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Abstract. Let R be the complete local ring of a complex plane curve germ
and S its normalization. We propose a “Hilb-vs-Quot” conjecture relating the
virtual weight polynomials of the Hilbert schemes of R to those of the Quot
schemes that parametrize R-submodules of S. By relating the Quot side to a
type of compactified Picard scheme, we show that our conjecture generalizes
a conjecture of Cherednik’s, and that it would relate the perverse filtration
on the cohomology of the Picard side to a more elementary filtration. Next,
we propose a Quot version of the Oblomkov–Rasmussen–Shende conjecture,
relating parabolic refinements of our Quot schemes to Khovanov–Rozansky
link homology. It becomes equivalent to the original version under (refined)
Hilb-vs-Quot, but can also be strengthened to incorporate polynomial actions
and y-ification. For germs yn = xd, where n is either coprime to or divides
d, we prove the Quot version of ORS through combinatorics. When n = 3
and 3 ∤ d, we deduce Hilb-vs-Quot by an asymptotic argument, and hence,
establish the original ORS conjecture for these germs.
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1. Introduction

1.1. Let R be the complete local ring of a complex algebraic plane curve germ:
a reduced, complete, local C-algebra of Krull dimension 1, embedding dimension
at most 2, and residue field C. Let R ↪→ S be the normalization of R. For any
finitely-generated R-module E, let Quotℓ(E) denote the Quot scheme whose C-
points parametrize submodules of E of C-codimension ℓ. It is a scheme of finite
type. When E = R, it is the Hilbert scheme of ℓ points on Spec(R). We write

Hℓ = Quotℓ(R) and Qℓ = Quotℓ(S).
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For any C-scheme of finite type X, let χ(X, t) ∈ Z[t] denote the virtual weight
polynomial of X in the sense of mixed Hodge theory. It satisfies the cut-and-paste
relation χ(X, t) = χ(Z, t) + χ(X − Z, t) for any closed subscheme Z ⊆ X, and
specializes to the Euler characteristic of X at t = −1. Let

Hilb(q, t) =
∑
ℓ≥0

qℓχ(Hℓ, t) and Quot(q, t) =
∑
ℓ≥0

qℓχ(Qℓ, t),

viewed as formal power series in q and t. We start by proposing the following
conjecture relating the Hilbert schemes Hℓ to the Quot schemes Qℓ.

Conjecture 1 (Hilb-vs-Quot). For any plane curve germ,

Hilb(q, t) = Quot(q, q 1
2 t).

Our first goal in this paper is to show that Conjecture 1 extends a conjecture
of Cherednik’s to plane curve germs with multiple branches. Our second goal is
to clarify a conjecture of Oblomkov–Rasmussen–Shende (ORS) relating the Hilbert
schemes of a plane curve germ to the Khovanov–Rozansky (KhR) homology of its
link. Under a parabolic refinement of Conjecture 1, the ORS Conjecture becomes
equivalent to a version for the Quot schemes Qℓ that is more tractable.

For germs of the form yn = xd, where n is either coprime to or divides d, we
will prove the Quot version of ORS. For germs y3 = xd with d coprime to 3, we
will prove all of the conjectures above. In addition, we will propose a refinement
to the Hilb-vs-Quot conjecture that incorporates known polynomial actions on the
link homology and on its y-ification.

1.2. We first review Cherednik’s conjecture. Let K be the ring of fractions of
S. The compactified Picard scheme of R is a reduced ind-scheme P over C whose
points parametrize finitely-generated R-submodules M ⊆ K such that KM = K.
Let c : P(C)→ Z≥0 be the constructible gap function given by

c(M) = dimC((SM)/M).

Before Cherednik, versions of this function appeared in works of Greuel–Pfister
[GP] and Gorsky–Mazin [GM13]. It takes values between 0 = c(S) and the delta
invariant δ := c(R).

There is a sub-ind-scheme J ⊆ P parametrizing those M ⊆ K for which
dimC(M/(M ∩ R)) = dimC(R/(M ∩ R)). It is a connected component of P,
and for R irreducible, a.k.a. unibranch, it is a projective variety. In the unibranch
case, J has appeared under several different names, including the “Jacobi factor”
or “(local) compactified Jacobian” of R.

For 0 ≤ c ≤ δ, let J (c) ⊆ J be the constructible subvariety parametrizing the
modules M where c(M) = c. In [C, Conj. 4.5], Cherednik essentially conjectured
that when R is unibranch,

Hilb(q, t) ?= 1
1− q

∑
0≤c≤δ

qcχ(J (c), q 1
2 t).(1.1)

More precisely, the conjecture of op. cit. is stated in terms of point counts over
finite fields, rather than virtual weight polynomials. For further discussion of how
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Cherednik’s conjecture relates to (1.1), see §2.7. In certain “torus knot” cases that
we will discuss later, (1.1) was anticipated by Gorsky [ORS, Conj. A.12].

We will show that Conjecture 1 generalizes (1.1) beyond the unibranch case. For
this, fix a uniformization S ≃

∏b
i=1 C[[ϖi]]. The scaling action of K× on P restricts

to a free action of the lattice Γ ⊆ K× defined by

Γ = {ϖ⃗x⃗ := ϖx1
1 · · ·ϖ

xb

b | x1, . . . , xb ∈ Z}.

The quotient P/Γ is a projective variety, essentially by work of Kazhdan–Lusztig
[KL]. In the unibranch case, where b = 1 and Γ ≃ Z, we have P/Γ ≃ J .

Like before, let P(c) ⊆ P parametrize the modules M where c(M) = c. As the
function c is invariant under the K×-action on P, the Γ-action on P descends to a
Γ-action on P(c). When b = 1, the identity

Hilb(q, t) ?= 1
(1− q)b

∑
c

qcχ(P(c)/Γ, q 1
2 t)(1.2)

specializes to (1.1). We will prove that

Quot(q, t) ?= 1
(1− q)b

∑
c

qcχ(P(c)/Γ, t),(1.3)

thereby proving that Conjecture 1 is equivalent to (1.2).

1.3. In fact, we will propose a stronger conjecture than Conjecture 1, and prove a
stronger statement than (1.3).

Weierstrass preparation shows that after changing coordinates, we may assume
that R = C[[x]][y]/(f), where f(x, y) = 0 defines a generically separable cover of
the x-axis fully ramified at (x, y) = (0, 0). Let n be the degree of the cover. Then
R forms a free C[[x]]-module of rank n. In particular, if E is torsion-free of rank 1
over R and M ∈ Quotℓ(E)(C), then M̄ := M/xM is a vector space of dimension
n on which y acts nilpotently.

For any partial flag F = (0 = M̄0 ⊊ M̄1 ⊊ · · · ⊊ M̄k = M̄), the parabolic
type of F is the integer composition of n formed by the sequence (dim grFi (M̄))ki=1,
where grFi (M̄) = M̄ i/M̄ i−1. For any fixed composition ν of n, there is a scheme
of finite type Quotℓν(E) whose C-points parametrize pairs (M,F ) in which M ⊆ E
corresponds to a C-point of Quotℓ(E) and F is a y-stable flag on M̄ of parabolic
type ν.

Let Hℓν ,Qℓν ,Hilbν ,Quotν be the generalizations of Hℓ,Qℓ,Hilb,Quot in which
Quotℓν replaces Quotℓ. Then Conjecture 1 has the refinement below:

Conjecture 2 (Parabolic Hilb-vs-Quot). For any R and ν as above,

Hilbν(q, t) = Quotν(q, q 1
2 t).

There is an analogous scheme Pν , whose points parametrize pairs (M,F ) as
before, except that M ⊆ K now corresponds to a C-point of P. Let Pν(c) ⊆ Pν
be the preimage of P(c) ⊆ P. Let

Picν(q, t) =
∑

0≤c≤δ

qcχ(Pν(c)/Γ, t).
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The most obvious refinement of (1.3) involves Quotν and Picν . In fact, we can make
the following motivic improvement:

Let Schfin
C be the category of C-schemes of finite type, and for any object X of

Schfin
C , let [X] denote the class of X in the Grothendieck ring K0(Schfin

C ). Thus the
virtual weight polynomial χ(X, t) is the specialization of [X] along a ring homo-
morphism K0(Schfin

C )→ Z[t]. Let

Quotmot
ν (q) =

∑
ℓ

qℓ[Qℓ(ν)],

Picmot
ν (q) =

∑
c

qc[Pν(c)/Γ],

the motivic analogues of Quotν and Picν . In Section 2, we prove:

Theorem 3. In the notation above, and for any integer composition ν of n,

Quotmot
ν (q) = 1

(1− q)b Picmot
ν (q).

The main idea is to embed
∐
ℓQℓ into P, then relate ℓ to c by way of a certain

fundamental domain for the Γ-action.
In Section 2.7, we explain in detail how Conjecture 2 and Theorem 3 imply a

virtual weight analogue of Cherednik’s conjecture. In Section 2.8, we illustrate
them for f(x, y) = y2 − x2 and f(x, y) = y2 − x3.

1.4. We explain in Section 3 that Conjecture 2 and Theorem 3 can be rephrased
in terms of symmetric functions, without reference to a composition ν.

Let Λnq,t be the vector space of degree-n symmetric functions in infinitely many
variables over Q(q, t), and let ⟨−,−⟩ be the Q(q, t)-linear Hall inner product on
Λnq,t [Mac]. Let (hµ)µ, where µ runs over integer partitions of n, denote the basis of
Λnq,t formed by the complete homogeneous symmetric functions. Springer theory,
repackaged using the work of Frobenius, shows that there are unique symmetric
functions FHilb,FQuot,FPic ∈ Λnq,t determined by the identities

Hilbν(q, t) = ⟨hµ,FHilb(q, t)⟩,
Quotν(q, t) = ⟨hµ,FQuot(q, t)⟩,

Picν(q, t) = ⟨hµ,FPic(q, t)⟩

 whenever ν is a re-ordering of µ.

Now Conjecture 2 and Theorem 3 can be written in terms of FHilb,FQuot,FPic:
See (3.2) and (3.3) in Section 3, respectively.

1.5. Henceforth, suppose that f(x, y) is a polynomial in x as well as y. Fix a
3-sphere around (0, 0) ∈ C2. The intersection of the zero locus {f(x, y) = 0} with
this 3-sphere is a topological link Lf , whose isotopy class depends only on f when
the sphere is small enough. The number of branches b is precisely the number of
connected components of Lf .

There is an isotopy invariant of links taking values in triply-graded vector spaces,
known as HOMFLYPT or Khovanov–Rozansky (KhR) homology [DGR, KhR]. In
[ORS], Oblomkov–Rasmussen–Shende conjectured an identity expressing the KhR
homology of Lf in terms of the Hilbert schemes Hℓ. The full statement requires
either nested versions of these Hilbert schemes or certain strata within them.
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For any link L, let P̄L,ORS(a, q, t) be the graded dimension of the unreduced KhR
homology of L in the conventions of [ORS], so that our P̄L is their P̄(L). We will
use a normalization X̄f (a, q, t) ∈ Z[[q]][a±1, t±1] satisfying

P̄Lf ,ORS(a, q, t) = (aq−1)2δ−b X̄f (a2t, q2, q2t2).(1.4)

For any integer m, let Hℓm-nest ⊆ Hℓ×Hℓ+m be the closed subscheme whose points
parametrize those pairs (I, J) of R such that xI + yI ⊆ J ⊆ I. With this notation,
the ORS Conjecture [ORS, Conj. 2] states that

X̄f (a, q, qt2) =
∑
ℓ,m

qℓa2mtm(m−1)χ(Hℓm-nest , t).(1.5)

Note that this conjecture would imply that the virtual weight polynomials above
contain only even powers of t.

It was essentially observed in [GORS] that once we fix the presentation of
f(x, y) = 0 as a degree-n cover of the x-axis, the right-hand side of (1.5) can
be written in terms of FHilb. Namely, let Ψ(a,−) : Λnq,t → Q(q, t)[a] be the map

Ψ(a,−) = (1 + a)
∑

0≤k≤n−1
ak⟨s(n−k,1k),−⟩,

where sµ ∈ Λnq,t denotes the Schur function indexed by µ ⊢ n. This specialization
map also appears in [H16, Ex. 4] and [W, Cor. 1]. In Section 3, we explain using
[GORS, Lem. 9.3–9.4] that the right-hand side of (1.5) is Ψ(a,FHilb(q, t)). So the
ORS Conjecture asserts that

X̄f (a, q, qt2) = Ψ(a,FHilb(q, t)).

In particular, if Conjecture 2 (the Parabolic Hilb-vs-Quot Conjecture) holds, then
(1.5) is equivalent to the following conjecture:

Conjecture 4 (KhR-vs-Quot). In the setup above,

X̄f (a, q, t2) = Ψ(a,FQuot(q, t)).(1.6)

We expect Conjecture 4 to be significantly more tractable than the original ORS
conjecture, as we demonstrate in what follows.

Remark 1.1. As a trade-off, the Quot schemes Qℓ do not deform as nicely as the
Hilbert schemes Hℓ as we vary R in families, because in any versal deformation of
R, we can only deform S jointly with R in the stratum where δ is constant [T].

Remark 1.2. Note that P̄L,ORS(a, q,−1) is the unreduced HOMFLYPT polynomial
of L originally introduced in [HOMFLY]. In the analogous t→ −1 limit, the right-
hand side of (1.5) specializes to a generating function for the Euler characteristics
of the schemes Hℓm-nest . In this limit, the ORS conjecture specializes to an earlier
conjecture of Oblomkov–Shende [OS], which was proved by Maulik [Mau] using the
wall-crossing results of [DHS].

Conjecture 2 would imply that the t → −q 1
2 limit of the right-hand side of

(1.6) records the same numbers. By contrast, its t → −1 limit records the Euler
characteristics of analogous but different schemes Qℓm-nest .
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Remark 1.3. When L is the link closure of a braid β, the KhR homology of L can
be computed from the Rouquier complex T̄β in the theory of Soergel bimodules,
as we explain in Appendix A. There is a richer invariant of T̄β : its (dg) horizontal
trace Trdg(T̄β). In [GHW], Gorsky–Hogancamp–Wedrich show that when β has n
strands, Trdg(T̄β) decategorifies to an element of Λnq,t, and the KhR homology of
L can be obtained by specializing Trdg(T̄β) along a version of Ψ. It is natural to
expect that Conjecture 4 has a further refinement, comparing FQuot directly to
Trdg(T̄β). In this setting, it is natural to take β to be the positive braid arising
from the preimage in f(x, y) = 0 of a positive loop around x = 0.

In [Tr], for any positive braid β on n strands, the second author introduced a
(derived) scheme Z(β) with an action of GLn and a Springer-type action of Sn
on its GLn-equivariant compactly-supported cohomology. The Sn-action on the
associated graded of the weight filtration recovers the (full) KhR homology of the
link closure of β, and conjecturally recovers an underived trace Tr(T̄β). But we do
not know a direct geometric relationship between [Z(β)/G] and the Qℓ.

1.6. We will establish Conjecture 4 for two infinite families of plane curve germs,
both of the form yn = xd. Note that for any integer d > 0, the link of this plane
curve is the positive (n, d) torus link.

In what follows, we write FQuotn,d and FPicn,d for the symmetric functions
FQuot and FPic arising from f(x, y) = yn−xd. Similarly, we write X̄n,d = X̄yn−xd .

Theorem 5. In the setup above, suppose that either of the following holds:

(1) d is coprime to n.
(2) d is a multiple of n.

Then X̄n,d(a, q, t2) = Ψ(a,FQuotn,d(q, t)). That is, Conjecture 4 holds for f(x, y) =
yn − xd.

Note that by [GMV20, (2)], the exponent 2δ − b in (1.4) equals nd − n − d in
both cases of Theorem 5.

We prove case (1) of Theorem 5, the coprime case, in Section 4. We actually
give two independent proofs:

(A) The first extends the combinatorial commutative algebra used to prove
[ORS, Cor. A.5], thereby relating Ψ(FQuotn,d) to the formula for X̄n,d
conjectured by Gorsky–Neguţ in [GN] and proved by Mellit in [M22].

(B) The second proof is more roundabout: We invoke Theorem 3, then relate
Ψ(FPicn,d) to X̄n,d by work of Hikita [Hi], Mellit [M21], Hogancamp–Mellit
[HM], and Wilson [W]. Our new contribution is to match the filtration of
P/Γ induced by the function c with Hikita’s filtration on an isomorphic
variety. It turns out that they only match up to an involution discussed in
[GM14].

The Gorsky–Neguţ formula in (A) implicitly involves certain semigroup modules
and their generators, while the Hogancamp–Mellit recursion in (B) implicitly yields
a formula for X̄n,d in terms of the “cogenerators” of these semigroup modules, by
work of Gorsky–Mazin–Vazirani [GMV20]. As we will discuss in Section 4, these
formulas have the same lowest a-degree: essentially, the q, t-Catalan number for
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(n, d) in [H08]. However, they look very different in higher a-degrees. Thus it is
remarkable that they both compute X̄n,d.

We prove case (2), the case where d = nk for some integer k, in Section 6. Here,
the key is to recognize that the tools we need were developed in settings with extra
structure: y-ified link homology on the KhR side, which we review in Section 5,
and torus-equivariant homology on the Quot side. Thus we access FQuotn,d by
way of its T (b)-equivariant analogue, where the torus T (b) := Gb

m acts on Qℓν by
scaling the uniformization S ≃

∏b
i=1 C[[ϖi]]. Via work of Gorsky–Hogancamp [GH]

and more recent work of Carlsson–Mellit [CM21], we respectively relate X̄n,nk and
Ψ(a,FQuotn,d(q, t)) to the same expression Ψ(a,∇kp(1n)), where ∇ is Bergeron–
Garsia’s nabla operator on symmetric functions and pλ is the power-sum symmetric
function for λ ⊢ n. Note that ∇kp(1n) is related to, but different from, the operator
expressions in the shuffle conjecture of [HHLRU] and its rational generalization in
[BGLX].

Both proof (B) of case (1) and the proof of case (2) involve comparisons to the
affine Springer fibers studied in representation theory. In the former, we match
P(1n)/Γ with an affine Springer fiber for SLn, studied in [Hi]; in the latter, we
match

∐
ℓQℓ with the positive part of an affine Springer fiber for GLn, studied in

[CM21]. These steps are relegated to Section 7.

Remark 1.4. Recently, Turner has computed the Borel–Moore homologies of many
affine Springer fibers of “unramified” type for GL3, generalizing the GL3 case of
[Ki]. For the corresponding plane curve germs, he has verified the (a, q) → (0, 1)
limit of Conjecture 4, up to a certain localization [Tu].

1.7. Despite the claims in [HM, §1.2] and [GKS, §6.2], we believe there is no proof
of the original ORS Conjecture that covers either of the two cases in Theorem 5. As
we explain in Section 4, there does exist a combinatorial formula for FHilbn,d when
n and d are coprime, but it is much harder to match with X̄n,d than the analogous
formula for FQuotn,d.

Oblomkov–Rasmussen–Shende did verify their full conjecture when f(x, y) =
y2 − xd with d odd. As the map Ψ loses no information for n ≤ 3, this implies
Conjecture 2 for such f via case (1) of Theorem 5. Remarkably, we can use case
(1) of Theorem 5 to prove:

Theorem 6. Conjecture 2 holds for f(x, y) = y3 − xd with d coprime to 3. Hence
the original ORS conjecture (1.5) also holds for these cases.

We give the proof at the end of Section 4. First, we show that for d coprime to
n, the functions Ψ(a,FHilbn,d(q, t)) and Ψ(a,FQuotn,d(q, q

1
2 t)) match in the limit

where d → ∞: See Proposition 4.17. As the original functions agree with their
limits up to order d in q, we can use symmetry properties on both sides to recover
the finite identity from the asymptotic one. On the FQuotn,d side, the necessary
symmetry arises via Theorem 5(1) from KhR homology, where it was conjectured
in [DGR] and proved in [OR,GHM].

At the end of Section 6, we verify the lowest a-degree part of the original ORS
Conjecture for f(x, y) = y2 − x4 and f(x, y) = y3 − x3, using the calculations in
[Ki]. This proves Conjecture 1 for those f via case (2) of Theorem 5.
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Remark 1.5. In proving Theorem 6, we also establish a closed formula for the (re-
duced) KhR homology of (3, d) torus knots that had been conjectured by Dunfield–
Gukov–Rasmussen [DGR, Conj. 6.3]. See the discussion in [ORS, §4].

1.8. Our proof of case (2) of Theorem 5, together with unpublished work of the
first author, suggests a refinement of Conjecture 4: one with no analogue in the
Hilbert-scheme setting of [ORS, Conj. 2].

In general, if L is a link with b components, then C[x⃗] := C[x1, . . . , xb] acts on
the KhR homology of L by [GKS, Cor. 5.4]. This can be viewed as an action of the
homology of the b-component unlink. The y-ified KhR homology of L, introduced
by Gorsky–Hogancamp in [GH], is a monodromic deformation of its KhR homology
that extends scalars from C to C[y⃗] := C[y1, . . . , yb], thereby extending the C[x⃗]-
action to a C[x⃗, y⃗]-action.

We conjecture that these polynomial actions match existing, similar actions on
the homology of the Quot schemes Qℓν . Letting

Γ≥0 = {ϖ⃗x⃗ | x⃗ ∈ Zb≥0} ⊆ Γ,

we see that Γ≥0 acts on
∐
ℓQℓν just as Γ acts on Pν . By construction, the Γ≥0-action

commutes with the T (b)-action from earlier. After identifying C[x⃗] with C[Γ≥0],
and C[y⃗] with the equivariant cohomology H∗

T (b)(pt), we obtain a C[x⃗, y⃗]-action
on the associated graded of the weight filtration W≤∗ on equivariant Borel–Moore
homology, the latter defined via the cohomology of the dualizing complex:

C[x⃗, y⃗] ↷
⊕
ℓ

grW
∗ HBM,T (b)

∗ (Qℓν),

where the xi shift ℓ by 1 and preserve weights, and the yi preserve ℓ and shift
weights by −2. As ν varies, these C[x⃗, y⃗]-modules can be packaged together into
a bigraded (C[x⃗, y⃗] × CSn)-module Q̃uotx⃗,y⃗. The map Ψ extends by linearity to
a functor from such bigraded modules to triply-graded C[x⃗, y⃗]-modules. Abusing
notation, we again write Ψ to denote this functor. We can now state the following
refinement of Conjecture 4, with more explicit details left to Section 5.

Conjecture 7 (y-ified KhR-vs-Quot). Above, the y-ified KhR homology of Lf is
isomorphic as a triply-graded C[x⃗, y⃗]-module to Ψ(Q̃uotx⃗,y⃗) after an appropriate
regrading.

1.9. In Section 8, we review and compare various filtrations on the Borel–Moore
homology HBM

∗ (P/Γ). In particular, we establish a result needed in proof (B)
of case (1) of Theorem 5, and describe one more application of the Hilb-vs-Quot
Conjecture.

By taking unions of the strata P(c)/Γ, we produce a filtration of P/Γ by closed
subvarieties. We show that for f(x, y) = yn − xd with n, d coprime, this filtration
almost matches that introduced by Hikita on the affine Springer fiber in [Hi], but
not quite: They differ by an involution that, at the combinatorial level, appeared in
[GM14], and at the Lie-theoretic level, is induced by an involution of SLn. Crucially,
the involution preserves enough structure for us to match FPicn,d with Hikita’s
symmetric function. For general R, we write Q≤∗ for the gap filtration induced by
c on the Borel–Moore homology of P/Γ.
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At the same time, Maulik–Yun constructed a filtration P≤∗ on the cohomology
of P/Γ, by embedding a global analogue of P within a versal family and using the
decomposition theorem from the theory of perverse sheaves. They proved a formula
relating P≤∗ H∗(P/Γ) to the series Hilb(q, t) [MY], whose global version was also
obtained in [MS]. The global version of P≤∗, under the name of perverse filtration,
appears in geometric representation theory and nonabelian Hodge theory.

The increasing filtration Q≤∗ on HBM
∗ (P/Γ) defines a decreasing filtration Q≥∗ on

H∗(P/Γ). Conjecture 1 would imply that at the level of virtual weight polynomials,
grP

∗ and gr∗
Q match up to a certain shift. It is natural to make the following stronger

conjecture, which also extends a conjecture in unpublished notes of Zhiwei Yun
beyond the unibranch case.

Conjecture 8. The weight grading on grW
∗ H∗(P/Γ) is supported in even degrees,

and for all j, k, we have

grP
j+k grW

2k H∗(P/Γ) ≃ grjQ grW
2k H∗(P/Γ).

This would provide a purely elementary and local definition of grP
∗ , avoiding

either the machinery of constructible derived categories or the need to embed the
singularity within a family of global curves.

1.10. Acknowledgments. We are grateful to Francesca Carocci, Eugene Gorsky,
Andy Wilson, and Zhiwei Yun for helpful discussions about [T], [GMV20], [W],
and [C], respectively, and to Nathan Williams for informing us about rowmotion.
During part of the preparation of this work, the second author was supported by
an NSF Mathematical Sciences Research Fellowship, Award DMS-2002238.

2. Quot and Picard Schemes

2.1. The main goal of this section is to prove Theorem 3. We keep the definitions
of R, S, K, b from the introduction.

2.2. First, we review the formal definition of the compactified Picard scheme [MY,
§3.10]. Let mR be the maximal ideal of R, and for any R-module E, let (−) ⊗̂ E

be the tensor product with E completed in the mR-adic topology on E. Let P† be
the functor from C-algebras to sets defined by

P†(A) =

 (A ⊗̂ R)-submodules
M ⊆ A ⊗̂ K

∣∣∣∣∣∣∣
∃ i such that A ⊗̂ miR ⊆M ⊆ A ⊗̂ m−i

R

and (A ⊗̂ m−i
R )/M is locally free over A

of finite rank


for any C-algebra A. An argument in [Gö, §2] shows that P† is representable by
an ind-scheme. Let P ⊆ P† be the underlying reduced ind-scheme. Taking A = C
recovers

P(C) = P†(C) = {finitely-generated A-submodules M ⊆ K | KM = K},

as in the introduction.

Remark 2.1. Even though P†,P have the same C-points, it is only P that forms
a scheme locally of finite type. For instance, if R = C[[x]], then P† ≃ xZ × Pnil

† ,
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where Pnil
† (A) parametrizes Laurent tails in x where each coefficient is a nilpotent

element of A; by contrast, P ≃ xZ.

2.3. For any integer c, let P(c) ⊆ P be the sub-ind-scheme defined by

P(c)(A) = {M ∈ P(A) | (SM)/M is locally free over A of rank c}.

Proposition 2.2. If M ∈ P†(A), then (SM)/M is locally free over A of rank at
most δ := dimC(S/R).

Proof. Observe that (S ⊗RM)/M is free over A of rank δ because

(S ⊗RM)/M ≃ ((A ⊗̂ S)⊗
A⊗̂RM)/M ≃ (A ⊗̂ S)/(A ⊗̂ R).

Hence it suffices to show that (SM)/M is a direct summand of (S⊗RM)/M as an
A-module.

Let s1, . . . , sδ be a non-redundant (full) set of coset representatives for R in S.
Then SM =

∑
j (sj +R)M =

∑
j sjM , so we can pick some subset J ⊆ {1, . . . , δ},

and mj ∈ M for j ∈ J , such that {sjmj}j∈J is a non-redundant set of coset
representatives for M in SM . The A-linear map (SM)/M → (S ⊗R M)/M that
sends sjmj +M 7→ sj ⊗mj + 1⊗M is an A-linear section of the natural surjective
map (S ⊗RM)/M → (SM)/M , as desired. □

Corollary 2.3. P is the union of the locally closed sub-ind-schemes P(c) for 0 ≤
c ≤ δ. In fact, the locally closed subsets P(c) form a stratification of P.

Proof. It remains to explain why the P(c) are locally closed: This follows from the
upper semicontinuity of rank. □

2.4. Recall that we fix once and for all a uniformization S
∼−→
∏b
i=1 C[[ϖi]], and

set Γ = {ϖx⃗ | x⃗ ∈ Zb}, where ϖx⃗ = ϖx1
1 · · ·ϖ

xb

b . The group Γ acts on P by scaling.
Adapting the proof of [KL, Cor. 1], one can check that P/Γ is a projective variety.
For all c, we have

(M, x⃗) ∈ P(c)× Zb =⇒ ϖx⃗M ∈ P(c),

which lets us form the locally-closed subvariety P(c)/Γ ⊆ P/Γ.
For any finitely-generated R-submodule E ⊆ K, let Quotℓ(E) be the Quot

scheme parametrizing submodules of E of codimension ℓ. There is a tautological
map Quotℓ(E) → P†. Since Quotℓ(E) is reduced, the map factors through P. It
identifies Quotℓ(E) with the subscheme of P whose A-points are modules M ⊆
A ⊗̂ E such that (A ⊗̂ E)/M is locally free over A of rank ℓ.

As in the introduction, set Qℓ = Quotℓ(S) for all ℓ and Γ≥0 = {ϖx⃗ | x⃗ ∈ Zb≥0}.
We find that the free action of Γ on P by scaling restricts to a free action of Γ≥0

on
∐
ℓQℓ. Moreover, for all ℓ, we have

(M, x⃗) ∈ Qℓ × Zb≥0 =⇒ ϖx⃗M ∈ Quotℓ+sum(x⃗)(S),(2.1)

where sum(x⃗) = e1 + · · ·+ eb.
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Lemma 2.4. Let D ⊆
∐
ℓQℓ be the subscheme defined by

D(A) = {M ⊆ A ⊗̂ S |M ∩ (A ⊗̂ S)× ̸= ∅}.

Then D is a fundamental domain for both the Γ-action on P and the Γ≥0-action
on
∐
ℓQℓ.

Proof. If u = u(ϖ1, . . . , ϖb) belongs to (A ⊗̂ S)×, then the constant term of u must
belong to A×. We deduce that if M ∈ D(A), then ϖx⃗M ∈ D(A) occurs only when
x⃗ is the zero vector. Therefore D is irredundant under the action of Γ on P.

It remains to show that every element M ∈ P(A), resp. M ∈
∐
ℓQℓ(A), takes

the form ϖx⃗M ′ for some M ′ ∈ D(A) and x⃗ ∈ Zb, resp. x⃗ ∈ Zb≥0. Observe that
KM = A ⊗̂ K, because once we pick i ≥ 0 such that M ⊇ A ⊗̂ miR, we obtain
KM ⊇ A ⊗̂ KmiR = A ⊗̂ K. Therefore, KM ∋ 1, which means we can find some
u ∈ (A ⊗̂ K)× and m ∈ M such that um = 1. This in turn means m = u−1 ∈
M ∩ (A ⊗̂ K)× =

∏b
i=1 A((ϖi))×.

In the case of
∐
ℓQℓ, we conclude as follows: Since m ∈ A ⊗̂ S =

∏b
i=1 A[[ϖi]]

as well, we get m = ϖx⃗m′ for some x⃗ ∈ Zb≥0 and m′ ∈ (A ⊗̂ S)× by factoring out
the largest powers of the uniformizers ϖi from m.

In the case of P, we conclude as follows: Write m = (mi)bi=1 with mi ∈ A((ϖi))×.
The fact that P is the underlying reduced ind-scheme of P† means that we can
assume, by reduction to the b = 1 case in Remark 2.1, that for all i, the coefficient
of the lowest-degree term of mi is a unit, not a nilpotent element, of A. Now we
get m = ϖx⃗m′ for some x⃗ ∈ Zb and m′ ∈ (A ⊗̂ S)× by factoring, as before. □

Lemma 2.5. For any C-algebra A and M ∈
∐
ℓQℓ(A), we have

M ∈ D(A) (1)⇐⇒ SM = A ⊗̂ S (2)⇐⇒ rkA((SM)/M) = rkA((A ⊗̂ S)/M).

In particular, D(C) =
∐
ℓ{M ∈ Qℓ(C) | c(M) = ℓ}.

Proof. Equivalence (2) holds because SM ⊆ A ⊗̂ S. As for equivalence (1),

SM = A ⊗̂ S ⇐⇒ SM ∋ 1

⇐⇒ sm = 1 for some s ∈ S and m ∈M

⇐⇒ s′m = 1 for some s′ ∈ (A ⊗̂ S)× and m ∈M

⇐⇒ M ∈ D(A). □

2.5. Using the Weierstrass preparation theorem, we now fix an isomorphism

R ≃ C[[x, y]]/(f)

such that Spec(R)→ Spec(C[[x]]) is a generically separable cover of degree n, fully
ramified at (x, y) = (0, 0). More explicitly, we may assume that f(x, y) is a square-
free polynomial of the form f(x, y) = yn +

∑n
i=1 ai(x)yn−i for some ai(x) ∈ C[[x]]

with ai(0) = 0 for all i.
For any C-algebra A and M ∈ P(A), we write M̄ = M/xM , as in the introduc-

tion. We define a y-stable partial flag on M̄ to be an increasing sequence of A[y]-
submodules F = (0 ⊆ M̄0 ⊊ M̄1 ⊊ · · · ⊊ M̄k = M̄) such that grFi (M̄) = M̄ i/M̄ i−1
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is locally free over A for all i. The parabolic type of F is the integer composition
ν of n in which νi = rkA(grFi (M̄)). For any such composition ν, let Pν be the
ind-scheme defined by

Pν(A) =
{

(M,F )

∣∣∣∣∣ M ∈ Pν(A),
F is a y-stable partial flag on M̄ of type ν

}

We define Pν(c),Quotℓν(E),Dν analogously. Now, Corollary 2.3 and Lemmas 2.4–
2.5 imply analogues where Pν , Pν(c), Qℓν , Dν replace P, P(c), Qℓ, D.

2.6. Proof of Theorem 3. Recall that we want to show

Quotmot
ν (q) = 1

(1− q)b Picmot
ν (q), where

{
Quotmot

ν (q) =
∑
ℓ qℓ[Qℓν ],

Picmot
ν (q) =

∑
c qc[Pν(c)/Γ].

Lemma 2.4 and (2.1) together imply that

Qℓν =
∐

(c,x⃗)∈Z≥0×Zb
≥0

c+sum(x⃗)=ℓ

ϖx⃗ · (D ∩Qcν).

So in the Grothendieck group of Schfin
C , we have

Quotmot
ν (q) = 1

(1− q)b
∑
c

qc[D ∩Qcν ].

But Lemma 2.5 implies that Dν ∩Qcν = Dν ∩ Pν(c) for all c. So we also have

Picmot
ν (q) =

∑
c

qc[D ∩ Pν(c)] =
∑
c

qc[D ∩Qcν ]

in the Grothendieck group, as desired.

Remark 2.6. Zhiwei Yun has pointed out to us that Theorem 3 extends beyond the
planar case to any curve germ where both sides are well-defined, i.e., where the
functors P/Γ and Qℓ for ℓ ≥ 0 are all schemes of finite type.

However, Conjecture 1 fails for non-planar germs. If R = C[[x, y, z]]/(xy, xz, yz),
the union of the coordinate axes in xyz-space, then S = C[[x]]×C[[y]]×C[[z]]. Using
[BRV, Prop. 6.1], we find that

Hilb(q, t) = 1
(1− q)3 (1− 2q + q2(t4 + t2 + 1) + q3(t4 − 2t2)).

By contrast, [Y, Ex. 2.7–2.8], [Ka], and Theorem 3 together give

Quot(q, q 1
2 t) = 1

(1− q)3 (1− 2q + q2(t2 + 1) + q3(t4 − 2t2) + q4t4).

It would be interesting to understand why the difference remains small.

2.7. Cherednik’s Conjecture. Below, we explain how Conjecture 1 is essentially
equivalent to Conjecture 4.5 of [C] via Theorem 3.

For any integer e, let Pe ⊆ P be the sub-ind-scheme defined by

Pe(A) = {M ∈ P(A) | e = rkA((A ⊗̂ m−i
R )/M)− rkC(m−i

R /R) for all i≫ 0}



THE HILB-VS-QUOT CONJECTURE 13

for any C-algebra A. The ind-schemes Pe are precisely the connected components
of P. By definition, J = P0.

The discussion in the introduction explained how Conjecture 1 and Theorem 3
would together imply (1.2). To see how (1.2) implies (1.1), we must explain why, in
the unibranch case, J = P/Γ. Indeed, b = 1 implies that S ≃ C[[ϖ]] and Γ = ϖZ,
which means Γ acts simply transitively on the connected components Pe.

Next, we explain how (1.1) is related to a point-counting analogue. Following
Katz [Ka], recall that a class [X] ∈ K0(Schfin

C ) is strongly polynomial count if and
only if, for some finitely-generated subring B ⊆ C, spreading out of [X] to a class
[X ] ∈ K0(Schfin

B ), and polynomial p(X, t) ∈ Z[t], we have |XF(F)| = p(X, q) for
any finite field F = Fq and ring morphism B → F. In this case, Katz shows that
p(X, t2) is precisely the virtual weight polynomial χ(X, t). We deduce that if [Hℓ]
and [J (c)] are strongly polynomial count for all ℓ and c, then (1.1) is equivalent to
the statement that∑

ℓ

tℓ|HℓF(F)||q→qt
?= 1

1− t
∑
c

tc|(J (c))F(F)|(2.2)

for infinitely many (equivalently, all) finite fields F = Fq, where we have abused
notation by conflating Hℓ and J (c) with their spreadings out.

Lastly, we relate (2.2) to [C, Conj. 4.5]. In loc. cit., Cherednik’s R and O = C[[z]]
are the respective analogues of our R and S = C[[ϖ]] over F. In particular, if they
arise from R and S by spreading out, then:

• His JR(F) is our
∐
cϖ

−cJ (c)F(F). In fact, this is also DF(F).
• His H0

mot(q, t) is our
∑
c t
c|J (c)F(F)|.

• His Z(q, t) is our
∑
ℓ t
ℓ|HℓF(F)|.

In this case, (2.2) coincides with [C, Conj. 4.5].

2.8. We illustrate Conjecture 2 and Theorem 3 in minimal nontrivial examples.

Example 2.7. Take f(x, y) = y2 − x2. Setting ϖ = y + x and ϱ = y − x lets us
write R = C[[ϖ, ϱ]]/(ϖϱ) and S = C[[ϖ]]×C[[ϱ]].

For all integers i, j and λ ∈ C×, consider the R-submodules of S given by
Mi,j,λ = ⟨(ϖi, λϱj)⟩ and Ni,j = ⟨(ϖi, 0), (0, ϱj)⟩. We compute:

Pe(C) = {Mi,j,λ | i+ j = e} ⊔ {Ni,j | i+ j = e+ 1}.

With more work, one can check that Pe is a Z-indexed chain of projective lines
intersecting transversely, in which the sets {Mi,j,λ | λ ∈ C×} correspond to copies
of Gm and the points Ni,j are the points of intersection. Embedding Hℓ and Qℓ

into P, we compute:

H0(C) = {M0,0},

Hℓ(C) =
{
Mi,j,λ

∣∣∣∣∣ i+ j = ℓ,

i, j ≥ 1

}
⊔

{
Ni,j

∣∣∣∣∣ i+ j = ℓ+ 1,
i, j ≥ 1

}
for ℓ ≥ 1,

Qℓ(C) =
{
Mi,j,λ

∣∣∣∣∣ i+ j = ℓ− 1,
i, j ≥ 0

}
⊔

{
Ni,j

∣∣∣∣∣ i+ j = ℓ,

i, j ≥ 0

}
for ℓ ≥ 0.
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We deduce that

Hilbmot
(2) (q) :=

∑
ℓ

qℓ[Hℓ] = 1 +
∑
ℓ≥1

qℓ(ℓ+ (ℓ− 1)[Gm]),

Quotmot
(2) (q) :=

∑
ℓ

qℓ[Qℓ] =
∑
ℓ≥0

qℓ(ℓ+ 1 + ℓ[Gm]).

Conjecture 1 predicts that these series match upon replacing [Gm] with χ(Gm, t) =
t2 − 1. Meanwhile, we compute D = {N0,0} ⊔ {M0,0,λ}, where c(N0,0) = 0 and
c(M0,0,λ) = 1 for all λ. We deduce that

Picmot
(2) (q) :=

∑
c

qc[P(c)] = 1 + q[Gm].

So for ν = (2), Theorem 3 says that Quotmot
(2) (q) = 1

(1−q)2 (1 + q[Gm]).

Example 2.8. Take f(x, y) = y2 − x3. Setting x = ϖ2 and y = ϖ3 lets us write
R = C[[ϖ2, ϖ3]] and S = C[[ϖ]].

For all integers i and λ ∈ C, consider the R-submodules of S given by Mi,λ =
⟨ϖi + λϖi+1⟩ and Ni = ⟨ϖi, ϖi+1⟩. We compute:

Pe(C) = {Md−1,λ | λ ∈ C} ⊔ {Nd}.

One can check that Pe is a projective line in which {Me−1,λ | λ ∈ C} corresponds
to A1 and and Ne corresponds to ∞. Embedding Hℓ and Qℓ into P, we compute:

H0(C) = {M0},

H1(C) = {N2},

Hℓ(C) = {Mℓ,λ} ⊔ {Nℓ+1} for ℓ ≥ 2,

Q0(C) = {N0},

Qℓ(C) = {Mℓ−1,λ} ⊔ {Nℓ} for ℓ ≥ 1.

We deduce that

Hilbmot
(2) (q) :=

∑
ℓ

qℓ[Hℓ] = 1 + q +
∑
ℓ≥2

qℓ[P1],

Quotmot
(2) (q) :=

∑
ℓ

qℓ[Qℓ] = 1 +
∑
ℓ≥1

qℓ[P1].

Conjecture 1 predicts that these series match upon replacing [P1] with χ(P1, t) =
t2 + 1. Meanwhile, D = {N0} ⊔ {M0,λ}, where c(N0) = 0 and c(M0,λ) = 1 for all
λ. We deduce that

Picmot
(2) (q) :=

∑
c

qc[P(c)] = 1 + q[A1].

So for ν = (2), Theorem 3 says that Quotmot
(2) (q) = 1

1−q (1 + q[A1]).

3. Springer Actions

3.1. In this section, we explain how the collection of polynomials {χ(Xν , t)}ν ,
where Xν is one of Pν/Γ, Pν(c)/Γ, Quotℓν(E), etc., can be packaged into a single
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symmetric function. We also introduce variants of these schemes that we will need
in Sections 4–6.

Throughout this section, we use the formalism of quotient stacks in the fpqc
topology, but keep our exposition self-contained beyond the definition of a stack
via its functor of points.

3.2. Fix an integer n > 0. Let N be the conical variety of nilpotent matrices
in gln. By definition, [N/GLn] is the algebraic stack whose A-points form the
groupoid of pairs (V, θ), where V is a locally-free A-module of rank n and θ is a
nilpotent endomorphism of V , and an isomorphism of pairs (V, θ) ∼−→ (V ′, θ′) is an
isomorphism of A-modules V ∼−→ V ′ that transports θ onto θ′.

Recall that the GLn-orbits on N are indexed by the integer partitions of n via
Jordan type. Let Oλ ⊆ N be the orbit indexed by λ ⊢ n.

For each integer composition ν of n, let Bν be the flag variety of parabolic type
ν, whose C-points parametrize partial flags of type ν on Cn. Let

Ñν = {(θ, F ) ∈ N × Bν | F is θ-stable}.

The A-points of [Ñν/GLn] form the groupoid of tuples (V, θ, F ), where (V, θ) ∈
[N/GLn](A) and F is an ν-stable partial flag of type ν on V in the sense of §3.1.
Let π = πν : [Ñν/GLn] → [N/GLn] be the forgetful map. If λ is the underlying
partition of ν, and λt is the transpose of λ, then the image of πν is [Oλt/GLn], the
stack quotient of the orbit closure Oλt . In particular, B(1n) is the full flag variety
and π(1n) is a stacky version of the Springer resolution of N .

Let X be any stack over C and p : X → [N/GLn] a morphism. For each ν, let
Xν , πX = πX,ν , and pν be defined by the cartesian square:

(3.1)

Xν [Ñν/GLn]

X [N/GLn]

pν

πX π

p

In particular, taking X = P and p(M) = (M̄, y) yields Xν = Pν . Analogous
statements hold for P(c), Quotℓ(E), and Dν , as well as the quotients P/Γ, P(c)/Γ
once we observe that the map p for X = P is invariant under Γ.

3.3. Now suppose that X is a scheme of finite type. In this case we write H∗
c(X)

to denote the compactly-supported cohomology of X with complex coefficients, and
W≤∗ to denote its weight filtration. The virtual weight polynomial of X is

χ(X, t) =
∑
i,j

(−1)itj dim grW
j Hi

c(X)

by definition.
For any finite group G, we write K0(G) to denote its representation ring. When

there is a weight-preserving action of G on H∗
c(X), we may regard χ(X, t) as an

element of Z[t]⊗K0(G).
Let K be a field. As in the introduction, let ΛnK = ΛnK[X⃗] be the vector space

of degree-n symmetric functions in a family of variables X⃗ = (Xi)∞
i=1 over K.
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Let {sλ}λ⊢n, resp. {hµ}µ⊢n, be the basis of ΛnK of Schur functions, resp. complete
homogeneous symmetric functions [Mac]. Let ⟨−,−⟩ be the K-linear Hall inner
product on ΛnK defined by orthonormality of the Schur functions. When K ⊇ Q,
there is a K-linear isomorphism

F : K⊗K0(Sn) ∼−→ ΛnK,

known as the Frobenius character. It sends the irreducible character of Sn indexed
by λ to the Schur function sλ, and the character of the induced representation
IndSn

Sν
(1) to the complete homogeneous function hµ, where Sµ ⊆ Sn is the Young

subgroup of type µ.

Proposition 3.1. If X is of finite type, then there is a weight-preserving action of
Sn on X(1n) such that H∗

c(Xν) = H∗
c(X(1n))Sν for all ν. In particular,

χ(Xν , t) = ⟨hµ,Fχ(X(1n), t)⟩,

where µ is the integer partition obtained by sorting ν. Moreover, as we run over ν,
these identities uniquely determine χ(X(1n), t) as an element of K⊗K0(Sn).

In what follows, we freely use functors between bounded derived categories of
mixed complexes of sheaves with constructible cohomology, where “mixed” means
we either use mixed Hodge modules, or spread out and reduce to a finite field to
use mixed complexes of ℓ-adic sheaves, fixing an isomorphism Q̄ℓ ≃ C.

Proof. For all ν, let Sν = πν,∗C and SX,ν = πX,ν,∗C.
Note that S(1n) is the GLn-equivariant Springer sheaf. By the work of Lusztig et

al. [Tr, Ch. 4], the underived endomorphism ring End(S(1n)) is pure of weight 0 and
isomorphic to CSn. This defines an Sn-action on S(1n). Since (3.1) is a cartesian
square, base change lifts this action to SX,(1n) ≃ p∗S(1n). Taking hypercohomology,
we get an action of Sn on H∗

c(X(1n)). Since End(S(1n)) is concentrated in weight
zero, the last action preserves weights.

For general ν, we have Sν ≃ SSν

(1n) by [BM, §2.7]. So again by the cartesian
square (3.1), SX,ν ≃ SSν

X,(1n). Therefore

H∗
c(X,SX,ν) ≃ H∗

c(X,S
Sν

X,(1n)) ≃ H∗
c(X,SX,(1n))Sν ,

where the second step uses the fact that the inclusion SSν

X,(1n) ⊆ SX,(1n) is split (say,
via the isotypic decomposition of SX,(1n)). Above, the first expression is H∗

c(Xν)
and the last expression is H∗

c(X(1n))Sν .
The statements about the Hall inner product and uniqueness now follow from

Frobenius reciprocity and the fact that the hµ span ΛnK. □

Remark 3.2. We write HBM
∗ (X) to denote the Borel–Moore homology of X with

complex coefficients, defined via the hypercohomology of the dualizing sheaf on X.
Verdier duality implies that Hi

c(X) and HBM
−i (X) are dual vector spaces for all i.

Therefore, Proposition 3.1 also implies that HBM
∗ (Xν) = HBM

∗ (X(1n))Sν for all ν,
where (−)G denotes the coinvariants of a G-action.
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3.4. For each integer r ≥ 0, let Nr-len ⊆ N be the union of the orbits indexed
by partitions of length r, i.e., the subvariety of nilpotent matrices θ such that
dim ker(θ) = r. Let Xr-len = p−1(Nr-len) ⊆ X.

As in the introduction, let Ψ(a,−) : ΛnK → K[a] be the map

Ψ(a,−) = (1 + a)
∑

0≤k≤n−1
ak⟨s(n−k,1k),−⟩.

The following statement is a reformulation of [GORS, Lem. 9.3–9.4]:

Lemma 3.3. We have

Ψ(a,Fχ(X(1n), t)) =
∑

0≤r≤n

χ(Xr-len, t)
∏

0≤j≤r−1
(1 + at2j)

in Q(t)[a].

3.5. For each integer m ≥ 0, let Pn−m,m ⊆ GLn be a parabolic subgroup whose
Levi quotient is isomorphic to GLn−m×GLm: for instance, the appropriate sub-
group of block-upper-triangular matrices. Let Xm-nest and ρX = ρX,m be defined
by the cartesian square:

Xm-nest [pt/Pn−m,m]

X [N/GLn] [pt/GLn]

ρX

p

In the tautological case where X = [N/GLn], we can check that Xm-nest is the stack
whose A-points form the groupoid of tuples (V, θ, V ′), where (V, θ) ∈ [N/GLn](A)
and V ′ is an A-submodule of ker(θ) such that ker(θ)/V ′ is locally free over A of
rank m.

For all r, the map ρ−1
X,m(Xr-len)→ Xr-len is an fpqc-locally trivial fibration whose

fiber is the Grassmannian of codimension-m subspaces of Cr. The virtual weight
polynomials of Grassmannians can be computed via their Schubert stratifications,
which show them to be q-binomial coefficients for q = t2. Generalizing the argument
in [ORS,GORS], we deduce:

Lemma 3.4. We have∑
0≤m≤n

amtm(m−1)χ(Xm-nest , t) =
∑

0≤r≤n

χ(Xr-len, t)
∏

0≤j≤r−1
(1 + at2j)

in Q(t)[a].

3.6. We now return to the choices for Xν that we need in the rest of the paper.
Taking Xν = Pν(c) for varying c, we set

FPic(q, t) =
∑
c

qcFχ(P(1n)(c), t).

Fixing a finitely-generated R-module E ⊆ K and taking Xν = Quotℓν(E) for vary-
ing ℓ, we set

FQuotE(q, t) =
∑
ℓ

qℓFχ(Quotℓ(1n)(E), t),
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The symmetric functions FHilb,FQuot from the introduction are now given by

FHilb(q, t) = FQuotR(q, t) and FQuot(q, t) = FQuotS(q, t).

Conjecture 2 can be rewritten as the single identity:

FHilb(q, t) ?= FQuot(q, q 1
2 t).(3.2)

And Theorem 3 can be rewritten as the single identity:

FQuot(q, t) = 1
(1− q)bFPic(q, t).(3.3)

Example 3.5. Let Bν,[V,θ] ⊆ Bν denote the fiber of πν above [V, θ]. The Springer
theory of GL2 can be summarized as follows:

Fχ(B(12),[V,θ], t) =
{

s(2) θ ̸= 0, i.e., (V, θ) of Jordan type (2),
s(2) + t2s(12) θ = 0, i.e., (V, θ) of Jordan type (12).

Now take f(x, y) = y2−x3. In the notation of Example 2.8, (M̄d−1,λ, y) has Jordan
type (2), while (N̄d, y) has Jordan type (12). Thus we get:

FPic(q, t) = (1 + qt2)s(2) + t2s(12),

FHilb(q, t) =
(

1 + q + q2(t2 + 1)
1− q

)
s(2) + qt2

1− q s(12),

FQuot(q, t) =
(

1 + q(t2 + 1)
1− q

)
s(2) + t2

1− q s(12).

Here we can verify (3.2) and (3.3) directly.

Finally, for any finitely-generated R-module E ⊆ K, we spell out the meaning
of Xr-len and Xm-nest when Xν = Quotℓν(E):

(1) Xr-len is the locally-closed subscheme of X = Quotℓ(E) whose A-points
are those M ∈ X(A) such that M/(xM + yM) ≃ M̄/yM̄ ≃ ker(y | M̄) is
locally free over A of rank r.

(2) Xm-nest is the scheme of finite type whose A-points parametrize pairs
(M,N), where M ∈ Quotℓ(E)(A) and N ∈ Quotℓ+m(E)(A) and

xM + yM ⊆ N ⊆M.

Note that these containments are together equivalent to requiring that
N/(xN + yN) be a submodule of M/(xM + yM).

We henceforth write Quotℓr-len(E) and Quotℓm-nest(E) in place of Quotℓ(E)r-len and
Quotℓ(E)m-nest , respectively. Lemmas 3.3–3.4 imply:

Corollary 3.6. We have

Ψ(a,FQuotE(q, t)) =
∑
ℓ,m

qℓamtm(m−1)χ(Quotℓm-nest(E), t)

for any finitely-generated R-module E ⊆ K.

We setHℓm-nest = Quotℓm-nest(R) as in the introduction, and similarly, Qℓm-nest =
Quotℓm-nest(S). In [OS,ORS], the Hℓm-nest are called nested Hilbert schemes.
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4. Torus Knots

4.1. In this section, we give two independent proofs of case (1) of Theorem 5,
stating that

X̄n,d(a, q, t2) = Ψ(a,FQuotn,d(q, t)) for d coprime to n.

The structure of our two proofs and their relation to one another are summarized
by this commutative diagram:

(4.1)

EHA Hikita FPicn,d(q, t) FQuotn,d(q, t)

Cogen X̄n,d(a, q, t2) Gen

[M21, W]

[M21] [Hi]

[HM] [M22]

Cor 3.6,

Prop 4.4

Thm 3

The horizontal arrows indicate identities; the vertical arrows indicate specializa-
tions. The dotted arrows indicate new bridges. Our first proof, labeled (A) in the
introduction, follows the lower/right path from FQuotn,d to X̄n,d; our second proof,
labeled (B), follows the upper/left path.

4.2. For the rest of this section, fix an integer d > 0 coprime to n. Let R =
C[[x, y]]/(yn − xd). Setting x = ϖn and y = ϖd lets us write R = C[[ϖn, ϖd]] and
S = C[[ϖ]] and K = C((ϖ)), generalizing Example 2.8. Note that here,

δ = 1
2(n− 1)(d− 1)

by a classical formula of Sylvester. The number of branches is b = 1, so the link of
the singularity has one component: i.e., it is a knot.

4.3. Let Gm act on Spec(R) according to t · (x, y) = (tnx, tdy), and on Spec(K)
according to t ·ϖ = tϖ. These actions are compatible. In particular, they induce
a Gm-action on P†: If A is a C-algebra and t ∈ A× = Gm(A) and M ⊆ A ⊗̂ K is
an (A ⊗̂ R)-module corresponding to an A-point of P†, then we define t ·M to be
the rescaling tM . This action restricts to P.

Let E be a finitely-generated R-submodule of K fixed by C× = Gm(C). The
Gm-action on P restricts to Quotℓ(E) for all ℓ. We use this action to skeletonize
Quotℓ(E) into combinatorics. Let

Γ(E) = {valϖ(s) | s ∈ E \ {0}},

I(E) = {∆ ⊆ Γ(E) | ∆ + n ⊆ ∆, ∆ + d ⊆ ∆},

Iℓ(E) = {∆ ∈ I(E) | |Γ(E) \∆| = ℓ}.

Note that Γ(R) = nZ≥0 + dZ≥0 and Γ(S) = Z≥0.

Remark 4.1. In general, additive submonoids of Z≥0 are also known as numerical
semigroups. A subset of Z stable under addition with a numerical semigroup Γ
is also known a Γ-module. Thus Γ(R) is a numerical semigroup, Γ(E) is a Γ(R)-
module, and I(E) is the set of Γ(R)-submodules of Γ(E).
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For all ∆ ∈ I(E), let

Genn(∆) = {k ∈ ∆ | k − n /∈ ∆},

Gen(∆) = {k ∈ ∆ | k − n /∈ ∆, k − d /∈ ∆}.

The elements of Genn(∆), resp. Gen(∆), are called the n-generators [GMV20], resp.
generators, of ∆. The following lemma can be proved by arguments completely
analogous to those of Piontkowski in [P, §3], by taking Quotℓ(E) in place of J .

Lemma 4.2. In the setup above, the Gm-action on Quotℓ(E) has isolated fixed
points. We have a bijection from Iℓ(E) to the set of fixed C-points, given by

Iℓ(E) ∼−→ Quotℓ(E)Gm ,

∆ 7→ M∆ := R⟨tk | k ∈ ∆⟩.

Moreover, Quotℓ(E) is partitioned by the subschemes

A∆ = {M ∈ Quotℓ(E) | limt→0 (t ·M) = M∆},

and each A∆ forms an affine space.

Although the partition above is similar to a Białynicki-Birula decomposition, it
does not follow from said theorem when Quotℓ(E) is singular.

4.4. Recall the nested Quot schemes Quotℓm-nest(E) that we reviewed at the end
of Section 3. The diagonal Gm-action on Quotℓ(E) ×Quotℓ+m(E) restricts to an
action on Quotℓm-nest(E). Let

Iℓm-nest(E) = {(∆,∆′) ∈ Iℓ(E)× Iℓ+m(E) | ∆ ⊇ ∆′ ⊇ ∆ + ΓE,>0}.

The following lemma is proved in [ORS, §3.3] for E = R, and the proof for any
other E ⊆ K is analogous.

Lemma 4.3. The Gm-action on Quotℓm-nest(E) has isolated fixed points. Writing
ΓE,>0 = Γ(E) \ {0}, we have a bijection

Iℓm-nest(E) ∼−→ Quotℓm-nest(E)Gm ,

(∆,∆′) 7→ (M∆,M∆′).

Moreover, Quotℓm-nest(E) is partitioned by the subschemes

A∆,∆′ = {(M,M ′) ∈ Quotℓm-nest(E) | limt→0(M,M ′) = (M∆,M∆′},

and each A∆,∆′ forms an affine space.

4.5. Given ∆ ∈ I(E), let

ξn(∆, k) = {j ∈ Genn(∆) | k − d < j < k} for all k ∈ Gen(∆),

ΠGen
n (∆, a, t) =

∏
k∈Gen(∆)

(1 + at|ξn(∆,k)|).

For E = R, the following proposition is [ORS, Cor. A.5]. To translate into the
notation of [ORS, §A.1], note that our a, t correspond to their a2t, t2, and hence,
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our |ξn(∆, k)| corresponds to their βk(∆) − 1. In the proof below, we merely list
the changes needed to extend the proof to any E ∈ P(C).

Proposition 4.4. Let R = C[[ϖn, ϖd]] for coprime n, d > 0. For any finitely-
generated R-submodule E ⊆ C((ϖ)) fixed by the C×-action rescaling ϖ, we have

Ψ(a,FQuotE(q, t)) =
∑
ℓ

qℓ
∑

∆∈Iℓ(E)

t2 dim(A∆)ΠGen
n (∆, a, t2)

in the notation of Section 3.

Proof. By Corollary 3.6, it suffices to show that∑
∆∈Iℓ(E)

t2 dim(A∆)ΠGen
n (∆, a, t2) =

∑
0≤m≤n

amtm(m−1)χ(Quotℓm-nest(E), t)(4.2)

for all ℓ ≥ 0.
Theorems 13 and 14 of [ORS] give formulas for dim(A∆) and dim(A∆,∆′) in the

E = R case. For general E, analogous proofs give the dimension formulas

dim(A∆) =
∑
i

(|Γ(E)>γi
\∆| − |Γ(E)>σi

\∆|),(4.3)

dim(A∆,∆′) =
∑
i

γi /∈∆′

|Γ(E)>γi
\∆|+

∑
i

γi∈∆′

|Γ(E)>γi
\∆′|(4.4)

−
∑
i

|Γ(E)>σi
\∆′|

for any ∆ ∈ Iℓ(E) with generators γ1, . . . γr, syzygies σ1, . . . , σr, and subset ∆′ ∈
Iℓ+m(E) such that (∆,∆′) ∈ Iℓm-nest(E), where Γ(E)>k = Γ(E) ∩ Z>k.

Next, Lemma A.4 of ibid. shows that in the E = R case, if k ∈ Gen(∆), then

|ξn(∆, k)| = |{i | γi < k}| − |{i | σi < k}|,(4.5)

with the same notation for generators and syzygies as before. Then Lemma A.1
and Theorem A.2 of ibid. show that for E = R and any fixed ∆, formulas (4.3),
(4.4), and (4.5) together imply that

t2 dim(A∆)ΠGen
n (∆, a, t2) =

∑
0≤m≤n

amtm(m−1)
∑
∆′

(∆,∆′)∈Iℓ
m-nest(E)

t2 dim(A∆,∆′ ).

The proofs of these statements for general E are the same. By Lemma 4.3, summing
the last identity over all ∆ ∈ Iℓ(E) recovers (4.2). □

4.6. Proof (A) of Case (1) of Theorem 5. For all nonnegative integers j, we
observe that

∆ ∈ Iℓ(S) =⇒ ∆ + j ∈ Iℓ+j(S),

k ∈ Gen(∆), resp. Genn(∆) =⇒ k + j ∈ Gen(∆ + j), resp. Genn(∆ + j),

and consequently, that:
(1) dim(A∆+j) = dim(A∆).
(2) ξn(∆ + j, k + j) = ξn(∆, k) + j for all k ∈ Gen(∆).
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(3) ΠGen
n (∆ + j) = ΠGen

n (∆).

Now consider this combinatorial version of the domain D in Section 2:

Dn,d = {∆ ∈ I(S) | min(∆) = 0}.

By observations (1)–(3), the formula for Ψ(FQuot(q, t), a) in Proposition 4.4 equals

1
1− q

∑
∆∈Dn,d

q|Z≥0\∆|t2 dim(A∆)ΠGen
n (∆, a, t2).

It remains to match this formula with the formula for X̄n,d(a, q, t2) for coprime n, d
conjectured in [GN] and proved in [M22]. It will be convenient to replace t with t 1

2

everywhere in what follows.
In [GM13], Gorsky–Mazin gave a bijection from Dn,d to the set of n×d rational

Dyck paths, under which |Z≥0 \ ∆| and dim(A∆) correspond to the statistics on
Dyck paths respectively denoted area and codinv in
[GMV20]. Explicitly, form the semi-infinite grid of unit
squares in the x, y-plane whose vertices are the lattice points
with 0 ≤ x ≤ d and y ≥ 0. Label the bottom left square,
closest to the origin, with the integer −d; label the other
squares with integers that decrease by d as we go across
rows, and increase by n as we go up columns. For instance,
the grid for (n, d) = (4, 5) is shown to the right, with non-
negative labels in blue. For any ∆ ∈ Dn,d, the boundary of
the region of squares with labels in ∆ must contain a lattice
path π(∆) from (x, y) = (0, 0) to (x, y) = (d, n) that stays above the line y = d

nx,
since ∆ contains 0 and every element of ∆ is nonnegative. Gorsky–Mazin’s bijection
sends ∆ 7→ π(∆).

Remark 4.5. In [GM13], the set Dn,d is described as indexing the fixed points of
a Gm-action on J , rather than D. However, this indexing really factors through
the decomposition D =

∐
cϖ

−cJ (c), corresponding to the fact that the elements
of Dn,d are what Gorsky–Mazin call 0-normalized modules for Γ(R). Compare to
Section 2.7, where a similar remark applies to Cherednik’s notation.

Let π = π(∆) in what follows. Let

v∗(π) = {(x, y) ∈ π | (x− 1, y), (x, y + 1) ∈ π},

v∗(π) = {(x, y) ∈ π | (x+ 1, y), (x, y − 1) ∈ π}.

Following [M22], we refer to elements of v∗(π), resp. v∗(π), as inner vertices, resp.
outer vertices, of π. That is, inner vertices are the bottom right corners of squares
whose bottom and right edges are contained in π, while outer vertices are the top
left corners of squares whose top and left edges are contained in π. (Note that outer
vertices are called “internal vertices”(!) in [GN].)

The squares whose bottom edges are contained in π are precisely those labelled
by elements of Genn(∆). Of these, those whose right edges are also contained in π



THE HILB-VS-QUOT CONJECTURE 23

are those labelled by elements of Gen(∆) \ {0}. Hence, there is a bijection

Gen(∆) \ {0} ∼−→ v∗(π)

sending any generator of ∆ to the bottom right corner of the square it labels.
For an arbitrary lattice point p, let ld/n(p) be the line of slope d

n through p,
and let κπ(p) be the set of horizontal unit steps of π that intersect ld/n(p) in their
interiors. The following lemma is inspired by the constructions in [GM13] and
[ORS, §A].

Lemma 4.6. If k ∈ Gen(∆) \ {0} labels the square with bottom right corner p ∈
v∗(π), then the map ξn(∆, k)→ κπ(p) that sends k to the bottom edge of the square
labelled k is a bijection. Thus

1
1 + aΠGen

n (∆, a, t) =
∏

p∈v∗(π)

(1 + at|κπ(p)|).

Proof. We observe that if p is the bottom right corner of a square labelled k, then
the line ld/n(p) intersects the bottom edge of a square labelled j if and only if
k − d < j < k. Indeed, this is easiest to see when p = (n, d) and k = 0, and the
general case follows from translating ld/n(n, d) onto ld/n(p). □

In our notation, the formula for X̄n,d for coprime n, d in [GN,M22] is:

X̄n,d(a, q, t) = 1
1− q

∑
n×d

Dyck paths π

qarea(π)tcodinv(π)
∏

p∈v∗(π)

(1 + at|κπ(p)|),

where, by [GM13], area(π) = |Z≥0 \ ∆| and codinv(π) = dim(A∆) whenever π =
π(∆). See the end of Appendix A for the precise matching of grading conventions.
So by Lemma 4.6, it remains to show:

Lemma 4.7. For any n× d Dyck path π as above,∏
p∈v∗(π)

(1 + at|κπ(p)|) = 1
1 + a

∏
p∈v∗(π)

(1 + at|κπ(p)|).

Proof. Since d and n are coprime, no two elements of v∗(π) ∪ v∗(π) have the same
perpendicular distance to the line l := ld/n(n, d). The one farthest from l must
belong to v∗(π). Let p0 be this element, and let p1, p2, . . . , pm be the remaining
elements ordered by decreasing distance from l. For 1 ≤ i ≤ m, let

ϵi =


−1 (pi−1, pi) ∈ v∗(π)× v∗(π),

0 (pi−1, pi) ∈ v∗(π)× v∗(π) ∪ v∗(π)× v∗(π),
1 (pi−1, pi) ∈ v∗(π)× v∗(π).

Let τi =
∑
j≤i ϵi. Then for all i, we have τi = |κπ(pi)| ≥ 0.

If m = 0, then we are done; else, we must have τ1 = τm = 1. It follows that every
value attained by the sequence τ1, . . . , τm must occur as many times for indices i
with pi ∈ v∗(π) as for indices i with pi ∈ v∗(π) \ {p0}. □

Example 4.8. The figure below shows a 7× 5 Dyck path π for which |v∗(π)| = 3
and |v∗(π)| = 4. The corresponding ∆ ∈ D7,5 yields Gen7(∆) = {0, 5, 3, 1, 6, 11, 9}
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and Gen(∆) = {0, 3, 1, 9}.

In the notation of Lemma 4.7, (ϵi)i = (1, 1, 0, 0, 0,−1) and (τi)i = (1, 2, 2, 2, 2, 1).

Remark 4.9. Lemma 4.7 refines the last display on [M22, 60], which merely asserts
that

∑
p∈v∗(π) |κπ(p)| =

∑
p∈v∗(π) |κπ(p)|.

4.7. Proof (B) of Case (1) of Theorem 5. We will explain each arrow in the
left-hand portion of diagram (4.1).

For general f , the varieties Pν are isomorphic to varieties that have been well-
studied in representation theory: namely, parabolic affine Springer fibers for GLn,
where n is again the C[[x]]-rank of R = C[[x]][y]/(f). In Proposition 7.4, we give
the explicit isomorphisms for the case where f(x, y) = yn − xd with n, d coprime,
and show that for ν = (1n), they match the Springer actions on the cohomologies
of the two sides. Note that Hikita worked with SLn, not GLn, but we account for
this difference by passing to P0 ≃ P/Γ: See part (3) of the proposition.

For such f , both sides admit affine pavings induced by Gm-actions, analogous
to those in Lemmas 4.2–4.3. On the affine Springer fiber for ν = (1n), Hikita
introduced a q, t-symmetric function, jointly describing the dimensions of the strata
and a certain filtration of the variety by unions of strata [Hi]. We review this
filtration in Section 8.4.

Remark 4.10. Hikita’s symmetric function is now known as the Hikita polynomial
for (n, d). It was independently introduced by Armstrong at the 2012 AMS Joint
Mathematics Meetings [A].

At the same time, there is a filtration of P((1n))/Γ by unions of the subvarieties
P(c)((1n))/Γ, which we review in Section 8.2. Theorem 8.3 says that it differs from
Hikita’s filtration by an involution ι on his affine Springer fiber. Lemma 8.2(2) says
that on Borel–Moore homology, ι is Springer-equivariant and preserves weights.
We deduce that the Hikita polynomial for (n, d) is unchanged by ι, and matches
FPicn,d once we invoke the duality between Borel–Moore homology and compactly-
supported cohomology. His variables t, q correspond to our variables q, t2.

The rational shuffle theorem, formulated for n, d coprime in [GN] and proved
by Mellit in [M21], matches the Hikita polynomial with an expression denoted
Qd,n ·(−1)n in [BGLX]. Here, Qd,n is an element of the elliptic Hall algebra (EHA),
and (−1)n is a vector in the Fock-space representation of the EHA on symmetric
functions. Mellit’s proof implicitly yields a recursive formula for Qd,n · (−1)n,
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and hence FPicn,d, in terms of the Dyck-path operators from his prior work with
Carlsson [CM18]. This recursive formula is stated explicitly in [W, Thm. 2–3].

Remark 4.11. The shuffle conjecture of [HHLRU], proved by Carlsson–Mellit in
[CM18], is the d = n + 1 case of the rational shuffle conjecture, except with an
expression ∇en in place of Qn+1,n · (−1)n. It turns out that these symmetric
functions coincide [BGLX, Thm. 7.4]. Haglund proved that ∇en specializes to the
Gorsky–Neguţ formula for X̄n,n+1, as a consequence of his formula for q, t-Schröder
numbers [H04]. See the version in [H16, Thm. 2].

In [HM], Hogancamp–Mellit establish a recursive formula for the unreduced
HOMFLYPT homology of the positive (n, d) torus link, for arbitrary n, d. In
[W, Cor. 1], Wilson shows that for n, d coprime, Mellit’s recursion for Qd,n · (−1)n

specializes under Ψ to Hogancamp–Mellit’s recursion for the knot homology. This
completes proof (B).

Remark 4.12. Gorsky–Mazin–Vazirani observed that the recursive formula of [HM]
can be written in a closed form [GMV20]. It uses the same set of semigroup modules
Dn,d as in proof (A), but replaces ΠGen

n (∆, a, t) with

ΠCogen
n (∆, b, t) =

∏
k∈Cogen(∆)

(1 + btλ(∆,k)),

where the product runs over the set of (nonnegative) cogenerators

Cogen(∆) = {k ∈ Z≥0 \∆ | k + n ∈ ∆, k + d ∈ ∆},

and for any k ∈ Cogen(∆), we set

λ(∆, k) = |{j ∈ Genn(∆) | k + n+ 1 ≤ j ≤ k + n+ d}|

= |{j ∈ Genn(∆) | k + n < j < k + n+ d}|.

This explains why, in diagram (4.1), the bottom-left corner is labeled Cogen. To
match the resulting formulas for X̄n,d, set b = aq−1.

Remark 4.13. It is natural to ask how much of diagram (4.1) generalizes to integers
n, d that are not coprime. We will address this question in a sequel paper. In
Section 6, where we address the d = nk case, our proof does not involve generalizing
(4.1). For now, we mention that:

(1) The rational shuffle conjecture was generalized to arbitrary n, d > 0 in
[BGLX]. This is the actual result proved by Mellit in [M21].

(2) Our Theorem 3 and the Cogen formula for X̄n,d extend to arbitrary n, d.
(3) In [W], Wilson introduces generalizations of Qd,n · (−1)n and the Hikita

polynomial to arbitrary n, d, which differ from those in [BGLX]. He has
nonetheless shown that his Hikita polynomial specializes to the Cogen for-
mula in (2), and hence, to X̄n,d.



26 OSCAR KIVINEN AND MINH-TÂM TRINH

4.8. Gen versus Cogen. This subsection is a digression on Remark 4.12. As
mentioned, the precise matching between the Gen and Cogen formulas is

1
1 + a

∑
∆∈Dn,d

q|Z≥0\∆|tdim(A∆)ΠGen
n (∆, a, t)(4.6)

=
∑

∆∈Dn,d

q|Z≥0\∆|tdim(A∆)ΠCogen
n (∆, aq−1, t).

It is remarkable because Gen and Cogen behave very differently. Note that at a→ 0,
the terms ΠGen

n ,ΠCogen
n disappear above, and both sides specialize to∑

∆∈Dn,d

q|Z≥0\∆|tdim(A∆).

Similarly, our proofs of case (1) of Theorem 5 simplify drastically in the a → 0
limit; almost all of their combinatorial complexity lies in the higher a-degrees.

Remark 4.14. Let Cn,d(q, t) = Cn,d(t, q) be the q, t-rational Catalan number in-
troduced in [H08]. Via their bijection from Dn,d to the set of n × d Dyck paths,
Gorsky–Mazin showed that the last polynomial above is tδCn,d(q, t−1) [GM13].

Below, we illustrate the contrast between Gen and Cogen in examples where
d = n+ 1. Throughout, we label the elements of Dn,d in the form ∆a1,...,an , where
Genn = {a1, . . . , an} and ai + δ − |Z≥0 \∆| ≡ i− 1 (mod n) for all i.

Example 4.15. Take (n, d) = (2, 3). Then δ = 1 and D2,3 = {∆0,3,∆1,0} with
these statistics:

∆ q|Z≥0\∆|tdim(A∆) Gen \ {0} 1
1+a ΠGen

n Cogen ΠCogen
n

∆0,3 qt ∅ 1 {1} 1 + b
∆1,0 1 {1} 1 + at ∅ 1

Here, (4.6) becomes qt + 1(1 + at) = qt(1 + aq−1) + 1.

Example 4.16. Take (n, d) = (3, 4). Then δ = 3 and

D3,4 = {∆0,4,8,∆5,0,4,∆1,5,0,∆4,2,0,∆0,1,2}

with these statistics:

∆ q|Z≥0\∆|tdim(A∆) Gen \ {0} 1
1+a ΠGen

n Cogen ΠCogen
n

∆0,4,8 q3t3 ∅ 1 {5} 1 + b
∆5,0,4 q2t2 {5} 1 + at {1, 2} (1 + b)(1 + bt)
∆1,5,0 qt2 {1} 1 + at {2} 1 + b
∆4,2,0 qt {2} 1 + at {1} 1 + b
∆0,1,2 1 {1, 2} (1 + at)(1 + at2) ∅ 1

Here, (4.6) becomes

q3t3 + (q2t2 + qt2 + qt)(1 + at) + 1(1 + at)(1 + at2)

= (q3t3 + qt2 + qt)(1 + aq−1) + q2t2(1 + aq−1)(1 + aq−1t) + 1.
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In general, one can check that there is a permutation Row : Dn,d → Dn,d defined
by Cogen(Row(∆)) = Gen(∆) \ {0}. Nathan Williams has pointed out to us that
Row ought to be an example of rowmotion, a certain operation on the order ideals
of a finite poset [SW]. To see how, regard Z≥0 \ Γ(R) as a poset in which j ≤ k if
and only if k− j ∈ Γ(R), and the sets Z≥0 \∆ for ∆ ∈ Dn,d as its order ideals. We
would be curious to know whether rowmotion sheds any light on the relationship
between the Gen and Cogen formulas.

4.9. Proof of Theorem 6. Recall that we want to show

FHilb3,d(q, t) = FQuot3,d(q, q
1
2 t)

for d > 0 coprime to 3. The first step is the asymptotic statement:

Proposition 4.17. For any integer n > 0, we have

lim
d→∞

d coprime to n

Ψ(a,FHilbn,d(q, t)) =
∏

1≤k≤n

1 + aqk−1t2k−2

1− qkt2k−2 ,

lim
d→∞

d coprime to n

Ψ(a,FQuotn,d(q, t)) =
∏

1≤k≤n

1 + at2k−2

1− qt2k−2 ,

where the limits are taken in Q[[q, t]][a].

Proof. Throughout, Corollary 3.6 allows us to replace the expressions Ψ(FHilbn,d)
and Ψ(FQuotn,d) with corresponding generating functions for nested pairs of R-
modules, and Lemma 4.3 allows us to compute the latter using the combinatorics
of the monomial R-modules.

The identity for FHilbn,d was shown in [ORS]: See their Proposition 6. (Recall
that our variables a, q, t correspond to their variables a2t, q2, t.) To prepare for the
proof of the second identity, we briefly review their argument.

Using “staircase diagrams” [ORS, §3.2] to index monomial ideals, or equivalently
elements ∆ ∈ I(R), then invoking Lemma 4.2, it is not hard to show that the
identity for FHilbn,d holds when a = 0. Indeed, as d → ∞, the defining condition
that staircase width be bounded by d disappears.

The formula that incorporates a can be bootstrapped from the a = 0 formula
by systematically replacing single elements ∆ with collections of pairs (∆′′,∆′).
Namely, if ∆ is fixed, then we consider all 2n ways of choosing a subset of {1, . . . , n},
and add a column of height h to the staircase of ∆ for each h in the subset. This
determines some new ∆′ ∈ I(R). We get a larger ∆′′ ⊇ ∆ by replacing each new
column with a column that is one box shorter in height. We can then check that
each ∆ gives rise to 2n pairs (∆′′,∆′), that every possible pair arises this way,
and that the total contribution of the pairs (∆′′,∆′) to the series in a, q, t is the
contribution of ∆ to the a = 0 series multiplied by some binomial factor. This
factor is precisely the numerator

∏n
k=1 (1 + aqk−1t2k−2).

Now we turn to the identity for FQuotn,d. In place of staircases, we index
elements ∆ ∈ I(S) by vectors g⃗ = (g1, . . . , gn) ∈ Zn≥0, where gi is the number
of elements of Γ(S) = Z≥0 that are greater than exactly i − 1 of the elements
of Genn(∆). Again, as d → ∞, any constraints on the vector g⃗ disappear. If ∆
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is indexed by g⃗, then its contribution to the a = 0 series is q
∑

i
git2

∑
i
(i−1)gi by

Lemma 4.2.
To bootstrap the a variable, we send ∆ to the collection of all pairs (∆,∆′) where

∆ is the same and ∆′ ⊆ ∆ is obtained as follows: Pick a subset of {1, . . . , n}, then
form Genn(∆′) from Genn(∆) by shifting up by 1 those elements of Gen(∆) whose
residue modulo n belongs to the subset. By Lemma 4.3, the total contribution of
these pairs to the series in a, q, t is the contribution of the original ∆ to the a = 0
series multiplied by the binomial factor

∏n
k=1 (1 + at2k−2). □

Observe that Ψ(a,FHilbn,d(q, t)) and Ψ(a,FQuotn,d(q, t)) agree with their d→
∞ limits up to degree d in q. At the same time:

Proposition 4.18. For any plane curve germ with complete local ring R, the
series Ψ(a,FHilb(q, t)) is determined by its expansion up to degree δ in q. If
R ≃ C[[ϖn, ϖd]] for coprime n, d > 0, then the same holds for Ψ(a,FQuot(q, t)).

Proof. Observe that the expansion of a formal series Ψ ∈ Z[[q]][a±1, q−1, t±1] up to
a given q-degree determines the expansion of (1−q)bΨ up to that q-degree, for any
integer b > 0.

Proposition 3 of [ORS] shows that if Ψ = Ψ(a,FHilb(q, t)) and b is the number of
branches of R, then q−δ(1− q)bΨ is a Laurent polynomial in q-degrees −δ through
δ, invariant under q−1 7→ qt2. (Again, our q is their q2.) So in this case, the
expansion of Ψ up to q-degree δ determines the entire series.

Now take Ψ = Ψ(a,FHilb(q, t)), supposing that R ≃ C[[ϖn, ϖd]] for coprime
n, d > 0. By case (1) of Theorem 5, Ψ matches the graded dimension of the
unreduced KhR homology of the (n, d)-torus knot, up to certain grading shifts and
substitutions. Hence, (1−q)Ψ matches the corresponding series from reduced KhR
homology, as defined in Appendix A. Corollary 1.0.2 of [OR] or Theorem 1.2 of
[GHM] show that the latter, normalized with our conventions and shifted by q− δ

2 ,
is a Laurent polynomial in q 1

2 -degrees −δ through δ, invariant under q− 1
2 7→ q 1

2 t.
So again, the expansion of Ψ up to q-degree δ determines the entire series. □

Together, Proposition 4.17 and Proposition 4.18 imply that if δ ≤ d− 1, then

Ψ(a,FHilb(q, t)) = Ψ(a,FQuot(q, q 1
2 t)).

But δ = 1
2 (n − 1)(d − 1). So the hypothesis can be simplified to n ≤ 3. Finally,

when n ≤ 3, the map Ψ loses no information, so we can omit it from both sides.
This proves Theorem 6.

5. Polynomial Actions and y-ification

5.1. In this section, we review the precise definition of y-ified Khovanov–Rozansky
homology, then give a precise statement of Conjecture 7, spelling out all of the
gradings involved. This also serves as preparation for Section 6.

5.2. We freely assume the notation of Appendix A. Thus, T = Gn
m and SBim is

the category of Soergel bimodules over S = H∗
T (pt). We explain in Appendix A

that for any braid β on n strands, the Khovanov–Rozansky homology of the link
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closure of β can be computed from Hochschild cohomology of the Rouquier complex
T̄β , an object of Kb(SBim).

In [GKS, §5.1], the authors explain that the term-by-term action of S⊗ Sop on
T̄β factors through that of a smaller quotient. Fix matching coordinates

S = C[t1, . . . , tn] and Sop = C[top
1 , . . . , top

n ].

Let w ∈ Sn be the underlying permutation of β. Then the actions of ti and top
w(i) on

T̄β are homotopic for all i. So up to homotopy, the (S⊗ Sop)-action on T̄β factors
through the quotient of S⊗ Sop by the ideal ⟨(ti − top

w(i))i⟩.
At the same time, the actions of ti and top

i on S coincide for all i. So under
the Hochschild cohomology functor HH =

⊕
i,j ExtiS⊗Sop(S, (−)(j)), the (S⊗Sop)-

action on T̄β is transported to an action that also factors through the quotient of
S⊗ Sop by the ideal ⟨(ti − top

i )i⟩.
Thus, HH(T̄β) inherits an action of the quotient ring of w-coinvariants

Sw := S/⟨(ti − tw(i))i⟩.

This is a polynomial ring on b variables, where b is the number of components of
the link closure of β. It will be convenient to fix coordinates

Sw = C[x⃗] := C[x1, . . . , xb]

so that each xj is the image of some ti. Recalling that Soergel bimodules are graded
so that deg(ti) = 2, we see that x⃗ acts on HH(T̄β) with bidegree (0, 2). Hence, x⃗
acts on HHH(T̄β) =

⊕
I,J,K HK(HHI,J(T̄β)) with tridegree (0, 2, 0).

5.3. In [GH], Gorsky–Hogancamp introduced a deformation of HHH called y-ified
Khovanov–Rozansky homology, which we will denote HY and review below.

We write d for the differential on T̄β . Let hi be a homotopy from the ti-action
on Tβ to the top

w(i)-action, so that [d, hi] = ti − top
w(i) as operators. We may choose

the hi so that they square to zero and anticommute. Let S′ = C[u1, . . . , un] be
another copy of S, and let d′ = d⊗ id +

∑
i hi ⊗ ui as an operator on T̄β ⊗ S′. We

compute that (d′)2 =
∑
i (ti − top

w(i)) ⊗ ui. We deduce that the induced action of
(d′)2 on HH(T̄β)⊗ S′

w vanishes, where

S′
w := S′/⟨(ui − uw(i))i⟩,

like before. By definition, HY(T̄β) =
⊕

I,J,K HYI,J,K(T̄β), where

HYI,J,K(T̄β) = HK(HHI,J(T̄β)⊗ S′
w, d

′).

We again fix coordinates

S′
w = C[y⃗] := C[y1, . . . , yb]

so that each yj is the image of some ui. From the definition of d′, we see that y⃗
acts on the complex (HH(T̄β)⊗S′

w, d
′) with bidegree (0,−2) on the first factor and

cohomological degree 2. Hence, y⃗ acts on HY(T̄β) with tridegree (0,−2, 2).
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Altogether, the y-ified homology of β is a triply-graded vector space HY(T̄β)
equipped with a bigraded C[x⃗, y⃗]-module structure, which recovers HHH(T̄β) upon
passing from C[x⃗, y⃗] to C[x⃗, y⃗]/⟨y⃗⟩ = C[x⃗].

5.4. Writing e for the writhe of β, as in Appendix A, let Ȳβ :=
⊕

i,j,k∈Z Ȳi,
j
2 ,

k
2

β be
the (Z× 1

2 Z× 1
2 Z)-graded C[x⃗, y⃗]-module defined by

Ȳi,
j
2 ,

k
2

β = HYi,e−2i+j−k,e−k(T̄β).

From the formula

HYI,J,K(T̄β) = ȲI,I+ J
2 − K

2 ,e− K
2

β ,

we see that

X̄β(a, q, t) =
∑

i,j,k∈Z

aiq
j
2 t k

2 dim(Ȳi,
j
2 ,

k
2

β ⊗Z[x⃗,y⃗] Z[x⃗])

in the notation of Appendix A. Moreover, we see that x⃗ and y⃗ respectively act on
each summand Ȳiβ :=

⊕
j,k∈Z Ȳi,

j
2 ,

k
2

β with bidegrees (1, 0) and (0,−1).
We return to our setup where f(x, y) = 0 is a generically separable degree-n

cover of the x-axis, embedded in the x, y-plane. The preimage in the cover of a
positively-oriented loop around x = 0 is a braid βf on n strands such that the
number b of branches of f is also the number of components of the link closure of
β, and such that X̄f = X̄βf

. We similarly set Ȳf = Ȳβf
.

Let T (b) = Gb
m. As explained in the introduction, once we fix identifications

C[x⃗] ≃ C[Γ≥0] and C[y⃗] ≃ H∗
T (b)(pt),

the commuting actions of Γ≥0 and T (b) on
∐
ℓQℓν together produce a C[x⃗, y⃗]-module

structure on
⊕

ℓ HBM,T (b)
∗ (Qℓν) for all compositions ν of n. The variables xj and

yj respectively act by 1 and 0 on the length ℓ, by 0 and −2 on the cohomological
degree, and by 0 and −2 on the weight filtration W≤∗.

Let Qx⃗,y⃗
S,ν :=

⊕
ℓ,k Qx⃗,y⃗,ℓ,k

S,ν be the Z2-graded C[x⃗, y⃗]-module defined by

Qx⃗,y⃗,ℓ,k
S,ν = grW

k HBM,T (b)
∗ (Qℓν).

We abbreviate by writing Q̃x⃗,y⃗
S = Qx⃗,y⃗

S,(1n). The Springer action of Sn on the Borel–
Moore homology of

∐
ℓQℓ(1n) lifts to its equivariant Borel–Moore homology and

commutes with the C[x⃗, y⃗]-action above. So by Proposition 3.1, we can use the
bigraded (C[x⃗, y⃗] ×CSn)-module formed by Q̃x⃗,y⃗

S to recover the bigraded C[x⃗, y⃗]-
modules Qx⃗,y⃗

S,ν for all ν.
Abusing notation, let Ψ be the functor from bigraded CSn-modules to triply-

graded vector spaces given by

Ψ(M)i,j,k =
⊕
j,k

HomSn
(V(n−i+1,1i−1) ⊕ V(n−i,1i),M

j,k),

where in general, Vλ is the irreducible representation of Sn indexed by λ ⊢ n.
Altogether, the most precise version of Conjecture 7 is:

Conjecture 5.1. In the setup above,
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(1) Ȳf is supported in integral tridegrees.
(2) There is an isomorphism of C[x⃗, y⃗]-modules Ȳf

∼−→ Ψ(Q̃x⃗,y⃗
S ) that sends

degree (i, j, k) onto degree (i, j, 2k). In particular, Ψ(Q̃x⃗,y⃗
S ) is supported in

even cohomological degrees.

Remark 5.2. In the definition of Q̃x⃗,y⃗
S , we did not collapse the cohomological degree

to an Euler characteristic, as in the definition of Quot(q, t). Thus, the statement
that Ψ(Q̃x⃗,y⃗

S ) is supported in even cohomological degrees is needed to ensure that
Conjecture 5.1 specializes to Conjecture 4 upon base change from C[x⃗, y⃗] to C[x⃗].
An analogous statement about the cohomology of P/Γ was shown in [GMO] for
certain unibranch plane curve germs, called “generic” germs in ibid.

6. (n, nk) Torus Links

6.1. In this section, we prove case (2) of Theorem 5, stating that

X̄n,nk(a, q, t2) = Ψ(a,FQuotn,nk(q, t)) for any integer k > 0.

Throughout, we set f(x, y) = yn − xnk. For such f , our argument will implicitly
prove Conjecture 5.1(1), as well as the matching of trigradings in Conjecture 5.1(2).
The strategy is to relate both sides to ∇kp(1n) ∈ Λnq,t, where in general, pλ is the
power-sum symmetric function indexed by λ ⊢ n, and ∇ is the Bergeron–Garsia
operator on Λnq,t [HHLRU]. We will use the theory of symmetric functions quite
freely; for more background on our tools, we refer to [Ha,Mac].

6.2. In [CM21], Carlsson–Mellit computed a version of the underlying bigraded
CSn-module of Q̃x⃗,y⃗

S for the chosen f . To make this precise, let

Q̃BM,T (n)
S,n,nk (q, t) =

∑
ℓ,k

qℓtkHBM,T (n)
k (Qℓ(1n)) ∈ Q(q, t)⊗K0(Sn).

Recall the Frobenius character F : Q(q, t)⊗K0(Sn)→ Λnq,t from Section 3.

Proposition 6.1. For all integers n, k > 0, we have

FQ̃BM,T (n)
S,n,nk (q, t) = 1

(1− q)(1− t2)∇
kpn.

Proof. Just as the ind-schemes Pν are isomorphic to parabolic affine Springer fibers
for GLn, so the ind-schemes

∐
ℓQℓν are isomorphic to the positive parts of certain

affine Springer fibers, in the terminology of [GK, CM21]. This can be shown by
adapting the proof of [GK, Thm. 1.1]. In Proposition 7.2, we give the explicit
isomorphisms for the case where f(x, y) = yn − xnk, and show that for ν = (1n),
they match the Springer actions on the two sides. In particular, we match

∐
ℓQℓ(1n)

for this choice of f with the ind-scheme denoted Zk in [CM21].
There is an extra Sn-action on the T (n)-equivariant Borel–Moore homology of

Zk called the dot action, induced by the Sn-action on the homotopy type of the
curve yn = xkn that permutes its branches. The dot action commutes with the
Springer action. In this way, we can upgrade FQ̃BM,T (n)

S,n,nk (q, t) to an element

FX⃗,Y⃗ Q̃BM,T (n)
S,n,nk (q, t) ∈ Λnq,t[X⃗, Y⃗ ],
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where Λq,t[X⃗, Y⃗ ] = Λq,t[X⃗]⊗Q(q,t) Λq,t[Y⃗ ]. Above, X⃗ and Y⃗ respectively record the
Springer and dot actions. The actual statement of [CM21, Thm. A] is

FX⃗,Y⃗ Q̃BM,T (n)
S,n,nk (q, t 1

2 ) = ∇ken

[
X⃗Y⃗

(1− q)(1− t)

]
,

in plethystic notation.
We want to recover the Frobenius character in X⃗ alone. To this end, it suffices to

pair the right-hand side with p(1n)[Y⃗ ] under the Hall inner product: Indeed, under
F , pairing with p(1n) corresponds to evaluating a character of Sn at the identity
element. Note that (g, h) 7→ ⟨g[ X⃗Y⃗

(1−q)(1−t) ], h⟩ is a version of the Macdonald q, t-
inner product [Ha, §3.5], with respect to which the power-sum symmetric functions
form an orthogonal basis of Λnq,t. Therefore〈

∇ken

[
X⃗Y⃗

(1− q)(1− t)

]
, p(1n)[Y⃗ ]

〉
= ∇kp(1n)

[
X⃗

(1− q)(1− t)

]

= 1
(1− q)n(1− t)n∇

kp(1n)[X⃗],

where the second equality used p(1n) = pn1 . Finally, substituting t2 for t everywhere
gives the statement in the proposition. □

Remark 6.2. Interestingly, the fundamental domain D(1n) from Lemma 2.4 and
its ensuing discussion appears implicitly in [CM21]: Its complement is an open
sub-ind-scheme of Zk that features heavily in the proof of [CM21, Thm. A].

Corollary 6.3. For all integers n, k > 0, we have

FQuotn,nk(q, t) = 1
(1− q)n∇

kp(1n).

Proof. Since the homology of Zk is pure [GKM04,GKM06], it is T (n)-equivariantly
formal [GKM04, Lem. 2.2]. We deduce that if QBM

S,n,nk is the analogue of Q̃BM,T (n)
S,n,nk

for non-equivariant Borel–Moore homology, then

FQBM
S,n,nk(q, t) = (1− t2)nFQ̃BM,T (n)

S,n,nk (q, t) = 1
(1− q)n∇

kp(1n).

Next, recall that Borel–Moore homology and compactly-supported cohomology
with complex coefficients are dual to each other. Finally, since both are supported
in even degrees [CM21, 38], and in degree i, pure of weight i [GKM06, Cor. 1.3],
we know that

∑
k tk dim H∗

c(Zk) = χ(Zk, t). □

6.3. Turning to the KhR side, observe that Gorsky–Hogancamp computed the
y-ified KhR homology of the (n, nk) torus link in [GH], obtaining its usual KhR
homology as a corollary.

We need to fix a typo there. In the proofs of [GH, Thm. 7.13–14], which use
coherent sheaves on the Hilbert scheme of n points on A2 and its isospectral variant,
the authors should be tracking the equivariance parameters coming from the scaling
action of G2

m along the axes. These contribute denominators of the form (1− q)n
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or (1− t)n in various places. After correction, [GH, Thm. 7.13] says

Ȳn,nk(a, q, t) :=
∑
i,j,k

aiq
j
2 t k

2 dim(Ȳi,
j
2 ,

k
2

f ) = 1
(1− q)n(1− t)nΨ(∇kp(1n), a).

Similarly, after correction, [GH, Thm. 7.14] says

X̄n,nk(a, q, t) = (1− t)nȲn,nk(a, q, t) = 1
(1− q)nΨ(∇kp(1n), a).

Again, we refer to Section 5 and Appendix A to match our grading conventions
with those in [GH]. This concludes the proof of case (2) of Theorem 5.

6.4. To conclude this section, we verify the a = 0 limit of [ORS, Conj. 2] for two
plane curve germs of the form yn = xnk. By way of case (2) of Theorem 5, this
also verifies Conjecture 1 in these cases.

Example 6.4. Take n = 2 and k = 2. By [Ki, Ex. 6.18],

Hilb(q, t) = 1
(1− q)2 (1− q + q2t2 − q3t2 + q4t4).

At the same time, the recursion of [HM,GMV20] gives

X̄2,4(a, q, t) = 1
(1− q)2 (1 + q(t− 1) + q2(t2 − t)).

These series agree under (q, t) 7→ (q, qt2).

Example 6.5. Take n = 3 and k = 1. By [Ki, Ex. 6.17],

Hilb(q, t) = 1
(1− q)3

(
1− 2q + q2(t2 + 1) + q3(t4 − 2t2) + q4(t4 + t2)
−2q5t4 + q6t6

)
.

At the same time, by [GMV20, Ex. 32],

X̄3,3(a, q, t) = 1 + qt
1− q + qt2 + 2q2t2

(1− q)2 + q3t3

(1− q)3 .

Again these agree under (q, t) 7→ (q, qt2).

7. Affine Springer Fibers

7.1. In this section, we establish the comparisons to affine Springer fibers needed
in Section 4 and Section 6. For the convenience of readers unfamiliar with affine Lie
theory, we keep our exposition self-contained beyond the definitions appearing in
finite Lie theory. For the general relationship between local compactified Jacobians
and affine Springer fibers, we refer to [L].

7.2. Suppose that G is a complex reductive algebraic group. Its loop group is
the ind-group scheme Ĝ defined by Ĝ(A) = G(A((x))) for all C-algebras A, where
A((x)) := A[[x]][x−1]. Its arc group is the ind-group scheme K̂ defined by K̂(A) =
G(A[[x]]). Thus there is a projection map K̂ → G that sends g(x) 7→ g(0).

Henceforth, let G = GLn and g = gln. Each integer composition ν of n defines
a block-upper-triangular parabolic subgroup Pν ⊆ G. Its preimage K̂ν ⊆ K̂ is
called the corresponding parahoric subgroup. The partial affine flag variety of G
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of parabolic type ν is the fpqc quotient B̂ν = Ĝ/K̂ν , which turns out to be an
ind-scheme. For any γ ∈ g(C[[x]]), let

B̂γν,† = {gK̂ν ∈ B̂ν | Ad(g−1)γ ∈ Lie(K̂ν)}.

The underlying reduced ind-scheme B̂γν ⊆ B̂
γ
ν,† is called the affine Springer fiber

over γ of parabolic type ν.
Since Ĝ/K̂ is also known as the affine Grassmannian, we set Ĝ = Ĝ/K̂ = B̂(n)

and Ĝγ = B̂γ(n).

7.3. The Functor L, and yn = xnk. There is a well-known description of the
affine Grassmannian as a space of lattices in C((x))n, and more generally, of the
partial affine flag varieties of G as spaces of lattices equipped with partial flags.
Namely, let L be the functor from C-algebras to sets defined by

L(A) =

 A[[x]]-submodules
L ⊆ A((x))n

∣∣∣∣∣∣∣
∃ i such that xiA[[x]]n ⊆ L ⊆ x−iA[[x]]n

and (x−iA[[x]]n)/L is locally free over A
of finite rank


for any C-algebra A. For any ν, let Lν be the functor defined by

Lν(A) =
{

(L,F )

∣∣∣∣∣ L ∈ L(A),
F is a partial flag on L̄ := L/xL of type ν

}
.

Let (vi)n−1
i=0 be the standard ordered basis of Cn, but numbered from 0 through

n− 1. Let F std be the unique partial flag on Cn of type ν with stabilizer Pν under
right multiplication by G, so that the ith subspace of F std is that spanned by vi
for n− νn − · · · − νi ≤ i ≤ n− 1. The following result is explained in [Gö, §2.4] for
ν = (n), (1n); the argument for other ν is similar.

Lemma 7.1. For each integer composition ν of n, there is an isomorphism of fpqc
sheaves B̂ν

∼−→ Lν that sends

gK̂ν 7→ (Lg, Fg) := (C[[x]]n · g−1, F std · g−1)(7.1)

for all gK̂ν ∈ B̂ν(C). In particular, L is representable by an ind-scheme.

Let L+ ⊆ L be the sub-ind-scheme defined by

L+(A) = {L ∈ L(A) | L ⊆ A[[x]]n}.

We define the positive part of B̂ν to be the corresponding sub-ind-scheme B̂ν,+ ⊆
B̂ν . Similarly, we define the positive part of B̂γν to be B̂γν,+ = B̂γν ∩ B̂ν,+. We set
Ĝ+ = B̂(n),+ and Ĝγ+ = B̂γ(n),+.

Fix a primitive nth root of unity ζ ∈ C×. For any integer k > 0, let

γ(k) = diag(xk, ζxk, . . . , ζn−1xk) ∈ g(C[[x]]).

We see that the centralizer of γ(k) in Ĝ is precisely T̂ ⊆ Ĝ, where T ⊆ G is the
maximal torus of diagonal matrices. The T̂ -action on B̂γ(k)

ν by left multiplication
restricts to a T -action on B̂γ(k)

ν,+ . We note that the ind-scheme B̂γ(k)
(1n),+ is denoted

Zk in [CM21].
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Proposition 7.2. Suppose that

R = C[[x, y]]/(yn − xnk) for some integer k > 0.

Fix an identification S = C[[x]]n, hence an identification T (n) = T . Then:

(1) The map (7.1) restricts to isomorphisms B̂γ(k)
ν

∼−→ Pν and B̂γ(k)
ν,+

∼−→
∐
ℓQℓν .

Let B̂γ(k),ℓ
ν,+ ⊆ B̂γ(k)

ν,+ correspond to Qℓν ⊆
∐
ℓQℓν under the isomorphism in (1). Then

the isomorphism matches:

(2) The T -actions on B̂γ(k),ℓ
ν,+ and Qℓν .

(3) The Springer actions of Sn on the T -equivariant Borel–Moore homologies
of Bγ(k),ℓ

(1n),+ and Qℓ(1n), for all ℓ.

Proof. Parts (1) and (2) follow from the definitions: Compare to [GK, Thm. 1.1]. To
prove part (3), observe that the usual Springer action on the Borel–Moore homology
of B̂γ(k),ℓ

(1n),+ arises from Proposition 3.1 and Remark 3.2 via the outer rectangle in
the following diagram, where every square is cartesian:

[B̂γ(k),ℓ
(1n),+/T ] [Qℓ(1n)/T ] [Ñ(1n)/GLn]

[Ĝγ(k),ℓ
+ /T ] [Qℓ/T ] [N/GLn]

∼

∼

π

(Above, Ĝγ(k),ℓ
+ := B̂γ(k),ℓ

(n),+ .) □

Remark 7.3. In [BL], Boixeda Alvarez–Losev construct commuting actions of two
trigonometric double affine Hecke algebras (DAHAs) on the T -equivariant Borel–
Moore homology of certain equivalued affine Springer fibers, for a certain torus T .
One of their DAHA actions is a generalized Springer action; the other arises from
combining a monodromic action of the affine Weyl group with the action of the
equivariant cohomology H∗

T (pt).
In the GLn case, their affine Springer fibers are precisely our B̂γ(k)

(1n) , and their
T is our T . Via Proposition 7.2, the monodromic action of the cocharacter lattice
and the action of equivariant cohomology in [BL] respectively correspond to the
Γ≥0- and H∗

T (pt)-actions on the T -equivariant Borel–Moore homology of Qℓ(1n) in
Section 5. The monodromic action of the finite Weyl group corresponds to the dot
action in Section 6.

7.4. The Functor M, and yn = xd. Writing x = ϖn, let ab : C((x))n ∼−→ C((ϖ))
be the isomorphism of C((x))-vector spaces defined by

ab(vi) = ϖi,

where we have implicitly used C((x))n = C((x))⊗Cn. Let M be the functor from
C-algebras to sets defined by

M(A) =

 A[[ϖn]]-submodules
M ⊆ A((ϖ))

∣∣∣∣∣∣∣
∃ i such that ϖiA[[ϖ]] ⊆M ⊆ ϖ−iA[[ϖ]]
and (ϖ−iA[[ϖ]])/M is locally free over A
of finite rank





36 OSCAR KIVINEN AND MINH-TÂM TRINH

for any C-algebra A. Thus M is the analogue of P† with C[[ϖ]] in place of R. For
any ν, let Mν be the functor defined by

Mν(A) =
{

(M,F )

∣∣∣∣∣ M ∈M(A),
F is a partial flag on M̄ := M/ϖnM of type ν

}
.

Then ab induces an isomorphism of fpqc sheaves

Lν
∼−→Mν ,(7.2)

which we again denote by ab.
We now define the element of g(C[[x]]) studied in [Hi]. Let (X•,Φ, X•,Φ∨) be

the root datum of G with respect to the maximal torus of diagonal matrices. Let
α1, . . . , αn−1 ∈ Φ be the simple roots with respect to the upper-triangular Borel
subgroup P(1n) ⊆ G, and let ρ∨ = 1

2
∑
i α

∨
i ∈ Φ∨, where α∨

i is the coroot corre-
sponding to αi. For any d > 0 coprime to n, let m, b be the integers such that

d = mn+ b and 0 < b < n,

as in [Hi]. For each root α, let eα ∈ g(C) be the zero-one matrix that generates the
root subspace gα ⊆ g, and for each integer j, let ej =

∑
α|⟨α,ρ∨⟩=j eα. Finally, let

ψ(d) = xmeb + xm+1eb−n.(7.3)

In what follows, we will need the composition of isomorphisms

B̂ν
Lem 7.1−−−−−→ Lν

ab−→Mν
ϖδ

−−→Mν ,(7.4)

where the last label means means multiplication by ϖδ, and δ = 1
2 (n − 1)(d − 1),

as in Section 4. We write the map on C-points as gK̂ν 7→ (Mg, Fg).

Proposition 7.4. Suppose that

R = C[[ϖn, ϖd]] for some d > 0 coprime to n.

Then:
(1) The map (7.4) restricts to an isomorphism B̂ψ(d)

ν
∼−→ Pν .

Let Peν ⊆ Pν be the preimage of Pe ⊆ P, and let B̂ψ(d),e
ν ⊆ B̂ψ(d)

ν correspond to
Peν ⊆ Pν under the isomorphism in (1). Then:

(2) The isomorphism in (1) matches the Springer action of Sn on the Borel–
Moore homologies of Bψ(d),e

(1n) and Pe(1n), for all e.
(3) B̂ψ(d),0

ν is the affine Springer fiber studied by Hikita in [Hi].

Proof. Part (1): It suffices to work on C-points. By checking on the basis (vi)i, we
find that ab transports the action of γ on C((x))n by right multiplication onto the
action of ϖd on C((ϖ)) by multiplication. Therefore,

gK̂ν ∈ Bψ(d)
ν (C) ⇐⇒ (C[[x]]n · g−1, F std · g−1) is γ-stable

⇐⇒ (Mg, Fg) is R-stable

for all gK̂ν ∈ B̂ν(C) and fixed e ∈ Z.



THE HILB-VS-QUOT CONJECTURE 37

Part (2): Similar to the proof of part (3) of Proposition 7.2, but replacing the
diagram there with this one:

(7.5)

B̂ψ(d),e
(1n) Pe(1n) [Ñ(1n)/GLn]

Ĝψ(d),e Pe [N/GLn]

∼

∼

π

(Above, Ĝψ(d),e := B̂ψ(d),e
(n) .)

Part (3): The multiplication by ϖδ in the last arrow of (7.4) ensures that B̂ψ(d),0
ν

contains the identity coset K̂ν ∈ B̂ν . As a consequence, B̂ψ(d),0
ν belongs to the

connected component of B̂ν that corresponds to the partial affine flag variety of
SLn of parabolic type ν. The latter is defined analogously to the partial affine flag
variety of G = GLn, which means that B̂ψ(d),0

ν is precisely the affine Springer fiber
over ψ(d) with structure group SLn. □

8. Filtrations on H∗(P/Γ)

8.1. In this section, we discuss the following filtrations on the variety P/Γ or its
cohomology:

(1) The gap filtration on the variety, defined in terms of the function c(M) =
dimC(SM/M) from the introduction.

(2) The Hikita filtration [Hi], defined on the variety for R = C[[ϖn, ϖd]] with
n, d coprime, by intersecting the affine Springer fiber from Section 7.4 with
increasing unions of affine Schubert cells.

(3) The perverse filtration on cohomology, defined in terms of a versal defor-
mation of a global curve C into which Spec(R) embeds.

First, in Theorem 8.3, we relate (1) and (2) by way of an involution ι, as needed
in Section 4.7. The involution ι is related to a duality studied by Gorsky–Mazin
[GM14], but to our knowledge, our work is the first time it has been used to relate
the filtrations above. Next, we discuss Conjecture 8 relating (1) and (3). For
completeness, we also review the splitting of (3) constructed in [R]. Finally, we
discuss related filtrations in [GORS,OY17,CO].

8.2. The Gap Filtration. Let R = C[[x]][y]/(f) be an arbitrary generically sepa-
rable degree-n cover of the x-axis, fully ramified at (x, y) = (0, 0). For any integer
composition ν of n, we define the gap filtration on Pν to be its increasing filtration
by the subvarieties

Pν,≤c =
⋃
c′≤c

Pν(c′).

It descends to a filtration of Pν/Γ by subvarieties Pν,≤c/Γ. We define Q≤∗ to be
the increasing filtration on the Borel–Moore homology of Pν/Γ where

Q≤c HBM
∗ (Pν/Γ) = im(HBM

∗ (Pν,≤c/Γ)→ HBM
∗ (Pν/Γ)).
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We define Q≥∗ to be the decreasing filtration on the cohomology of Pν/Γ where

Q≥c H∗(Pν/Γ) = ker(H∗(Pν/Γ)→ H∗(Pν,≤c/Γ)).

Since compactly-supported cohomology is dual to Borel–Moore homology, and
Pν/Γ is proper, Q≥c is orthogonal to Q≤c for all c. We note in passing that these
definitions still make sense for non-planar R.

As in Proposition 7.4, let Peν ⊆ Pν be the preimage of Pe ⊆ P. We define
Peν,≤c,P

e

≤c,J≤c analogously to Pν,≤c. Then Peν,≤c is the preimage of Pe≤c along
the projection Pν → P, because Pν(c′) is the preimage of P(c′). Moreover, any
isomorphism J = P0 ∼−→ Pe induced by multiplication by a uniformizer will pre-
serve c, hence restrict to an isomorphism J≤c

∼−→ Pe≤c. This largely reduces the
study of the gap filtration at the level of the varieties to the study of J≤c. Recall
that in the unibranch case, J ≃ P/Γ.

8.3. The Gap Filtration for yn = xd. Suppose that R = C[[ϖn, ϖd]] with n, d

coprime. Recall that in this case, there is a Gm-action on P induced by scaling ϖ,
which necessarily stabilizes the connected component J . As in Section 4, let

Iδ(S) := {∆ ⊆ Z≥0 | ∆ + n ⊆ ∆, ∆ + d ⊆ ∆, |Z≥0 \∆| = δ}.

By [P, §3], the setup of Lemma 4.2 restricts to a bijection

Iδ(S) ∼−→ JGm
,

∆ 7→ M∆

that partitions J into the affine spaces A∆ for ∆ ∈ Iδ(S).

Lemma 8.1. If R = C[[ϖn, ϖd]] with n, d coprime, then

c(M) = δ −min(∆) for all ∆ ∈ Iδ(S) and M ∈ A∆(C).

In particular, J (c) =
⋃

∆|min(∆)=δ−c A∆ and J≤c =
⋃

∆|min(∆)≥δ−c A∆.

Proof. In the notation of Section 2, we have ϖ−min(∆)M ∈ D for all ∆ ∈ Iδ(S) and
M ∈ A∆. Now observe that

c(M) = c(ϖ−min(∆)M) = −min(∆) + ℓ(M) = −min(∆) + δ,

where the second equality holds by Lemma 2.5. □

8.4. The Hikita Filtration. Next, we (re)turn to Hikita’s work in [Hi]. In the
notation of Section 7.4, recall that Proposition 7.4 gives us an isomorphism

Ĝψ(d),0 ∼−→ J ,
gK̂ 7→ Mg,

where Ĝψ(d),0 is the affine Springer fiber over ψ(d) with structure group SLn. Hikita
first defines a filtration of Ĝψ(d),0, then lifts it to B̂ψ(d),0

ν along the projection B̂ν →
B̂(n) = Ĝ. Thus, as with the gap filtration, we can largely reduce to studying the
ν = (n) case.
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Recall that the partition of Ĝ into Î-orbits, where Î = K̂(1n) acts on Ĝ by left
multiplication, forms a stratification:

Ĝ =
∐
µ∈X•

Ĝµ, where Ĝµ := ÎxµK̂/K̂.

Above, X• is the same cocharacter lattice as in Section 7.4, and for any µ ∈ X•,
we write xµ to mean the image of x under µ : Ĝm → Ĝ. The strata Ĝµ are affine
spaces known as affine Schubert cells. Henceforth, we fix the identification X• = Zn

under which xµ = diag(xµ1 , . . . , xµn). Then the affine Grassmannian of SLn is the
sub-ind-scheme ĜSLn

⊆ Ĝ given by

ĜSLn
=
∐
µ∈X0

•

Ĝµ, where X0
• := {µ ∈ X• | µ1 + · · ·+ µn = 0}.

The proof of [Hi, Prop. 4.1] shows that there is a bijection

a : X0
•

∼−→ Zn−1
≥0

defined as follows:
(1) ai(0, . . . , 0) = 0 for all i.
(2) If µ ̸= (0, . . . , 0), then

(a1, . . . , an−k, an−k+1, . . . , an−1)(8.1)

= (µk+1 − µk − 1, . . . , µn − µk − 1, µ1 − µk, . . . , µk−1 − µk),

where k is the largest index in {1, . . . , n} such that µk = mini µi. Note that
since µ1 + · · ·+ µn = 0, we must have µk < 0.

For all a ∈ Zn−1
≥0 , let |a| = a1 + · · ·+ an−1. For any integer c, let

ĜSLn,≤c =
⋃
µ∈X0

•
|a(µ)|≤c

Ĝµ.

Following [Hi, Cor. 4.7], we define the Hikita filtration on Ĝψ(d),0 to be its increasing
filtration by the subvarieties

Ĝψ(d),0
≤c = Ĝψ(d),0 ∩ ĜSLn,≤c.

For each integer composition ν of n, we define B̂ψ(d),0
ν,≤c to be the preimage of Ĝψ(d),0

≤c

along the projection B̂ν → Ĝ. We define the Hikita filtration on B̂ψ(d),0
ν to be its

increasing filtration by these subvarieties. This recovers the definition for ν = (1n)
in the proof of [Hi, Thm. 4.17].

8.5. The Involution ι. For any g ∈ G, let gτ be the “anti-transpose” given by
gτ = JgtJ , where gt is the usual transpose and J ∈ G the matrix with 1’s along
the anti-diagonal and 0’s elsewhere. The map ι : G→ G given by

ι(g) := (gτ )−1 = (g−1)τ

is an involutory automorphism with differential ι : g→ g given by

ι(γ) = −γτ .
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We extend these automorphisms to Ĝ and its Lie algebra by linearity and comple-
tion. We see that ι(K̂) = K̂ and ι(K̂(1n)) = K̂(1n), from which we deduce that ι
descends to involutions of Ĝ and B̂(1n).

From the definition (7.3), we also see that ι(ψ(d)) = −ψ(d). We deduce that the
affine Springer fibers Ĝψ(d) and B̂ψ(d)

(1n) are stable under ι, as are their SLn variants
Ĝψ(d),0 and B̂ψ(d),0

(1n) .

Lemma 8.2. The involutions above have the following properties:

(1) For all µ ∈ X•, we have ι(Ĝµ) = Ĝι(µ), where

ι(µ1, . . . , µn) = (−µn, . . . ,−µ1).

(2) For any integer e, the involution on the Borel–Moore homology of B̂ψ(d),e
(1n)

induced by ι is equivariant with respect to the Springer action of Sn. More-
over, it preserves the homological degree and weight filtration.

In preparation for the proof of part (2), we set up some notation. Recall that
Ĝψ(d),0 ⊆ ĜSLn

, and hence,

Ĝψ(d),0 =
∐
µ∈X0

•

Aµ, where Aµ := Ĝψ(d),0 ∩ Ĝµ.

Let Xψ(d),0
• ⊆ X0

• be the subset of cocharacters µ for which Aµ is nonempty.
It is explained in [Hi, §2.3], following [GKM06], that these Aµ are affine spaces.
Moreover, [Hi, Thm. 2.7] is an explicit combinatorial formula for their dimensions,
which shows that

dim(Aµ) = dim(Aι(µ))(8.2)

for all µ ∈ Xψ(d),0
• .

Proof of Lemma 8.2. Part (1) follows from computing ι(xµ) = xι(µ).
To show part (2): First, recall that the Springer action in question is defined

via Proposition 3.1 and Remark 3.2 via the outer rectangle of (7.5). The bottom
arrow of this outer rectangle sends gK̂ 7→ [Ad(g−1)ψ(d) mod x]. So we must show
that the residues of Ad(g−1)ψ(d) and Ad(ι(g)−1)ψ(d) mod x have the same Jordan
types as nilpotent elements of g. This follows from computing

Ad(ι(g)−1)ψ(d) = −Ad(ι(g)−1)ι(ψ(d)) = −ι(Ad(g−1)ψ(d)),

then observing that ι commutes with reduction mod x and preserves the Jordan
types of nilpotent elements.

The fact that the involution on HBM
∗ (B̂ψ(d),e

(1n) ) preserves the homological degree
and weight filtration follows from B̂ψ(d),e

(1n) being paved by the affine spaces Aµ,
together with the identity (8.2). □

In what follows, we set J ν = P0
ν and J ν,≤c = P0

ν,≤c to make parallels in notation
clearer. Together with Lemma 8.2(2), the following result completes a necessary
step in proof (B) of case (1) of Theorem 5.
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Theorem 8.3. Suppose that R = C[[ϖn, ϖd]] for some d > 0 coprime to n. Then
the composition of isomorphisms

B̂ψ(d),0
(1n)

ι−→ B̂ψ(d),0
(1n)

Prop 7.4−−−−−→ J (1n)(8.3)

restricts to an isomorphism ι(B̂ψ(d),0
(1n),≤c)

∼−→ J (1n),≤c for all c.

Since J (1n),≤c and B̂ψ(d),0
(1n),≤c are respectively the preimages of J≤c and Ĝψ(d),0

≤c ,
the ι-equivariance of the projection B̂ψ(d),0

(1n) → Ĝψ(d),0 and the commutativity of the
left square of (7.5) allows us to replace ν = (1n) with ν = (n).

We will match the strata Aµ ⊆ Ĝψ(d),0 with the strata A∆ ⊆ J . Let − ·1/n −
denote the Gm-action on Ĝ defined by

t ·1/n g(x) := c2ρ∨
g(c2nϖ)c−2ρ∨

for all t ∈ Gm and g ∈ Ĝ. It descends to a Gm-action on Ĝ that we again denote
by − ·1/n −. As explained in [Hi,GKM06], we have

Ĝµ = {gK̂ ∈ Ĝ | lim
t→0

(t ·1/n gK̂) = xµK̂} for all µ ∈ X•,

Aµ = {gK̂ ∈ Ĝψ(d),0 | lim
t→0

(t ·1/n gK̂) = xµK̂} for all µ ∈ X0
• .

So we must match − ·1/n − with the Gm-action on J in Section 8.3.

Proposition 8.4. The map (8.3) transports the Gm-action −·1/n− on Ĝ onto the
Gm-action on M(n) induced by t ·2 ϖ := t2ϖ.

Proof. It suffices to work on C-points. First, ι is equivariant under −·1/n− because
ι(c2ρ∨) = c2ρ∨ , so we can replace (8.3) with (7.4). Observe that if g = g(x) ∈
G(C((x))), and g′(x) = t ·1/n g(x) for some t ∈ C×, then g′(x)−1 = t ·1/n g−1(x).
Thus the entries of the matrix g′(x)−1 are given by

(g′(x)−1)i,j = t2(j−i)(g(t2nϖ)−1)i,j .

We deduce that

ϖδ ab(vi · (t ·1/n g(x))−1) = ϖδ
∑
j

(g′(ϖn)−1)i,jϖj

= t−2iϖδ
∑
j

(g((t2ϖ)n)−1)i,j(t2ϖ)j

= t−2δ−2i(t ·2 ϖδ ab(vi · g(x)−1)).

Above, t−2δ−2i is just a nonzero scalar depending on i. So the calculation shows
that the vector subspaces of C((ϖ)) formed by Mt·1/ng and t ·2 Mg coincide. □

In the notation of Section 8.3, let ∆ : Xψ(d),0
• → Iδ(S) be defined by

Genn(∆(µ)) = {nµi + n− i+ δ | 1 ≤ i ≤ n}.(8.4)

Then the map xµ 7→ M∆(µ) is precisely the effect of (8.3) on the (− ·1/n −)-fixed
points of Ĝψ(d),0, as we can check from the definition of ι and (7.1)–(7.2). Now
(8.2) and Proposition 8.4 imply:
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Corollary 8.5. The map ∆ : Xψ(d),0
• → Iδ(S) is bijective, and for all µ ∈ Xψ(d),0

• ,
(8.3) restricts to an isomorphism

Aµ
∼−→ A∆(µ).

To finish the proof of Theorem 8.3, it remains to show that for all µ ∈ Xψ(d),0
• ,

we have |a(µ)| = c(M∆(µ)). By Lemma 8.1 and (8.4), this is equivalent to:

Lemma 8.6. For all µ ∈ Xψ(d),0
• , we have

|a(µ)| = −min{nµi + n− i | 1 ≤ i ≤ n}.

Proof. If µ = (0, . . . , 0), then both sides equal 0. If µ ̸= (0, . . . , 0), then (8.1) gives

|a(µ)| = (µ1 + · · ·+ µn)− (nµk + n− k),

where k is the largest index in {1, . . . , n} such that µk = mini µi. Since µ ∈ X0
• ,

the right-hand side above simplifies to −(nµk + n− k). □

Remark 8.7. It is natural to ask what the involution ι on Ĝψ(d),0 looks like after
being transported through (7.4), to an involution on J . From (8.4), we can check
that it is precisely the duality that Gorsky–Mazin denote by ∆ 7→ ∆̂ in [GM14].
Explicitly, for any ∆ ∈ Iδ(S), we have Genn(∆̂) = {d(n− 1)− k | k ∈ Genn(∆)}.

Remark 8.8. In [GMV16], Gorsky–Mazin–Vazirani assert a simplification of Hikita’s
work in terms of a generalized Pak–Stanley bijection PS. In particular, their maps
A and PS respectively encode the area and codinv statistics in Section 4: See
Section 3.3 in their paper. It would be interesting to know how their combinatorics
is related to our geometry.

Example 8.9. Take (n, d) = (3, 4). We compute

X
ψ(d),0
• = {(0, 0, 0), (−1, 0, 1), (−1, 1, 0), (0,−1, 1), (1, 0,−1)},

Iδ(S) = {∆3,4,5,∆6,4,2,∆3,7,2,∆6,1,5,∆0,4,8}.

Above, we have labeled the elements of Iδ(S) in the form ∆b1,b2,b3 , where Genn =
{b1, b2, b3} and bi ≡ d(i− 1) (mod n) ≡ i− 1 (mod 3) for all i. We compute these
statistics:

µ a(µ) |a(µ)| (nµi + n− i)i ∆(µ) min(∆(µ))
(0, 0, 0) (0, 0) 0 (2, 1, 0) ∆3,4,5 3
(−1, 0, 1) (0, 1) 1 (−1, 1, 3) ∆6,4,2 2
(−1, 1, 0) (1, 0) 1 (−1, 4, 0) ∆3,7,2 2
(0,−1, 1) (1, 1) 2 (2,−2, 3) ∆6,1,5 1
(1, 0,−1) (2, 1) 3 (5, 1,−3) ∆0,4,8 0

Compare to Example 4.16.

8.6. The Perverse Filtration. We return to the setup of Section 8.2, where
f(x, y) is arbitrary. For simplicity, we ignore the map to the x-axis in what fol-
lows. Besides Q≥∗, there is another filtration on the cohomology of P/Γ, defined
as follows by Maulik–Yun:
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Fix a complex, integral, projective curve C, whose normalization has genus zero,
and which is smooth away from a unique planar singularity given in local coordi-
nates by f(x, y) = 0. We emphasize that while C is integral, the germ f can still
have multiple branches. Fix an embedding of C into a family of curves C, whose
base is irreducible, and which satisfies conditions (A1)–(A4) in [MY, §2.1]. For
instance, in any versal deformation of C, we can obtain such a family after base
change to a small-enough Zariski neighborhood around C [MY, Prop. 3.5].

Condition (A4) entails a nonsingular basepoint s ∈ C(C). Let J (C) be the
compactified Jacobian of (C, s) [AIK]. In more detail, J (C) is a projective variety
whose C-points parametrize torsion-free, coherent sheaves on C of degree 0 and
generic rank 1, equipped with a trivialization at s. In this setting, Section 2.14
of ibid. defines an increasing perverse filtration P≤∗ on H∗(J (C)), in terms of the
perverse truncation of the pushforward of the constant sheaf along the structure
map of J (C). Proposition 2.15 of ibid. shows that P≤∗ is invariant under base
change of the family of curves, so it is canonical. It is strictly compatible with the
weight filtration W≤∗.

Finally, the proof of Theorem 3.11 of ibid. shows that there is a weight-preserving
isomorphism H∗(J (C)) ≃ H∗(P/Γ), canonical up to the choice of uniformization
that defines the Γ-action on P. We define the perverse filtration P≤∗ on H∗(P/Γ)
by transport along this isomorphism. Following Maulik–Yun, we normalize P≤∗ so
that it sits in degrees 0 through 2δ.

For any filtration F≤∗ on the cohomology of P/Γ, strictly compatible with the
weight filtration, we may form the virtual Poincaré polynomial

Pvir,F(q, t) =
∑
i,j,k

(−1)iqjtk dim grF
j grW

k Hi(P/Γ).

Explicitly, Theorem 3.11 of [MY] states that

Hilb(q, t) = 1
(1− q)b Pvir,P(q, t).

By comparison, Theorem 3 implies that

Quot(q, t) = 1
(1− q)b Pvir,Q(q, t).

We deduce that:

Corollary 8.10. Conjecture 1 is equivalent to

Pvir,P(q, t) = Pvir,Q(q, q 1
2 t).(8.5)

The motivation behind Conjecture 8 is that it would strictly imply (8.5), and
hence, Conjecture 1. We emphasize again that while P≤∗ is defined via auxiliary
global methods, Q≥∗ is intrinsic and purely local. For this reason, Corollary 8.10
seems remarkable to us.

8.7. The Rennemo Splitting. We keep the curve C and the family of curves C
from above. Note that the conditions on C in [MY, §2.1] are essentially the same
as those in [R, §2.1].
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For any integer ℓ ≥ 0, let Hℓ(C) be the Hilbert scheme of ℓ points on C. Let

AJ :
∐
ℓ

Hℓ(C)→ J (C)

be the Abel–Jacobi map, constructed for general ℓ via the basepoint s from ear-
lier. Theorem 1.3 of [R] shows that

⊕
ℓ H∗(Hℓ(C)) admits a quotient W , defined

through the action of a certain Weyl algebra by Hecke correspondences, such that
the composition

H∗(J (C)) AJ∗

−−−→
⊕
ℓ

H∗(Hℓ(C))→W

is an isomorphism. Moreover, the bigrading on the middle term descends to W .
Following Rennemo, let D∗ be the grading on H∗(J (C)) obtained by pulling

back the non-cohomological grading on W . Proposition 7.1 of ibid. states that D∗

is a splitting of the perverse filtration P≤∗. Again, we can transport D∗ to the
cohomology of P/Γ via the isomorphism H∗(J (C)) ≃ H∗(P/Γ).

8.8. The GORS Filtrations. To conclude, we review the three filtrations Falg,
Find, Fgeom proposed in [GORS] and their relationship to our story.

Again, suppose that R ≃ C[[ϖn, ϖd]] for some d > 0 coprime to n. For clarity
below, let B̂d/n = J (1n). Let H∗

Gm
(B̂d/n) be the equivariant cohomology of B̂d/n

with respect to the Gm-action induced by scaling ϖ. The perverse filtration P≤∗

from earlier can be lifted to this equivariant, parabolic setting.
Writing H∗

Gm
(pt) = C[ϵ], with deg(ϵ) = 2, we can form the C[ϵ]-module

grP
∗ H∗

d/n := grP
∗ H∗

Gm
(B̂d/n).

By work of Oblomkov–Yun [OY16, OY17], a symplectic reflection algebra known
as the rational Cherednik algebra (RCA) of Sn with central charge d

n acts on
grP

∗ H∗
d/n|ϵ→1, and under this action, it becomes graded-isomorphic to the sim-

ple RCA module usually denoted Ld/n. More precisely, the perverse grading on
the cohomology corresponds to the grading on Ld/n induced by the action of the
so-called Euler element. As the notation suggests, the RCA action is constructed
by viewing B̂d/n as an affine Springer fiber in B̂(1n), though over an element of
sln(C[[x]]) different in general from the element ψ(d) in Section 8.4.

In [GORS], Gorsky–Oblomkov–Rasmussen–Shende construct two filtrations on
Ld/n called Falg and Find by purely algebraic methods. The former uses the con-
struction of Ld/n as a quotient of the RCA representation on the polynomial ring
C[x1, . . . , xn−1], while the latter uses the shift functors relating Ld/n and L(d+n)/n.
We refer to Section 4 of ibid. for the details.

Via transport from grP
∗ H∗

d/n|ϵ→1, there is another grading on Ld/n of geometric
nature. Namely, following [GORS, 2782], let Fgeom

≤∗ be defined by

(8.6) Fgeom
i Ld/n =

⊕
j,k

j−k≤i−2δ

grp
j Hk

d/n(1).

Now, [GORS, Conj. 1.4] is the three-way equality Falg = Find = Fgeom.
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There is another filtration C≤∗ on grP
∗ H∗

d/n|ϵ→1, called the Chern filtration in
[OY16], which ultimately arises from the affine paving of B̂d/n discussed earlier.
Proposition 8.1.2 of [OY16] shows that Falg can be constructed from C≤∗ by a
saturation formula exactly analogous to (8.6). Theorem 8.2.3(1) of ibid. shows that
C≤∗ = P≤∗. Therefore, the work of Oblomkov–Yun proves Falg = Fgeom.

Remark 8.11. While our paper was in revision, Xinchun Ma uploaded to arXiv a
proof of the equality Falg = Find [M].

Note that grP
∗ H∗

d/n|ϵ→0 is the bigraded vector space grP
∗ H∗(J (1n) discussed else-

where in this section. It is essentially conjectured in [OY17] that

grP
∗ H∗

d/n|ϵ→0 ≃ grP
∗ H∗

d/n|ϵ→1.

More precisely, Oblomkov–Yun introduce in ibid. a certain family of rings in two
parameters ϵ and s, which recover the cohomology rings grP

∗ H∗
d/n(ϵ) at s = 1. The

isomorphism above would match the rings at (ϵ, s) = (0, 1) and (1, 1). Conjecture
1.1.7 of ibid. would match those at (ϵ, s) = (0, 1) and (1, 0). Conjecture 5.5.1 of
ibid. would match the rings at all values of (ϵ, s).

8.9. The Carlsson–Oblomkov Filtration. We now specialize to the case where
d = n + 1. Recall that the ring of diagonal coinvariants of Sn is the bigraded
CSn-module formed by

DRn = C[x1, . . . , xn, y1, . . . , yn]
C[x1, . . . , xn, y1, . . . , yn]Sn

+
,

where C[x1, . . . , xn, y1, . . . , yn]Sn
+ is the ideal of Sn-invariant homogeneous polyno-

mials, under the grading where deg(xi) = (1, 1) and deg(y) = (−1, 1) for all i. An
argument in [Go, §5] shows that grFind

∗ L(n+1)/n ≃ sgn ⊗ DRn, where sgn denotes
the sign twist.

In [CO], Carlsson–Oblomkov construct a filtration Fdesc on DRn that is trian-
gular with respect to one of the gradings, using so-called descent monomials. They
match grFdesc

∗ DRn with a bigraded space of the form grFfp

∗ HBM
∗ (B̂(n+1)/n), where

Ffp is a filtration defined using fixed-point localization and special features of the
inclusion B̂(n+1)/n ⊆ B̂(1n). It is claimed on page 4 of ibid. that this isomorphism
also matches DRn with grH

∗ HBM
∗ (B̂(n+1)/n), where H≤∗ denotes the filtration in-

duced by the Hikita filtration in Section 8.4, and we have suppressed the necessary
grading shifts and substitutions.

We expect their claim is true with the filtration Q≤∗ from Section 8.2 in place
of H≤∗, and up to taking a (bi)graded dual. Indeed, this change would suggest a
route to proving Conjecture 8 for R = C[[ϖn, ϖn+1]]. Suppose that:

(1) Falg = Find. (See Remark 8.11.)
(2) grP

∗ H∗
d/n|ϵ→0 ≃ grP

∗ H∗
d/n|ϵ→1.

(3) DRn ≃ grQ
∗ HBM

∗ (B̂(n+1)/n)∨ up to appropriate shifts and substitutions.
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Then we could match:

grP
∗ H∗(B̂(n+1)/n) = grP

∗ H∗
d/n|ϵ→0

(2)←→ grP
∗ H∗

d/n|ϵ→1

(8.6)←−→ grFgeom

∗ L(n+1)/n

[OY16]←−−−→ grFalg

∗ L(n+1)/n

(1)←→ grFind

∗ L(n+1)/n

[Go]←−→ DRn

(3)←→ grQ
∗ HBM

∗ (B̂(n+1)/n)∨ = gr∗
Q H∗(B̂(n+1)/n).

Note that in this case, (8.5) is as strong as Conjecture 8, since the affine paving of
B̂(n+1)/n shows that its cohomology is pure and supported in even degrees.

Appendix A. Gradings on Link Homology

A.1. In this appendix, we specify our grading conventions for Khovanov–Rozansky
homology; compare them to those of other published works; and illustrate on the
smallest examples (unknot, Hopf link, trefoil, (3, 4) torus knot) to aid the reader’s
sanity. Our exposition closely follows [GH, §1.6], but we correct some mistakes:
See Remarks A.1–A.2.

A.2. Soergel Bimodules. Let T = Gn
m, and let

S := H∗
T (pt) = C[t1, . . . , tn].

We regard S as a graded ring, with deg(ti) = 2 for all i. Thus the Sn-action on
T that permutes coordinates also preserves the grading on S. Let si ∈ Sn be the
transposition that swaps ti and ti+1.

In the category of graded S-bimodules, we write (m) for the grading shift
B(m)i = Bi+m. Let SBim be the full subcategory generated by the identity bi-
module S and the bimodules S⊗Ssi S(1) for all i under isomorphisms, direct sums,
tensor products ⊗ = ⊗S, direct summands, and grading shifts. Objects of SBim are
called Soergel bimodules. We write Kb(SBim) for the bounded homotopy category
of SBim. It is a monoidal additive category whose unit is the complex consisting
of the identity bimodule in degree zero.

Let Brn be the group of braids on n strands up to isotopy. Any braid β ∈ Brn
defines an object T̄β ∈ Kb(SBim) called the Rouquier complex of β. See, e.g.,
[GH, §2.1] for the precise definition. If β = β′β′′ in Brn, then any sequence of
braid moves that transforms β′β′′ into β defines an isomorphism from T̄β′ ⊗ T̄β′′

onto T̄β . Thus, the braid group is categorified by the objects T̄β under ⊗.
Let Vect2 be the category of Z2-graded vector spaces that are finite-dimensional

in each bidegree, such that the first grading is bounded below and the second is
bounded. Let HH = HH∗,∗ : SBim→ Vect2 be the Hochschild cohomology functor:

HHi,j(B) = ExtiS⊗CSop(S,B(j)).

These Ext’s can be computed using a Koszul resolution of S over S⊗C Sop, which
shows that the Ext grading sits in degrees 0 through (at most) n.
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Let Vect3 be the category of Z3-graded vector spaces that are finite-dimensional
in each tridegree, such that the first grading is bounded below and the other two
gradings are bounded. Let HHH = HHH∗,∗,∗ be the composition of functors

Kb(SBim) HH−−→ Kb(Vect2) H∗

−−→ Vect3.

Explicitly, the gradings are ordered so that HHHI,J,K = Hk(HHI,Jn ).
The story above can be redone with the quotient torus T0 := T/TSn in place

of T . Note that T0 is just the image of T along the quotient map GLn → PGLn.
Replacing T with T0 entails replacing S with its subring S0 := H∗

T0
(pt). We write

Tβ , HH, HHH for the objects that respectively replace T̄β , HH, HHH.
Let L be the link closure of β. In [Kh], Khovanov proved that HHH(Tβ) matches

the reduced version of the triply-graded homology of L proposed in [DGR] and
constructed in [KhR], up to an affine transformation of the trigrading. One can
show that

HHH(T̄β) ≃ HHH(T̄id)⊗ HHH(Tβ),(A.1)

and that in consequence, HHH(T̄β) matches the unreduced version of the homology
constructed in [KhR], up to similar regradings.

A.3. The Main Dictionary. For any β ∈ Brn, let

hhhβ(A,Q, T ) =
∑
I,J,K

AIQJTK dim HHHI,J,K(T̄β),

hhhβ(A,Q, T ) =
∑
I,J,K

AIQJTK dim HHHI,J,K(Tβ).

That is:

(1) hhhβ(A,Q, T ) is the series denoted Pβ(Q,A, T ) in [EH, §A] and [GH, §1.6],
and hhhβ is the analogue of hhh for reduced homology.

We write:

(2) P̄norm
L (A,Q, T ) for the series denoted Pnorm

L (Q,A, T ) in loc. cit.
(3) PL,ORS(a, q, t) for the series denoted P(L) in [ORS]. It is denoted P(L−)

in [DGR], where L− is the chiral mirror of L.
(4) P̄L,ORS(a, q, t) for the series denoted P̄(L) in [ORS], which satisfies

P̄L,ORS(a, q, t) = P̄U,ORS(a, q, t)PL,ORS(a, q, t).(A.2)

Remark A.1. Contrary to statements suggested by [ORS, 651] and [GH, §1.6], the
series P̄L,ORS does not match the series called the unreduced superpolynomial of
L− and denoted P̄(L−) in [DGR], even after further regrading. Indeed, the series
denoted P(L−) and P̄(L−) in [DGR] are not proportional to each other by any
constant factor, as can be checked from Propositions 6.1 and 6.2 of ibid.
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Let e be the writhe of β, meaning its net number of crossings counted with sign,
and let b be the number of components of L. After correction, [GH, §1.6] states:

P̄norm
L (A,Q, T ) = (A 1

2 )e−n+bQ−e+2n−2b(T 1
2 )−e−n+b hhhβ(A,Q, T ),

P̄L,ORS(a, q, t) = a−bqb P̄norm
L (a2q2t, q, t−1)(A.3)

= ae−nqnte hhhβ(a2q2t, q, t−1).

By combining the last identity above with (A.1)–(A.2), we get a reduced version:

PL,ORS(a, q, t) = ae−n+1qn−1te hhhβ(a2q2t, q, t−1).

In general, we will not work with P̄norm
L . Moreover, we will not discuss at all the

normalizations used in the series P(U),P(T (2, 3)) in [GH, Rem. 1.27].

Remark A.2. Above, (A.3) fixes a few more typos in [GH, §1.6]:
First, the discussion on [GH, 599] relates their series Pnorm

L to the series we call
P̄L,ORS, not to the superpolynomial in [DGR]. As explained in Remark A.1, the
latter two are different. Next, the identity relating Pnorm

L and P̄L,ORS in loc. cit.
has the wrong prefactor. There, the authors express P̄L,ORS in terms of variables
r, α,Q, T , which correspond to our b, a, q, t−1, respectively. Their prefactor Q2rα−r

should be Qrα−r.
By way of comparison: The variables α,Q, T in [EH, §A] also correspond to our

a, q, t−1. Hence, their series PL(Q,α, T ) is our series P̄L,ORS(a, q, t). The identity
relating Pβ and PL in loc. cit. is correct.

Example A.3. The unknot U is the knot closure of the identity in Br1, for which
(n, e, b) = (1, 0, 1). The Hochschild cohomology of the identity Soergel bimodule is

HH∗,j
1 (S) =


S j = 0,
S(2) j = 1,
0 j ̸= 0, 1.

Thus P̄norm
U (A,Q, T ) = hhhid(A,Q, T ) = 1 +AQ−2

1−Q2 , from which

P̄U,ORS(a, q, t) = a−1 + at

q−1 − q
.

A.4. “Our” Series. For any braid β ∈ Brn with writhe e whose link closure L
has b components, let

X̄β(a, q, t) := t e
2 hhhβ(aq, q 1

2 , q 1
2 t− 1

2 ),

Xβ(a, q, t) := X̄β(a, q, t)
X̄id(a, q, t)

= t e
2 hhhβ(aq, q 1

2 , q 1
2 t− 1

2 ).

Above, note that Xid(a, q, t) = 1 + a
1− q . We can check that

P̄L,ORS(a, q, t) = (aq−1)e−n X̄β(a2t, q2, q2t2),

PL,ORS(a, q, t) = (aq−1)e−n+1 Xβ(a2t, q2, q2t2).
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It turns out that in the rest of this paper, X̄β and Xβ are the most convenient series
for us to use.

In particular, suppose that f(x, y) ∈ C[[x]][y] such that f(x, y) = 0 defines a
generically separable, degree-n cover of the x-axis, fully ramified at (x, y) = (0, 0).
Then the preimage in the cover of a positively-oriented loop around x = 0 is a braid
βf ∈ Brn, whose link closure is the link Lf introduced in Section 1.5. We see that
X̄βf

is precisely the series X̄f introduced in (1.4).

A.5. Torus Links. For integers n, d > 0, let Tn,d be the positive (n, d) torus link,
considered negative in [DGR]. Its number of components is b = gcd(n, d). Taking
f(x, y) = yn − xd in the construction above shows that Tn,d is the link closure of a
braid βn,d ∈ Brn for which e = (n− 1)d. Let

δ = 1
2(e− n+ b) = 1

2(nd− n− d+ gcd(n, d)).

Let X̄n,d = X̄βn,d
, as in the rest of this paper, and Xn,d = Xβn,d

.

Example A.4. For the Hopf link T2,2, we have

X2,2(a, q, t) = 1 + qt
1− q + at

1− q ,

PT2,2,ORS(a, q, t) = aq−1 + aq3t2

1− q2 + a3qt3

1− q2 .

Example A.5. For the trefoil T2,3, we have

X2,3(a, q, t) = 1 + qt + at,

PT2,3,ORS(a, q, t) = a2(q−2 + q2t2) + a4t3.

The latter series is [DGR, Ex. 3.3].

Example A.6. For the (3, 4) torus knot T3,4, we have

X3,4(a, q, t) = 1 + qt + qt2 + q2t2 + q3t3

+ a(t + t2 + qt2 + qt3 + q2t3)

+ a2t3,

PT3,4,ORS(a, q, t) = a6(q−6 + q−2t2 + t4 + q2t4 + q6t6)

+ a8(q−4t3 + q−2t5 + t5 + q2t7 + q4t7)

+ a10t8.

The latter series is [DGR, Ex. 3.4].

In Section 4, we implicitly need the following identities that match X̄n,d,Xn,d
with other series in the literature.

(1) Let P̃n,m(u, q, t) be the series in [GN]. For coprime n, d, we have

X̄n,d(a, q, t) = tδ
1− q P̃n,d(−a, q, t−1).
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(2) Let Pm,n = Pm,n(a, q, t) be the series in [M22]. For coprime n, d, we have

X̄n,d(a, q, t) = (−a−1q 1
2 t 1

2 )δ Pn,d(−a, q, t−1).

Note that the substitution sends t 7→ q and q 7→ t−1, not vice versa.
(3) Let P̂0M ,0N (q, t, a), Q̂0M ,0N (q, t, a), R0M ,0N (q, t, a) be the series in [GMV20].

For any n, d, we have

1
1 + a X̄n,d(a, q, t) = 1

1− q Xn,d(a, q, t−1)

= R0n,0d(q, t−1, aq−1)

= Q̂0n,0d(q, t−1, aq−1) by [GMV20, Cor. 5.10]

= q−d−nP̂0n,0d(q, t, aq−1) by [GMV20, (11)].
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