. arXiv:2310.19633

1. Links of Plane Curves

 $\{f(x,y)=0\} \quad \mbox{for nonzero, squarefree } f\in {\bf C}[x,y]$ with f(0,0)=0

- **Ex** $\{y = 0\}$ is smooth.
- **Ex** $\{xy = 0\}$ has a node at (0, 0).
- **Ex** $\{y^3 = x^4\}$ has a cusp at (0, 0).

LHS in \mathbb{R}^2 . RHS in \mathbb{C}^2 , but projected into \mathbb{R}^3 .

For $\varepsilon > 0$, the preimage of the circle $|x| = \varepsilon$ in $\{y^3 = x^4\}$ is the *torus knot* $T_{3,4}$.

In general, a plane curve germ f = 0 gives rise to

a topological link $L_f \subseteq S^3$.

If $f(x, y) = y^n + a_1(x)y^{n-1} + \dots + a_{n-1}(x)y + a_n(x)$, then L_f is the *closure* of a braid on *n* strands.

What aspects of the geometry of f = 0 only depend on L_f ? Let $R_f = \mathbf{C}[[x, y]]/(f)$, the completed local ring.

Consider the *punctual Hilbert schemes*

$$\mathcal{H}_f^{\ell} = \{ \text{ideals } I \subseteq R_f \mid \dim_{\mathbf{C}}(R_f/I) = \ell \}.$$

Ex If f is smooth, then \mathcal{H}_{f}^{ℓ} is a point for all ℓ . **Ex** If f(x, y) = xy, then $\mathcal{H}_{f}^{0}, \mathcal{H}_{f}^{1}$ are points, but

$$\mathcal{H}_f^2 = \{ \langle x^2, y \rangle, \langle x, y^2 \rangle \} \cup \{ \langle x + \lambda y \rangle \} \simeq \mathbf{CP}^1.$$

In general, \mathcal{H}_f^{ℓ} is a chain of transverse \mathbf{CP}^1 's.

We'll also use nested Hilbert schemes

$$\mathcal{H}_{f}^{\ell,m} = \{(I,J) \in \mathcal{H}_{f}^{\ell} \times \mathcal{H}_{f}^{\ell+m} \mid \langle x,y \rangle I \subseteq J \subseteq I\}$$

Picture as a stratified fiber bundle over \mathcal{H}_{f}^{ℓ} .

Consider the virtual weight polynomial

$$\chi(-,t): K_0(\mathsf{Var}_{\mathbf{C}}) \to \mathbf{Z}[t].$$

Explicitly, $\chi(X,t) = \sum_{i,j} (-1)^i t^j \dim \operatorname{gr}_j^{\mathsf{W}} \operatorname{H}_c^i(X).$

In practice, use these facts:

$$\chi(\mathbf{CP}^1, t) = 1 + t^2,$$

$$\chi(X, t) = \chi(Z, t) + \chi(X - Z, t),$$

$$\chi(X \times Y, t) = \chi(X, t)\chi(Y, t).$$

We'll study $\sum_{\ell} q^{\ell} \chi(\mathcal{H}_{f}^{\ell}, t)$. Also a nested version.

Ex For f(x, y) = xy, get

$$\sum_{\ell} q^{\ell} \chi(\mathcal{H}_{f}^{\ell}, t) = \frac{1}{(1-q)^{2}} (1-q+q^{2}t^{2}).$$

In general, the denominator of $\sum_{\ell} q^{\ell} \chi(\mathcal{H}_{f}^{\ell}, t)$ looks like $(1-q)^{b}$.

In fact, b is just the number of components of L_f .

Something stronger. There's a quantum link invariant called *Khovanov–Rozansky* (*KhR*) *homology*:

 $\mathsf{KhR}: \{ \text{links up to isotopy} \} \rightarrow \mathsf{Vect}_{3\text{-gr}}.$

Its graded dimension is a series in a, q, t. We'll use a normalization \bar{X} such that $\bar{X}_{\text{unknot}} = \frac{1+a}{1-q}$.

Conj (Oblomkov-Rasmussen-Shende)

$$\bar{X}_{L_f}(a,q,qt^2) = \sum_{\ell,m} q^\ell a^m t^{m(m-1)} \, \chi(\mathcal{H}_f^{\ell,m},t).$$

Thm (Maulik) The conjecture holds at t = -1. Proof used flop identities in the resolved conifold.

Note that at t = -1, KhR homology specializes to the HOMFLYPT polynomial \bar{P}_L given by

$$\begin{split} a\bar{P}_{,,-} & -a^{-1}\bar{P}_{,,-} = (q^{1/2} - q^{-1/2})\bar{P}_{5,,-} \\ \bar{P}_{\rm unknot} = \frac{a - a^{-1}}{q^{1/2} - q^{-1/2}}. \end{split}$$

One computes KhR through a *categorification* of these skein relations.

Not known how to categorify Maulik's flop identities.

For experts: If L is the closure of an n-strand braid of writhe e, then $\bar{P}_L(a,q) = (aq^{-1})^{e-n} \bar{X}_L(-a,q,q)$.

Prop (ORS) The conjecture holds for $y^2 = x^d$ with d odd.

Here, the link is the torus knot $T_{2,d}$. Proof used an asymptotic formula for the \mathcal{H}_f side.

Also, for $3 \nmid d$, a conjectural formula for $\bar{X}_{T_{3,d}}$ implies the ORS conjecture for $y^3 = x^d$.

In general, L_f is merely an *iterated torus link*.

Ex If
$$f(x,y) = xy$$
, then L_f is a *Hopf link* \mathbb{O} .

$$\bar{X}_{L_f}(a,q,qt^2) = \frac{1}{1-q} + \frac{(q+a)(qt^2)}{(1-q)^2}$$

At a = 0, we do recover

$$\frac{1-q+q^2t^2}{(1-q)^2} = \sum_{\ell} q^{\ell} \chi(\mathcal{H}_f^{\ell}, t).$$

2. The Quot Schemes Q_f^{ℓ}

We'll factor the ORS conjecture into two statements.

Recall $b = |\pi_0(L_f)| =$ number of branches of f. Let

$$\tilde{R}_f := \mathbf{C}\llbracket t_1 \rrbracket \times \cdots \times \mathbf{C}\llbracket t_b \rrbracket$$

Have a normalization map $R_f \hookrightarrow \tilde{R}_f$.

Ex If f(x, y) = xy, then

 $R_f \simeq \mathbf{C}\llbracket t_1, t_2 \rrbracket / (t_1 t_2), \qquad \tilde{R}_f \simeq \mathbf{C}\llbracket t_1 \rrbracket \times \mathbf{C}\llbracket t_2 \rrbracket.$

Ex If $f(x, y) = y^3 - x^4$, then

 $R_f \simeq \mathbf{C}[\![t^3, t^4]\!], \qquad \qquad \tilde{R}_f \simeq \mathbf{C}[\![t]\!].$

Consider the Quot schemes of \tilde{R}_f as an R_f -module: $\mathcal{Q}_f^{\ell} = \{ \text{submodules } M \subseteq \tilde{R}_f \mid \dim_{\mathbf{C}} \tilde{R}_f / M = \ell \}.$ There's a nested version $\mathcal{Q}_f^{\ell,m}$ analogous to $\mathcal{H}_f^{\ell,m}$.

Kivinen and I propose: It's easier to relate the $\mathcal{Q}_{f}^{\ell,m}$ to KhR homology. For $\mathcal{S} \in \{\mathcal{H}, \mathcal{Q}\}$, let

$$Z_f^{\mathcal{S}}(a,q,t) = \sum_{\ell,m} q^\ell a^m t^{m(m-1)} \, \chi(\mathcal{S}_f^{\ell,m},t).$$

Conj (Kivinen-T)

$$\bar{X}_{L_f}(a,q,qt^2) \stackrel{(1)}{=} Z_f^{\mathcal{Q}}(a,q,q^{1/2}t) \stackrel{(2)}{=} Z_f^{\mathcal{H}}(a,q,t).$$

(1) = "Quot ORS". (2) = "Hilb-vs-Quot".

Thm (KT) Quot ORS holds for any $y^n = x^d$ with:

(1) n, d coprime.

(2) n dividing d.

Thm (KT) Hilb-vs-Quot holds asymptotically for $y^n = x^d$ with *d* coprime to *n*, in the $d \to \infty$ limit.

Cor Hilb-vs-Quot holds for $y^3 = x^d$ with $3 \nmid d$.

Cor The original ORS conjecture holds for $y^3 = x^d$ with $3 \nmid d$.

Thus the conjectural closed formula for $\bar{X}_{T_{3,d}}$ is true.

Rest of this talk: Explain why $y^n = x^d$ is easier. Explain implications for *nonabelian Hodge theory*.

3. Combinatorics Key point:

For $y^n = x^d$ with n, d coprime, the schemes $\mathcal{H}^{\ell}_f, \mathcal{Q}^{\ell}_f$ are paved by affine spaces.

Each paving stratum is centered at an ideal/module generated by monomials in x, y.

If M is such a module, then its stratum is

$$\mathbf{C}_M = \{ N \mid \lim_{t \to 0} t \cdot N = M \},\$$

where $c \in \mathbf{C}^{\times}$ acts by $c \cdot x = c^n x$ and $c \cdot y = c^d y$.

That is: the locus contracting to M under the flow induced by the \mathbf{C}^{\times} -action on $y^n = x^d$.

For experts: Not quite Białynicki-Birula because $\mathcal{H}_{f}^{\ell}, \mathcal{Q}_{f}^{\ell}$ could be singular.

Ex If
$$f(x, y) = y^3 - x^4$$
, then
 $R_f \simeq \mathbf{C} \llbracket t^3, t^4 \rrbracket$ via $x = t^3$ and $y = t^4$.

The \mathbf{C}^{\times} -action is $c \cdot t = ct$.

${\cal H}_f^0$	\mathcal{H}_{f}^{1}	\mathcal{H}_{f}^{2}	\mathcal{H}_{f}^{3}	\mathcal{H}_{f}^{4}	${\cal H}_f^5$	\mathcal{H}_{f}^{6}
pt_0			\mathbf{C}_3^2	\mathbf{C}_4^2		\mathbf{C}^{3}
-		$\mathbf{C}_{3,8}$	$\mathbf{C}_{4,9}$		${f C}_{6,11}^2$	\mathbf{C}^2
	$pt_{3,4}$			$\mathbf{C}^2_{6,7}$	$\begin{array}{c} {\bf C}_{6,11}^2 \\ {\bf C}_{7,8}^2 \end{array}$	\mathbf{C}^2
		$pt_{4,6}$		$\mathbf{C}_{6,8}$	$\mathbf{C}_{7,9}$	\mathbf{C}
			$pt_{6,7,8}$	$pt_{7,8,9}$	$pt_{8,9,10}$	pt

Above, $\mathbf{C}_{6,7}^2$ means $\mathbf{C}_{\langle t^6, t^7 \rangle} \simeq \mathbf{C}^2$ in \mathcal{H}_f^4 .

Rows indicate R_f -module isomorphism types.

Colors show which strata can be reassembled into $Q_f^0, Q_f^1, Q_f^2, Q_f^3, \dots$

Upshot: Can express $Z_f^{\mathcal{H}}, Z_f^{\mathcal{Q}}$ purely combinatorially.

Let
$$\Gamma = n\mathbf{Z}_{\geq 0} + d\mathbf{Z}_{\geq 0}$$
. For any $S \subseteq \mathbf{Z}_{\geq 0}$, let
 $I^{\ell}(S) = \{\Delta \subseteq S \mid \Gamma + \Delta \subseteq \Delta \text{ and } |S \setminus \Delta| = \ell\}$

The map $\Delta \mapsto \langle t^n \mid n \in \Delta \rangle$ yields bijections

$$I^{\ell}(\Gamma) \xrightarrow{\sim} \{ \mathbf{C}^{\times} \text{-fixed points of } \mathcal{H}_{f}^{\ell} \},$$
$$I^{\ell}(\mathbf{Z}_{\geq 0}) \xrightarrow{\sim} \{ \mathbf{C}^{\times} \text{-fixed points of } \mathcal{Q}_{f}^{\ell} \}.$$

Leads to formulas that look like

$$\begin{split} Z_f^{\mathcal{H}} &= \sum_{\ell} \sum_{\Delta \in I^{\ell}(\Gamma)} q^{\ell} t^{2} \operatorname{codinv}_{\mathcal{H}}(\Delta) \prod_{n} (\Delta, a, t), \\ Z_f^{\mathcal{Q}} &= \sum_{\ell} \sum_{\Delta \in I^{\ell}(\mathbf{Z}_{\geq 0})} q^{\ell} t^{2} \operatorname{codinv}_{\mathcal{Q}}(\Delta) \prod_{n} (\Delta, a, t) \end{split}$$

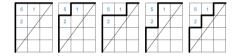
for certain functions codinv and $\Pi_n(-, a, t)$.

Sketch of Quot ORS for $y^n = x^d$ with n, d coprime

Can rewrite $Z_f^{\mathcal{Q}}$ (but not $Z_f^{\mathcal{H}}$!) in terms of a sum over

 $\{\Delta \subseteq \mathbf{Z}_{\geq 0} \mid \Gamma + \Delta \subseteq \Delta \text{ and } 0 \in \Delta\}$

Gorsky–Mazin gave a bijection between these Δ and (n, d) Dyck paths:



Rewrite $\operatorname{codinv}_{\mathcal{Q}}$, $\Pi_n(-, a, t)$ in terms of Dyck-path invariants well-studied in Macdonald theory.

Compare to the *Gorsky–Negut formula* for $KhR(T_{n,d})$ using Dyck paths, proved by Mellit.

Sketch of Hilb-vs-Quot for $y^3 = x^d$ with $3 \nmid d$

Using the Δ 's, ORS computed $\lim_{d\to\infty} Z_f^{\mathcal{H}}$. The key is to *sort* pairs of nested ideals $I \supset J$ in terms

In the key is to sort pairs of nested ideals $I \supseteq J$ in term of a third, auxiliary ideal $I' \supseteq I$.

Computing a similar formula for $\lim_{d\to\infty} Z_f^Q$ is even easier: no auxiliary module.

$$\begin{split} &Z_f^{\mathcal{H}}, Z_f^{\mathcal{Q}} \text{ match the limit formulas up to } O(q^d).\\ &\text{Let } \delta = \frac{1}{2}(n-1)(d-1). \text{ As we'll explain:}\\ &(1) \quad q^{-\delta}(1-q)Z_f^{\mathcal{H}} \text{ has a } q^{-1} \leftrightarrow qt^2 \text{ symmetry.}\\ &(2) \quad q^{-\delta}(1-q)Z_f^{\mathcal{Q}} \text{ has a } q^{-1} \leftrightarrow t^2 \text{ symmetry.}\\ &\text{So we can compute } Z_f^{\mathcal{H}}, Z_f^{\mathcal{Q}} \text{ as long as } \delta < d. \end{split}$$

Rem Why should there be a formula for $KhR(T_{n,d})$ in terms of (n, d) Dyck paths?

In general, KhR of iterated torus links should emerge from *shuffle operators* in an elliptic Hall algebra acting on q, t-Fock space. The *Carlsson–Mellit theorem* gives formulas for this action via sums over Dyck paths.

Rem Why does $q^{-\delta}(1-q)Z_f^{\mathcal{Q}}$ have symmetry? The $q^{1/2} \leftrightarrow -q^{-1/2}$ symmetry of HOMFLYPT lifts to KhR (for knots), as proved by Oblomkov–Rozansky. Now invoke Quot ORS.

Rem Why does $q^{-\delta}(1-q)Z_f^{\mathcal{H}}$ have symmetry?

Compare $Z_f^{\mathcal{H}}$ to an analogue for a projective rational curve. There the symmetry comes from Serre duality.

4. The Variety $\overline{\mathcal{P}}_f / \Lambda_f$

For general f, not of the form $y^n = x^d$, the series

$$q^{-1/2-\delta}(q^{-1/2}-q^{1/2})^b Z_f^{\mathcal{H}}$$

still satisfies palindromic symmetry.

It can be viewed not just as Serre duality, but as a *perverse hard Lefschetz symmetry* for a new variety.

Note that
$$\operatorname{Frac}(R_f) = \mathbf{C}((t_1)) \times \cdots \times \mathbf{C}((t_b))$$
. Let

$$\overline{\mathcal{P}}_f = \left\{ \begin{array}{c} \text{finite-type} \\ M \subseteq \operatorname{Frac}(R_f) \end{array} \middle| \operatorname{Frac}(R_f)M = \operatorname{Frac}(R_f) \right\}.$$

Let $\Lambda_f = \{t_1^{e_1} \cdots t_b^{e_b} \mid \vec{e} \in \mathbf{Z}\} \curvearrowright \overline{\mathcal{P}}_f$. It turns out that $\overline{\mathcal{P}}_f / \Lambda_f$ is a projective variety. $\overline{\mathcal{P}}_f$ is the analogue, for R_f , of the *compactified Picard* of an integral, locally planar projective curve.

It is a space of "possibly degenerating line bundles" on the germ $\operatorname{Spec}(R_f)$.

Laumon and others observed: If f(x, y) = 0 is a branched *n*-fold cover of the *x*-axis, so that

 $R_f \simeq \mathbf{C}[\![x]\!]^{\oplus n}$ as $\mathbf{C}[\![x]\!]$ -modules,

then any point of $\overline{\mathcal{P}}_f$ also forms a $\mathbb{C}[\![x]\!]$ -submodule of $\mathbb{C}(\!(x)\!)^{\oplus n}$ with a linear operator y.

Geometrically: a rank-*n* vector bundle on $\text{Spec}(\mathbb{C}[\![x]\!])$ with an operator y, framed on the punctured disk.

A vector bundle with a (twisted) operator is a Higgs bundle. Generalizes to other reductive G.

Hitchin observed that moduli of Higgs bundles are fibered by (possibly degenerating) Lagrangian tori.

$$\overline{\mathcal{P}}_f \quad `` \hookrightarrow " \quad \mathcal{M}_H \xrightarrow{h} \mathcal{A}_H$$

Ngô used the decomposition of the sheaf complex

 Rh_*C

into perverse sheaves to prove the Fundamental Lemma for orbital integrals on Lie(G).

Upshot for $\overline{\mathcal{P}}$: An increasing *perverse filtration*

 $\mathsf{P}_{\leq *}$ on $\mathrm{H}^*(\overline{\mathcal{P}}_f/\Lambda_f)$.

For any X and filtration F on $\operatorname{gr}^{\mathsf{W}}_* \operatorname{H}^*_c(X)$, let

$$\chi^{\mathsf{F}}(X,q,t) = \sum\nolimits_{i,j,k}{(-1)^{i}q^{j}t^{k}\dim \operatorname{gr}_{j}^{\mathsf{F}}\operatorname{gr}_{k}^{\mathsf{W}}\operatorname{H}_{c}^{i}(X)}.$$

Thm (Maulik–Yun, Migliorini–Shende)

$$\frac{\chi^{\mathsf{P}}(\overline{\mathcal{P}}_f/\Lambda_f, q, t)}{(1-q)^b} = \sum_{\ell} q^{\ell} \, \chi(\mathcal{H}_f^{\ell}, t)$$

Thm (Kivinen–T)

$$\frac{\chi^{\mathsf{Q}}(\overline{\mathcal{P}}_f/\Lambda_f,q,t)}{(1-q)^b} = \sum_{\ell} q^{\ell} \, \chi(\mathcal{Q}_f^{\ell},t),$$

for the filtration $\mathbb{Q}^{\geq c}$ on $\mathrm{H}^*(\overline{\mathcal{P}}_f/\Lambda_f)$ induced by

$$\overline{\mathcal{P}}_{f,\leq c} := \{ M \in \overline{\mathcal{P}}_f \mid \dim_{\mathbf{C}}(\tilde{R}_f M) / M \leq c \}.$$

Hilb-vs-Quot would imply $\chi^{\mathsf{P}}(q,t) = \chi^{\mathsf{Q}}(q,q^{\frac{1}{2}}t).$

Nonabelian Hodge theory concerns non-algebraic homeomorphisms between the spaces \mathcal{M}_{H} and *Betti moduli spaces* of local systems.

In 2013, Shende speculated that

$$\mathsf{P}_{\leq *} \operatorname{H}^{*}(\overline{\mathcal{P}}_{f}/\Lambda_{f}) \simeq \mathsf{W}_{\leq */2} \operatorname{H}^{*}(\mathcal{M}_{\mathrm{B}})$$

for some wild Betti moduli space $\mathcal{M}_{\rm B}$ of *Stokes local systems*.

In 2021, I constructed a candidate for \mathcal{M}_{B} and an explicit embedding $\mathsf{KhR}(L_f) \hookrightarrow \mathsf{W}_{\leq */2} \mathrm{H}^*(\mathcal{M}_{\mathrm{B}}).$

* * *

Thank you for listening.