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Abstract. Let R be the complete local ring of a complex plane curve germ
and S its normalization. We propose a conjecture relating the virtual weight
polynomials of the Hilbert schemes of R to those of the Quot schemes that
parametrize R-submodules of S. We prove an identity relating the Quot side
to strata in a lattice quotient of a compactified Picard scheme, showing that
our conjecture generalizes a conjecture of Cherednik’s beyond the unibranch
case, and that it would relate the perverse filtration on the cohomology of the
Picard side to the stratification.

We also lift our work to a parabolic refinement where we track partial flags.
We propose a Quot version of the Oblomkov–Rasmussen–Shende conjecture,
relating the parabolic Quot side to Khovanov–Rozansky link homology. It
becomes equivalent to the original Hilbert version under our Hilb-vs-Quot
conjecture, but is more tractable. For germs of the form yn = xd, where n

is either coprime to or divides d, we prove our Quot version in its full form.
No similar result keeping all three gradings is known for the Hilbert version.
Finally, we enhance the Quot version to incorporate a polynomial action on
the link homology, as well as its y-ification; neither has a Hilbert analogue.
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1. Introduction

1.1. Let R be the complete local ring of a complex algebraic plane curve germ: i.e.,
a reduced, complete, local C-algebra of Krull dimension 1, embedding dimension
at most 2, and residue field C. Let R ↪→ S be the normalization of R.

For any finitely generated R-module E, let Quotℓ(E) denote the Quot scheme
whose C-points parametrize submodules of E of C-codimension ℓ. It is a scheme
of finite type. When E = R, it is the Hilbert scheme of ℓ points on Spec(R).
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For X a C-scheme of finite type, let χ(X, t) ∈ Z[t] denote the virtual weight
polynomial of Z in the sense of mixed Hodge theory. It satisfies the cut-and-paste
relation χ(X, t) = χ(Z, t) + χ(X − Z, t) for any closed subscheme Z ⊆ X, and
specializes to the Euler characteristic of X at t = −1. Let

QE(q, t) =
∑
ℓ≥0

qℓχ(Quotℓ(E), t),

a formal power series in q and t. In particular, QR(q, t) is the generating function
for the weight polynomials of the Hilbert schemes of R. We start by proposing
the following conjecture, relating QR(q, t) to the analogous generating series for the
Quot schemes Quotℓ(S).

Conjecture 1 (Hilb-vs-Quot). For any R of the form above,

QR(q, t) = QS(q, q 1
2 t).

Our first goal in this paper is to show that Conjecture 1 extends a conjecture
of Cherednik’s to plane curve germs with multiple branches. Our second goal is
to clarify a conjecture of Oblomkov–Rasmussen–Shende (ORS) relating the Hilbert
schemes of a plane curve germ to the Khovanov–Rozansky (KhR) homology of its
link. Under a parabolic refinement of Conjecture 1, the ORS Conjecture becomes
equivalent to a version for the Quot schemes Quotℓ(S) that seems more tractable,
and also compatible with more features of KhR homology. We will prove the Quot
version for germs of the form yn = xd, where n is either coprime to or divides d,
and we will propose refinements that incorporate polynomial actions observed on
the link homology and its y-ification.

1.2. We first review Cherednik’s conjecture. Let K be the ring of fractions of
S. The compactified Picard scheme of R is a reduced ind-scheme P over C whose
points parametrize finitely-generated R-submodules M ⊆ K such that KM = K.
Let c : P(C)→ Z≥0 be the constructible function given by

c(M) = dimC((SM)/M).

Before Cherednik, versions of this function appeared in works of Greuel–Pfister
[GP] and Gorsky–Mazin [GM13]. It takes values between 0 = c(S) and the delta
invariant δ := c(R).

There is a sub-ind-scheme J ⊆ P parametrizing those M ⊆ K for which
dimC(M/(M ∩R)) = dimC(R/(M ∩R)). It is clopen in P, and for R irreducible,
a.k.a. unibranch, it is a projective variety. In the unibranch case, J has appeared
under several different names, including the Jacobi factor or (local) compactified
Jacobian of R.

For 0 ≤ c ≤ δ, let J c ⊆ J be the constructible subvariety parametrizing the
modules M where c(M) = c. In [C, Conj. 4.5], Cherednik essentially conjectured
that when R is unibranch,

QR(q, t) ?= 1
1− q

∑
0≤c≤δ

qcχ(J c, q
1
2 t).(1.1)
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More precisely, the conjecture of op. cit. is stated in terms of point counts over
finite fields, rather than virtual weight polynomials. For further discussion of how
Cherednik’s conjecture relates to (1.1), see §2.7. In certain “torus knot” cases that
we will discuss later, (1.1) was anticipated by Gorsky [ORS, Conj. A.12].

We will show that Conjecture 1 generalizes (1.1) beyond the unibranch case. For
this, fix a uniformization S ≃

∏b
i=1 C[[ϖi]]. The scaling action of K× on P restricts

to a free action of the lattice Λ ⊆ K× defined by

Λ = {ϖ⃗x⃗ := ϖx1
1 · · ·ϖ

xb

b | x1, . . . , xb ∈ Z}.

The quotient P/Λ is a projective variety, essentially by work of Kazhdan–Lusztig
[KL]. In the unibranch case, where b = 1 and Λ ≃ Z, we have P/Λ ≃ J .

Like before, let Pc ⊆ P parametrize the modules M where c(M) = c. As the
function c is invariant under the K×-action on P, the Λ-action on P descends to a
Λ-action on Pc. When b = 1, the identity

QR(q, t) ?= 1
(1− q)b

∑
c

qcχ(Pc/Λ, q
1
2 t)(1.2)

specializes to (1.1). We will prove that

QS(q, t) ?= 1
(1− q)b

∑
c

qcχ(Pc/Λ, t),(1.3)

thereby proving that Conjecture 1 is equivalent to (1.2).

1.3. In fact, we will propose a stronger conjecture than Conjecture 1, and prove a
stronger statement than (1.3).

Weierstrass preparation shows that after changing coordinates, we may assume
that R = C[[x]][y]/(f), where f(x, y) = 0 defines a generically separable cover of
the x-axis fully ramified at (x, y) = (0, 0). Let n be the degree of the cover. Then
R forms a free C[[x]]-module of rank n. In particular, if E is torsion-free of rank 1
over R and M ∈ Quotℓ(E)(C), then M̄ := M/xM is a vector space of dimension
n on which y acts nilpotently.

We define a partial flag on M̄ to be an increasing sequence of vector spaces
F = (0 = M̄0 ⊊ M̄1 ⊊ · · · ⊊ M̄k = M̄). Its parabolic type is the integer
composition of n formed by the sequence (dim grF1 (M̄), . . . ,dim grFk (M̄)), where
grFi (M̄) = M̄ i/M̄ i−1. For any fixed composition ν = (ν1, . . . , νk) of n, there is
a scheme of finite type Quotℓ(E, ν) whose C-points parametrize pairs (M,F ) in
which M ⊆ E corresponds to a C-point of Quotℓ(E) and F is a y-stable flag on M̄
of parabolic type ν. With this notation, let

QE,ν(q, t) :=
∑
ℓ≥0

qℓχ(Quotℓ(E, ν), t).

Then Conjecture 1 has the refinement below:

Conjecture 2 (Parabolic Hilb-vs-Quot). For any R and ν as above,

QR,ν(q, t) = QS,ν(q, q 1
2 t).
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There is an analogous scheme P(ν), whose points parametrize pairs (M,F ) as
before, except that M ⊆ K now corresponds to a C-point of P(E). Let Pc(ν) ⊆
P(ν) be the preimage of Pc ⊆ P. Let

Pν(q, t) =
∑

0≤c≤δ

qcχ(Pc(ν)/Λ, t).

The most obvious refinement of (1.3) involves QS,ν and Pν . In fact, we can make
the following motivic improvement:

Let Schfin
C be the category of C-schemes of finite type, and for any object X of

Schfin
C , let [X] denote the class of X in the Grothendieck ring K0(Schfin

C ). Thus the
virtual weight polynomial χ(X, t) is the specialization of [X] along a ring homo-
morphism K0(Schfin

C )→ Z[t]. Let

Pmot
ν (q) =

∑
c

qc[Pc(ν)/Λ],

Qmot
E,ν (q) =

∑
ℓ

qℓ[Quotℓ(E, ν)].

the motivic analogues of QE,ν and Pν . In Section 2, we prove:

Theorem 3. In the notation above, and for any integer composition ν of n,

Qmot
S,ν (q) = 1

(1− q)b Pmot
ν (q).

The main idea is to embed Quot∗(S) :=
∐
ℓQuotℓ(S) into P, then relate ℓ to c by

way of a certain fundamental domain for the Λ-action.
In Section 2.7, we explain in detail how Conjecture 2 and Theorem 3 imply a

virtual weight analogue of Cherednik’s conjecture. In Section 2.8, we illustrate
them for f(x, y) = y2 − x2 and f(x, y) = y2 − x3.

1.4. We explain in Section 3 that Conjecture 2 and Theorem 3 can be rephrased
in terms of symmetric functions, without reference to a composition ν.

Let Symn
q,t be the vector space of degree-n symmetric functions in infinitely many

variables over Q(q, t), and let ⟨−,−⟩ be the Q(q, t)-linear Hall inner product on
Symn

q,t [M]. Let (hµ)µ, where µ runs over integer partitions of n, denote the basis of
Symn

q,t formed by the complete homogeneous symmetric functions. Springer theory,
repackaged using the work of Frobenius, shows that there are unique symmetric
functions FP,FQE ∈ Symn

q,t determined by the identities

Pν(q, t) = ⟨hµ,FP(q, t)⟩,
QE,ν(q, t) = ⟨hµ,FQE(q, t)⟩

}
whenever ν is a re-ordering of µ.

Now Conjecture 2 and Theorem 3 can be written in terms of FP, FQR, FQS : See
(3.2) and (3.3) in Section 3, respectively.

1.5. Henceforth, suppose that f(x, y) is a polynomial in x as well as y. Fix a
3-sphere around (0, 0) ∈ C2. The intersection of the zero locus {f(x, y) = 0} with
this 3-sphere is a topological link Lf , whose isotopy class depends only on f when
the sphere is small enough. The number of branches b is precisely the number of
connected components of Lf .
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There is an isotopy invariant of links taking values in triply-graded vector spaces,
known as HOMFLYPT or Khovanov–Rozansky (KhR) homology [DGR, KhR]. In
[ORS], Oblomkov–Rasmussen–Shende conjectured an identity expressing the KhR
homology of Lf in terms of QR. The full statement requires a certain stratification
of the Hilbert schemes of R.

For any link L, let P̄L,ORS(a, q, t) be the graded dimension of the unreduced KhR
homology of L in the conventions of [ORS], so that our P̄L is their P̄(L). We will
use a normalization X̄f (a, q, t) ∈ Z[[q]][a±1, t±1] satisfying

P̄Lf ,ORS(a, q, t) = (aq−1)2δ−b X̄f (a2t, q2, q2t2).(1.4)

For any integer r, let Quotℓr-len(R) ⊆ Quotℓ(R) be the constructible subscheme
whose points parametrize those ideals I ⊆ R that require at least r generators and
no more, i.e., for which dimC(I/(xI + yI)) = r. With this notation, the ORS
Conjecture [ORS, Conj. 2] states that

X̄f (a, q, qt2) =
∑
ℓ,r

qℓχ(Quotℓr-len(R), t)
∏

0≤j≤r−1
(1 + at2j).(1.5)

Note that this conjecture would imply that the virtual weight polynomials above
contain only even powers of t.

It was observed in [GORS] that once we fix the presentation of f(x, y) = 0 as a
degree-n cover of the x-axis, the right-hand side of (1.5) can be written in terms of
FQR. Namely, let Ψ(−, a) : Symn

q,t → Q(q, t)[a] be the map

Ψ(−, a) = (1 + a)
∑

0≤k≤n−1
ak⟨s(n−k,1k),−⟩,

where in general, sµ ∈ Symn
q,t denotes the Schur function indexed by µ ⊢ n. This

specialization map also appears in [H16, Ex. 4] and [W, Cor. 1]. In Section 3, we
explain that [GORS, Lem. 9.3–9.4] amounts to the equality of Ψ(FQR(q, t), a) with
the right-hand side of (1.5). So the ORS Conjecture asserts that

X̄f (a, q, qt2) = Ψ(FQR(q, t), a).

In particular, if Conjecture 2 (the Parabolic Hilb-vs-Quot Conjecture) holds, then
(1.5) is equivalent to the following conjecture:

Conjecture 4 (KhR-vs-Quot). In the setup above,

X̄f (a, q, t2) = Ψ(FQS(q, t), a).(1.6)

We expect Conjecture 4 to be significantly more tractable than the original ORS
conjecture, as we demonstrate in what follows.

Remark 5. As a trade-off, the Quot schemes Quotℓ(S) do not deform as nicely as
the Hilbert schemes Quotℓ(R) as we vary R in families. In any versal deformation
of R, we can only deform S jointly with R in the stratum where δ is constant [T].

Remark 6. Note that P̄L,ORS(a, q,−1) is the unreduced HOMFLYPT polynomial
of L originally introduced in [HOMFLY]. In the analogous t→ −1 limit, the right-
hand side of (1.5) specializes to a generating function for the Euler characteristics
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of the schemes Quotℓr-len(R). In this limit, the ORS conjecture specializes to an
earlier conjecture of Oblomkov–Shende [OS], which was proved by Maulik [Mau]
using the wall-crossing results of [DHS].

Conjecture 2 would imply that the t→ −q 1
2 limit of the right-hand side of (1.6)

records the same Euler characteristics. By contrast, its t → −1 limit records the
Euler characteristics of analogous, but different, schemes Quotℓr-len(S) ⊆ Quotℓ(S).
Any explanation of Conjecture 2 ought to explain this dichotomy.

Remark 7. When L is the link closure of a braid β, the KhR homology of L can
be computed from the Rouquier complex Tβ in the theory of Soergel bimodules,
as we explain in Appendix A. There is a richer invariant of Tβ : its (dg) horizontal
trace Trdg(Tβ). In [GHW], Gorsky–Hogancamp–Wedrich show that when β has n
strands, Trdg(Tβ) decategorifies to an element of Symn

q,t, and the KhR homology
of L can be obtained by specializing Trdg(Tβ) along a version of Ψ. It is natural
to expect that Conjecture 4 has a further refinement, comparing FQS directly to
Trdg(Tβ). In this setting, it is natural to take β to be the positive braid arising
from the preimage in f(x, y) = 0 of a positive loop around x = 0.

In [Tr], for any positive braid β on n strands, the second author introduced a
(derived) scheme Z(β) with an action of GLn and a Springer-type action of Sn
on its GLn-equivariant Borel–Moore homology. The Sn-action on the associated
graded of the weight filtration recovers the (full) KhR homology of the link closure
of β, and conjecturally recovers an underived version of Trdg(Tβ). However, we do
not know a direct geometric relationship between [Z(β)/G] and Quot∗(S).

1.6. We will establish Conjecture 4 for two infinite families of plane curve germs,
both of the form yn = xd. Note that for any integer d > 0, the link of this plane
curve is the positive (n, d) torus link.

In what follows, we write FPn,d and FQE,n,d for the symmetric functions FP
and FQE arising from f(x, y) = yn − xd. Similarly, we write X̄n,d = X̄f for this f .

Theorem 8. In the setup above, suppose that either of the following holds:
(1) d is coprime to n.
(2) d is a multiple of n.

Then we have X̄n,d(a, q, t2) = Ψ(FQS,n,d(q, t), a). That is, Conjecture 4 holds for
f(x, y) = yn − xd.

Remark 9. Despite the claims in [HM, §1.2] and [GKS, §6.2], we believe there is
no published proof of the original ORS Conjecture covering either of the two cases
in Theorem 8, in any limit that preserves both q and t. As we review in Section 4,
there does exist a combinatorial formula for FQR,n,d when n and d are coprime, but
it seems more difficult to match with X̄n,d than the analogous formula for FQS,n,d.
This observation is one of the main motivations for our paper.

Oblomkov–Rasmussen–Shende did verify their full conjecture for all f(x, y) =
y2 − xd with d odd. As the map Ψ loses no information for n = 2, we obtain
Conjecture 2 for those f via case (1) of Theorem 8.

At the end of Section 6, we verify the lowest a-degree part of the original ORS
Conjecture for f(x, y) = y2 − x4 and f(x, y) = y3 − x3, using the calculations in
[Ki]. This proves Conjecture 1 for those f via case (2) of Theorem 8.
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Note that by [GMV20, (2)], the exponent 2δ − b in (1.4) equals nd − n − d in
both cases of Theorem 8.

We prove case (1) of Theorem 8, the coprime case, in Section 4. We actually
give two independent proofs:

(A) The first extends the combinatorial commutative algebra used to prove
[ORS, Cor. A.5], thereby relating Ψ(FQS,n,d) to the formula for X̄n,d con-
jectured by Gorsky–Neguţ in [GN] and proved by Mellit in [M22].

(B) The second proof is more roundabout: We invoke Theorem 3, then relate
Ψ(FPn,d) to X̄n,d through work of Hikita [Hi], Mellit [M21], Hogancamp–
Mellit [HM], and Wilson [W]. Here, our new contribution is to match the
filtration of P/Λ induced by the function c with the filtration introduced
by Hikita on an isomorphic variety. It turns out that these filtrations only
match up to a certain involution discussed in [GM14].

The Gorsky–Neguţ formula in (A) implicitly involves certain semigroup modules
and their generators, while the Hogancamp–Mellit recursion in (B) implicitly yields
a formula for X̄n,d in terms of the “cogenerators” of these semigroup modules, by
work of Gorsky–Mazin–Vazirani [GMV20]. As we will discuss in Section 4, these
formulas have the same lowest a-degree: essentially, the q, t-Catalan number for
(n, d) in [H08]. However, they look very different in higher a-degrees. Thus it is
remarkable that they both compute X̄n,d.

We prove case (2), the case where d = nk for some integer k, in Section 6. Here,
the key is to recognize that the tools we need were developed in settings with extra
structure: y-ified link homology on the KhR side, which we review in Section 5,
and torus-equivariant homology on the Quot side. In particular, we access FQS,n,d

by way of its T (b)-equivariant analogue, where the torus T (b) := Gb
m acts on

Quotℓ(S, ν) by scaling the uniformization S ≃
∏b
i=1 C[[ϖi]]. Via work of Gorsky–

Hogancamp [GH] and more recent work of Carlsson–Mellit [CM21], we respectively
relate X̄n,nk and Ψ(FQS,n,d(q, t), a) to the same expression Ψ(∇kp(1n), a), where ∇
is Bergeron–Garsia’s nabla operator on symmetric functions and pλ is the power-
sum symmetric function for λ ⊢ n. Note that ∇kp(1n) is related to, but different
from, the operator expressions in the shuffle conjecture of [HHLRU] and its rational
generalization in [BGLX].

Both proof (B) of case (1) and the proof of case (2) involve comparisons to the
affine Springer fibers studied in representation theory. In the former, we match
P((1n))/Λ with an affine Springer fiber for SLn, studied in [Hi]; in the latter, we
match Quot∗(S) with the positive part of an affine Springer fiber for GLn, studied
in [CM21]. These steps are relegated to Section 7.

Remark 10. Recently, Turner has computed the Borel–Moore homologies of many
affine Springer fibers of “unramified” type for GL3, generalizing the GL3 case of
[Ki]. For the corresponding plane curve germs, he has verified the (a, q) → (0, 1)
limit of Conjecture 4, up to a certain localization [Tu]. He also obtains results on
torus-equivariant homology, related to the conjecture we now discuss.



8 OSCAR KIVINEN AND MINH-TÂM TRINH

1.7. Our proof of case (2) of Theorem 8, together with unpublished work of the
first author, suggests a refinement of Conjecture 4: one with no analogue in the
Hilbert-scheme setting of [ORS, Conj. 2].

In general, if L is a link with b components, then C[x⃗] := C[x1, . . . , xb] acts on
the KhR homology of L by [GKS, Cor. 5.4]. This can be viewed as an action of the
homology of the b-component unlink. The y-ified KhR homology of L, introduced
by Gorsky–Hogancamp in [GH], is a monodromic deformation of its KhR homology
that extends scalars from C to C[y⃗] := C[y1, . . . , yb], thereby extending the C[x⃗]-
action to a C[x⃗, y⃗]-action.

We conjecture that these polynomial actions match existing, similar actions on
the homology of the Quot schemes Quotℓ(S, ν). Letting

Λ≥0 = {ϖ⃗x⃗ | x⃗ ∈ Zb≥0} ⊆ Λ,

we see that Λ≥0 acts on

Quot∗(S, ν) :=
∐
ℓ≥0
Quotℓ(S, ν)

just as Λ acts on P(ν). From the definitions, we see that the Λ≥0-action commutes
with the T (b)-action from earlier. After identifying C[x⃗] with C[Λ≥0], and C[y⃗] with
the equivariant cohomology H∗

T (b)(pt), we obtain a C[x⃗, y⃗]-action on the associated
graded of the weight filtration w≤∗ on equivariant Borel–Moore homology:

C[x⃗, y⃗] ↷
⊕
ℓ

grw
∗ HBM,T (b)

∗ (Quotℓ(S, ν)),

where the xi shift ℓ by 1 and preserve weights, and the yi preserve ℓ and shift
weights by −2. As ν varies, these C[x⃗, y⃗]-modules can be packaged together into a
bigraded (C[x⃗, y⃗]×CSn)-module:

C[x⃗, y⃗]×CSn ↷ Q̃x⃗,y⃗
S .

The map Ψ extends by linearity to a functor from such bigraded modules to triply-
graded C[x⃗, y⃗]-modules. Abusing notation, we again write Ψ to denote this functor.
We can now state the following refinement of Conjecture 4, with more explicit
details left to Section 5.

Conjecture 11 (Enhanced KhR-vs-Quot). In the setup above, the y-ified KhR
homology of Lf is isomorphic as a triply-graded C[x⃗, y⃗]-module to Ψ(Q̃x⃗,y⃗

S ) after an
appropriate regrading.

1.8. In Section 8, we review and compare various filtrations on the Borel–Moore
homology HBM

∗ (P/Λ). In particular, we establish a result needed in proof (B)
of case (1) of Theorem 8, and describe one more application of the Hilb-vs-Quot
Conjecture.

By taking unions of the strata Pc/Λ, we produce a filtration of P/Λ by closed
subvarieties. We show that this filtration almost matches that introduced by Hikita
on the affine Springer fiber in [Hi], but not quite: They differ by an involution that,
at the combinatorial level, appeared in [GM14], and at the Lie-theoretic level,
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is induced by an involution of SLn. Crucially, the involution preserves enough
structure for us to match FPn,d with Hikita’s symmetric function. We write q≤∗

for the filtration induced by c on the Borel–Moore homology of P/Λ.
At the same time, Maulik–Yun constructed a filtration p≤∗ on the cohomology

of P/Λ, by embedding a global analogue of P within a versal family and using the
decomposition theorem from the theory of perverse sheaves. They proved a formula
relating QR to p≤∗H∗(P/Λ) [MY], whose global version was also obtained in [MS].
The global version of p≤∗, under the name perverse filtration, appears in geometric
representation theory and nonabelian Hodge theory.

The increasing filtration q≤∗ on HBM
∗ (P/Λ) defines an decreasing filtration q≥∗

on H∗(P/Λ). Conjecture 1 would imply that grp
∗ and gr∗

q agree up to a shift by the
weight degree, corresponding precisely to the substitution needed to match QR and
QS . It is natural to make the following stronger conjecture, which also extends a
conjecture in unpublished notes of Z. Yun beyond the unibranch case.

Conjecture 12. H2k(P/Λ) = p≤j+k H2k(P/Λ) ⊕ q>j H2k(P/Λ) for all j, k, and
the cohomology of P/Λ vanishes in odd degrees.

This would provide a purely elementary and local definition of the perverse
filtration, avoiding either the machinery of constructible derived categories or the
need to embed the singularity within a family of global curves.

1.9. Acknowledgments. We are grateful to Francesca Carocci, Eugene Gorsky,
Andy Wilson, and Zhiwei Yun for helpful discussions about [T], [GMV20], [W], and
[C], respectively. During part of the preparation of this work, the second author
was supported by an NSF Mathematical Sciences Research Fellowship, Award DMS-
2002238.

2. Quot and Picard Schemes

2.1. The main goal of this section is to prove Theorem 3. We keep the definitions
of R, S, K, Quotℓ(E), b from the introduction.

2.2. Since the compactified Picard scheme is less well-known, we review its formal
definition in [MY, §3.10]. Let mR be the maximal ideal of R, and for any R-module
E, let (−) ⊗̂ E be the tensor product with E completed in the mR-adic topology
on E. Let P† be the functor from C-algebras to sets defined by

P†(A) =

 (A ⊗̂ R)-submodules
M ⊆ A ⊗̂ K

∣∣∣∣∣∣∣
∃ i such that A ⊗̂ miR ⊆M ⊆ A ⊗̂ m−i

R

and (A ⊗̂ m−i
R )/M is locally free over A

of finite rank


for any C-algebra A. An argument in [Gö, §2] shows that P† is representable by
an ind-scheme. Let P ⊆ P† be the underlying reduced ind-scheme. Taking A = C
recovers

P(C) = P†(C) = {finitely-generated A-submodules M ⊆ K | KM = K},

as in the introduction.
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Remark 13. Even though P†,P have the same C-points, it is only P that forms
a scheme locally of finite type. For instance, if R = C[[x]], then P† ≃ xZ × Pnil

† ,
where Pnil

† (A) parametrizes Laurent tails in x where each coefficient is a nilpotent
element of A; by contrast, P ≃ xZ.

2.3. For any integer c, let Pc ⊆ P be the sub-ind-scheme defined by

Pc(A) = {M ∈ P(A) | (SM)/M is locally free over A of rank c}.

Proposition 14. If M ∈ P†(A), then (SM)/M is locally free over A of rank at
most δ := dimC(S/R).

Proof. Observe that (S ⊗RM)/M is free over A of rank δ because

(S ⊗RM)/M ≃ ((A ⊗̂ S)⊗
A⊗̂RM)/M ≃ (A ⊗̂ S)/(A ⊗̂ R).

Hence it suffices to show that (SM)/M is a direct summand of (S⊗RM)/M as an
A-module.

Let s1, . . . , sδ be a non-redundant (full) set of coset representatives for R in S.
Then SM =

∑
j (sj +R)M =

∑
j sjM , so we can pick some subset J ⊆ {1, . . . , δ},

and mj ∈ M for j ∈ J , such that {sjmj}j∈J is a non-redundant set of coset
representatives for M in SM . The A-linear map (SM)/M → (S ⊗R M)/M that
sends sjmj +M 7→ sj ⊗mj + 1⊗M is an A-linear section of the natural surjective
map (S ⊗RM)/M → (SM)/M , as desired. □

Corollary 15. P is the union of the locally closed sub-ind-schemes Pc for 0 ≤ c ≤
δ. In fact, the locally closed subsets Pc form a stratification of P.

Proof. It remains to explain why the Pc are locally closed: This follows from the
upper semicontinuity of rank. □

2.4. Recall that we fix once and for all a uniformization S
∼−→
∏b
i=1 C[[ϖi]], and

set Λ = {ϖx⃗ | x⃗ ∈ Zb}, where ϖx⃗ = ϖx1
1 · · ·ϖ

xb

b . The group Λ acts on P by scaling.
Adapting the proof of [KL, Cor. 1], one can check that P/Λ is a projective variety.
For all c, we have

(M, x⃗) ∈ Pc × Zb =⇒ ϖx⃗M ∈ Pc,

which lets us form the locally-closed subvariety Pc/Λ ⊆ P/Λ.
For any R-submodule E ⊆ K, there is a tautological map Quotℓ(E)→ P†. Since

Quotℓ(E) is reduced, the map factors through P. It identifies Quotℓ(E) with the
subscheme of P whose A-points are modules M ⊆ A ⊗̂ E such that (A ⊗̂ E)/M is
locally free over A of rank ℓ.

As in the introduction, set Quot∗(E) =
∐
ℓQuotℓ(E) and Λ≥0 = {ϖx⃗ | x⃗ ∈

Zb≥0}. For general E, the subschemes Quotℓ(E) form the connected components
of Quot∗(E). Taking E = S, we find that the free action of Λ on P by scaling
restricts to a free action of Λ≥0 on Quot∗(S). For all ℓ, we have

(M, x⃗) ∈ Quotℓ(S)× Zb≥0 =⇒ ϖx⃗M ∈ Quotℓ+sum(x⃗)(S),(2.1)

where sum(x⃗) = e1 + · · ·+ eb.
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Lemma 16. Let D ⊆ Quot∗(S) be the subscheme defined by

D(A) = {M ⊆ A ⊗̂ S |M ∩ (A ⊗̂ S)× ̸= ∅}.

Then D is a fundamental domain for both the Λ-action on P and the Λ≥0-action
on Quot∗(S).

Proof. If u = u(ϖ1, . . . , ϖb) belongs to (A ⊗̂ S)×, then the constant term of u must
belong to A×. We deduce that if M ∈ D(A), then ϖx⃗M ∈ D(A) occurs only when
x⃗ is the zero vector. Therefore D is irredundant under the action of Λ on P.

It remains to show that every element M ∈ P(A), resp. M ∈ Quot∗(S)(A),
takes the form ϖx⃗M ′ for some M ′ ∈ D(A) and x⃗ ∈ Zb, resp. x⃗ ∈ Zb≥0. Observe
that KM = A ⊗̂ K, because once we pick i ≥ 0 such that M ⊇ A ⊗̂ miR, we
obtain KM ⊇ A ⊗̂ KmiR = A ⊗̂ K. Therefore, KM ∋ 1, which means we can
find some u ∈ (A ⊗̂ K)× and m ∈ M such that um = 1. This in turn means
m = u−1 ∈M ∩ (A ⊗̂ K)× =

∏b
i=1 A((ϖi))×.

In the case of Quot∗(S), we conclude as follows: Since m ∈ A ⊗̂ S =
∏b
i=1 A[[ϖi]]

as well, we get m = ϖx⃗m′ for some x⃗ ∈ Zb≥0 and m′ ∈ (A ⊗̂ S)× by factoring out
the largest powers of the uniformizers ϖi from m.

In the case of P, we conclude as follows: Write m = (mi)bi=1 with mi ∈ A((ϖi))×.
The fact that P is the underlying reduced ind-scheme of P† means that we can
assume, by reduction to the b = 1 case in Remark 13, that for all i, the coefficient
of the lowest-degree term of mi is a unit, not a nilpotent element, of A. Now we
get m = ϖx⃗m′ for some x⃗ ∈ Zb and m′ ∈ (A ⊗̂ S)× by factoring, as before. □

Lemma 17. For any C-algebra A and M ∈ Quot∗(S)(A), we have

M ∈ D(A) (1)⇐⇒ SM = A ⊗̂ S (2)⇐⇒ rkA((SM)/M) = rkA((A ⊗̂ S)/M).

In particular, D(C) =
∐
ℓ{M ∈ Quotℓ(S)(C) | c(M) = ℓ}.

Proof. Equivalence (2) holds because SM ⊆ A ⊗̂ S. As for equivalence (1),

SM = A ⊗̂ S ⇐⇒ SM ∋ 1

⇐⇒ sm = 1 for some s ∈ S and m ∈M

⇐⇒ s′m = 1 for some s′ ∈ (A ⊗̂ S)× and m ∈M

⇐⇒ M ∈ D(A). □

2.5. Using the Weierstrass preparation theorem, we now fix an isomorphism

R ≃ C[[x, y]]/(f)

such that Spec(R)→ Spec(C[[x]]) is a generically separable cover of degree n, fully
ramified at (x, y) = (0, 0). More explicitly, we may assume that f(x, y) is a square-
free polynomial of the form f(x, y) = yn +

∑n
i=1 ai(x)yn−i for some ai(x) ∈ C[[x]]

with ai(0) = 0 for all i.
For any C-algebra A and M ∈ P(A), we write M̄ = M/xM , as in the introduc-

tion. We define a y-stable partial flag on M̄ to be an increasing sequence of A[y]-
submodules F = (0 ⊆ M̄0 ⊊ M̄1 ⊊ · · · ⊊ M̄k = M̄) such that grFi (M̄) = M̄ i/M̄ i−1
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is locally free over A for all i. The parabolic type of F is the integer composition
ν of n in which νi = rkA(grFi (M̄)). For any such composition ν, let P(ν) be the
ind-scheme defined by

P(ν)(A) =
{

(M,F )

∣∣∣∣∣ M ∈ P(ν)(A),
F is a y-stable partial flag on M̄ of type ν

}

We define Pc(ν), Quotℓ(E, ν), and D(ν) analogously. Now, Corollary 15 and Lem-
mas 16–17 automatically imply analogues in which P(ν), Pc(ν), Quotℓ(S, ν), D(ν)
replace P, Pc, Quotℓ(S), D.

2.6. Proof of Theorem 3. Recall that we want to show

Qmot
S,ν (q) = 1

(1− q)b Pmot
ν (q), where

{
Qmot
S,ν (q) =

∑
ℓ qℓ[Quotℓ(S, ν)],

Pmot
ν (q) =

∑
c qc[Pc(ν)/Λ].

Lemma 16 and (2.1) together imply that

Quotℓ(S, ν) =
∐

(c,x⃗)∈Z≥0×Zb
≥0

c+sum(x⃗)=ℓ

ϖx⃗ · (D ∩Quotc(S, ν)).

So in the Grothendieck group of Schfin
C , we have

Qmot
S,ν (q) = 1

(1− q)b
∑
c

qc[D ∩Quotc(S, ν)].

But Lemma 17 implies that

D(ν) ∩Quotc(S, ν) = D(ν) ∩ Pc(ν)

for all c. So in the Grothendieck group, we also have

Pmot
ν (q) =

∑
c

qc[D ∩ Pc(ν)] =
∑
c

qc[D ∩Quotc(S, ν)],

as desired.

Remark 18. Zhiwei Yun has pointed out to us that Theorem 3 extends beyond the
planar case to any curve germ where both sides are well-defined, i.e., where the
functors P/Λ and Quotℓ(S) for ℓ ≥ 0 are all schemes of finite type.

However, Conjecture 1 fails for non-planar germs. If R = C[[x, y, z]]/(xy, xz, yz),
the union of the coordinate axes in xyz-space, then S = C[[x]]×C[[y]]×C[[z]]. Using
[BRV, Prop. 6.1], we find that

QR(q, t) = 1
(1− q)3 (1− 2q + q2(t4 + t2 + 1) + q3(t4 − 2t2)).

By contrast, [Y, Ex. 2.7–2.8], [Ka], and Theorem 3 together give

QS(q, q 1
2 t) = 1

(1− q)3 (1− 2q + q2(t2 + 1) + q3(t4 − 2t2) + q4t4).

It would be interesting to understand why the difference remains small.
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2.7. Cherednik’s Conjecture. Below, we explain the sense in which Conjecture 1
and Theorem 3 together imply Conjecture 4.5 of [C].

First, as we did with P, we review the formal definition of J . For any integer e,
let Pe ⊆ P be the sub-ind-scheme defined by

Pe(A) = {M ∈ P(A) | e = rkA((A ⊗̂ m−i
R )/M)− rkC(m−i

R /R) for all i≫ 0}

for any C-algebra A. The ind-schemes Pe are precisely the connected components
of P. By definition, J = P0.

The discussion in the introduction explained how Conjecture 1 and Theorem 3
would together imply (1.2). To see how (1.2) implies (1.1), we must explain why, in
the unibranch case, J = P/Λ. Indeed, b = 1 implies that S ≃ C[[ϖ]] and Λ = ϖZ,
which means Λ acts simply transitively on the connected components Pe.

Next, we explain how (1.1) is related to a point-counting analogue. Following
Katz [Ka], recall that a class [X] ∈ K0(Schfin

C ) is strongly polynomial count iff,
for some finitely-generated subring B ⊆ C, spreading out of [X] to a class [X ] ∈
K0(Schfin

B ), and polynomial p(X, t) ∈ Z[t], we have |XF(F)| = p(X, q) for any finite
field F = Fq and ring morphism B → F. In this case, Katz shows that p(X, t2) is
precisely the virtual weight polynomial χ(X, t). We deduce that if [Quotℓ(R)] and
[J c] are strongly polynomial count for all ℓ and c, then (1.1) is equivalent to the
statement that ∑

ℓ

tℓ|Quotℓ(R)F(F)||q→qt
?= 1

1− t
∑
c

tc|(J c)F(F)|(2.2)

for infinitely many (equivalently, all) finite fields F = Fq, where we have abused
notation by conflating Quotℓ(R) and J c with their spreadings out.

Lastly, we relate (2.2) to [C, Conj. 4.5]. In loc. cit., Cherednik’s R and O = C[[z]]
are the respective analogues of our R and S = C[[ϖ]] over F. In particular, if they
arise from R and S by spreading out, then:

• His JR(F) is our
∐
cϖ

−c(J c)F(F). In fact, this is also DF(F).
• His H0

mot(q, t) is our
∑
c t
c|(J c)F(F)|.

• His Z(q, t) is our
∑
ℓ t
ℓ|Quotℓ(R)F(F)|.

In this case, (2.2) coincides with [C, Conj. 4.5].

2.8. Below, we illustrate Conjecture 2 and Theorem 3 in examples where n = 2
and ν is trivial.

Example 19. Take f(x, y) = y2 − x2. Setting ϖ = y + x and ϱ = y − x lets us
write R = C[[ϖ, ϱ]]/(ϖϱ) and S = C[[ϖ]]×C[[ϱ]].

For all integers i, j and λ ∈ C×, consider the R-modules Mi,j,λ = ⟨(ϖi, λϱj)⟩
and Ni,j = ⟨(ϖi, 0), (0, ϱj)⟩. We compute that Mi,j,λ → Ni,j+1, resp. Ni+1,j , as
λ→ 0, resp. ∞, and that

Pe(C) = {Mi,j,λ | i+ j = e} ⊔ {Ni,j | i+ j = e+ 1}.

With more work, one can check that Pe is a Z-indexed chain of projective lines inter-
secting transversely, in which the sets {Mi,j,λ} for various i, j correspond to copies
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of Gm and the points Ni,j are the points of intersection. Embedding Quotℓ(R) and
Quotℓ(S) into P, we compute

Quot0(R)(C) = {M0,0},

Quotℓ(R)(C) =
{
Mi,j,λ

∣∣∣∣∣ i+ j = ℓ,

i, j ≥ 1

}
⊔

{
Ni,j

∣∣∣∣∣ i+ j = ℓ+ 1,
i, j ≥ 1

}
for ℓ ≥ 1,

Quotℓ(S)(C) =
{
Mi,j,λ

∣∣∣∣∣ i+ j = ℓ− 1,
i, j ≥ 0

}
⊔

{
Ni,j

∣∣∣∣∣ i+ j = ℓ,

i, j ≥ 0

}
for ℓ ≥ 0.

We deduce that

Qmot
R,(2)(q) :=

∑
ℓ

qℓ[Quotℓ(R)] = 1 +
∑
ℓ≥1

qℓ(ℓ+ (ℓ− 1)[Gm]),

Qmot
S,(2)(q) :=

∑
ℓ

qℓ[Quotℓ(S)] =
∑
ℓ≥0

qℓ(ℓ+ 1 + ℓ[Gm]).

So Conjecture 1 amounts to

1 +
∑
ℓ≥1

qℓ(ℓ+ (ℓ− 1)(t2 − 1)) =
∑
ℓ≥0

qℓ(ℓ+ 1 + ℓ(qt2 − 1)).

Meanwhile, we compute D = {N0,0}⊔{M0,0,λ}, where c(N0,0) = 0 and c(M0,0,λ) =
1 for all λ. We deduce that

Pmot
(2) (q) :=

∑
c

qc[Pc] = 1 + q[Gm].

So for ν = (2), Theorem 3 amounts to

1 +
∑
ℓ≥1

qℓ(ℓ+ 1 + ℓ[Gm]) = 1 + q[Gm]
(1− q)2 .

Example 20. Take f(x, y) = y2 − x3. Setting x = ϖ2 and y = ϖ3 lets us write
R = C[[ϖ2, ϖ3]] and S = C[[ϖ]].

For all integers i and λ ∈ C, consider the R-modules Mi,λ = ⟨ϖi + λϖi+1⟩ and
Ni = ⟨ϖi, ϖi+1⟩. We compute that Md−1,λ → Nd as λ→∞, and that

Pe(C) = {Md−1,λ | λ ∈ C} ⊔ {Nd}.

With more work, one can check that Pe is a copy of the projective line in which
{Me−1,λ}λ corresponds to A1 and and Ne corresponds to∞. Embedding Quotℓ(R)
and Quotℓ(S) into P, we compute

Quot0(R)(C) = {M0},

Quot1(R)(C) = {N2},

Quotℓ(R)(C) = {Mℓ,λ} ⊔ {Nℓ+1} for ℓ ≥ 2,

Quot0(S)(C) = {N0},

Quotℓ(S)(C) = {Mℓ−1,λ} ⊔ {Nℓ} for ℓ ≥ 1.
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We deduce that

Qmot
R,(2)(q) :=

∑
ℓ

qℓ[Quotℓ(R)] = 1 + q +
∑
ℓ≥2

qℓ[P1],

Qmot
S,(2)(q) :=

∑
ℓ

qℓ[Quotℓ(S)] = 1 +
∑
ℓ≥1

qℓ[P1].

So Conjecture 1 amounts to

1 + q +
∑
ℓ≥2

qℓ(t2 + 1) = 1 +
∑
ℓ≥1

qℓ(qt2 + 1).

Meanwhile, we compute D = {N0} ⊔ {M0,λ}, where c(N0) = 0 and c(M0,λ) = 1 for
all λ. We deduce that

Pmot
(2) (q) :=

∑
c

qc[Pc] = 1 + q[A1].

So for ν = (2), Theorem 3 amounts to

1 +
∑
ℓ≥1

qℓ[P1] = 1 + q[A1]
1− q .

3. Springer Actions

3.1. In this section, we explain how the collection of polynomials {χ(Xν , t)}ν ,
where Xν is one of P(ν)/Λ, Pc(ν)/Λ, Quotℓ(E, ν), etc., can be packaged into a
single symmetric function. We also introduce variants of these schemes that we will
need in Sections 4–6.

Throughout this section, we use the formalism of quotient stacks in the fpqc
topology, but keep our exposition self-contained beyond the definition of a stack
via its functor of points.

3.2. Fix an integer n > 0. Let N be the conical variety of nilpotent matrices
in gln. By definition, [N/GLn] is the algebraic stack whose A-points form the
groupoid of pairs (V, θ), where V is a locally-free A-module of rank n and θ is a
nilpotent endomorphism of V , and an isomorphism of pairs (V, θ) ∼−→ (V ′, θ′) is an
isomorphism of A-modules V ∼−→ V ′ that transports θ onto θ′.

Recall that the GLn-orbits on N are indexed by the integer partitions of n via
Jordan type. Let Oλ ⊆ N be the orbit indexed by λ ⊢ n.

For each integer composition ν of n, let Bν be the flag variety of parabolic type
ν, whose C-points parametrize partial flags of type ν on Cn. Let

Ñν = {(θ, F ) ∈ N × Bν | F is θ-stable}.

The A-points of [Ñν/GLn] form the groupoid of tuples (V, θ, F ), where (V, θ) ∈
[N/GLn](A) and F is an ν-stable partial flag of type ν on V in the sense of §3.1.
Let π = πν : [Ñν/GLn] → [N/GLn] be the forgetful map. If λ is the underlying
partition of ν, and λt is the transpose of λ, then the image of πν is [Oλt/GLn], the
stack quotient of the orbit closure Oλt . In particular, B(1n) is the full flag variety
and π(1n) is a stacky version of the Springer resolution of N .
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Let X be any stack over C and p : X → [N/GLn] a morphism. For each ν, let
Xν , πX = πX,ν , and pν be defined by the cartesian square:

(3.1)

Xν [Ñν/GLn]

X [N/GLn]

pν

πX π

p

In particular,

X = P and p(M) = (M̄, y) =⇒ Xν = P(ν).

Analogous statements hold for Pc, Quotℓ(E), and D(ν), as well as the quotients
P/Λ, Pc/Λ once we observe that the map p for X = P is invariant under Λ.

3.3. Now suppose that X is a scheme of finite type. In this case we write H∗
c(X)

to denote the compactly-supported cohomology of X with complex coefficients, and
w≤∗ to denote its weight filtration. The virtual weight polynomial of X is

χ(X, t) =
∑
i,j

(−1)itj grw
j Hi

c(X)

by definition.
For any finite group G, we write K0(G) to denote its representation ring. When

there is a weight-preserving action of G on H∗
c(X), we may regard χ(X, t) as an

element of Z[t]⊗K0(G).
Let K be a field. As in the introduction, let Symn

K = Symn
K[X⃗] be the vector

space of degree-n symmetric functions in a family of variables X⃗ = {Xi}∞
i=1 over

K. Let {sλ}λ⊢n, resp. {hµ}µ⊢n, be the basis of Schur functions, resp. complete
homogeneous symmetric functions, in Symn

K. Let ⟨−,−⟩ be the K-linear Hall inner
product on Symn

K defined by requiring the Schur functions to be orthonormal in
⟨−,−⟩. When K ⊇ Q, there is a K-linear isomorphism

F : K⊗K0(Sn) ∼−→ Symn
K,

known as the Frobenius character, which sends the irreducible character of Sn
indexed by λ to the Schur function sλ. We can now state the following fact, well-
known to representation theorists:

Proposition 21. Suppose that X is of finite type. Then there is a weight-preserving
action of Sn on X(1n) such that H∗

c(Xν) = H∗
c(X(1n))Sν for all ν, where Sν ⊆ Sn

is the Young subgroup of type ν. In particular,

χ(Xν , t) = ⟨hµ,Fχ(X(1n), t)⟩,

where µ is the integer partition obtained by sorting ν. Moreover, as we run over ν,
these identities uniquely determine χ(X(1n), t) as an element of K⊗K0(Sn).

In what follows, we freely use functors between bounded derived categories of
mixed complexes of sheaves with constructible cohomology, where “mixed” means
we either use mixed Hodge modules, or spread out and reduce to a finite field to
use mixed complexes of ℓ-adic sheaves, fixing an isomorphism Q̄ℓ ≃ C.
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Proof. For all ν, let Sν = πν,∗C and SX,ν = πX,ν,∗C.
Note that S(1n) is the GLn-equivariant Springer sheaf. By the work of Lusztig et

al. [Tr, Ch. 4], the underived endomorphism ring End(S(1n)) is pure of weight 0 and
isomorphic to CSn. This defines an Sn-action on S(1n). Since (3.1) is a cartesian
square, base change lifts this action to SX,(1n) ≃ p∗S(1n). Taking hypercohomology,
we get an action of Sn on H∗

c(X(1n)). Since End(S(1n)) is concentrated in weight
zero, the last action preserves weights.

For general ν, we have Sν ≃ SSν

(1n) by [BM, §2.7]. So again by the cartesian
square (3.1), SX,ν ≃ SSν

X,(1n). Therefore

H∗
c(X,SX,ν) ≃ H∗

c(X,S
Sν

X,(1n)) ≃ H∗
c(X,SX,(1n))Sν ,

where the second step uses the fact that the inclusion SSν

X,(1n) ⊆ SX,(1n) is split (say,
via the isotypic decomposition of SX,(1n)). Above, the first expression is H∗

c(Xν)
and the last expression is H∗

c(X(1n))Sν .
The statements about the Hall inner product and uniqueness follow from the

fact that F(IndSn

Sν
(1)) = hµ, Frobenius reciprocity, and the fact that the hµ span

Symn
K. □

Remark 22. We write HBM
∗ (X) to denote the Borel–Moore homology of X with

complex coefficients, defined via the hypercohomology of the dualizing sheaf on X.
Verdier duality implies that Hi

c(X) and HBM
−i (X) are dual vector spaces for all i.

Therefore, Proposition 21 also implies that HBM
∗ (Xν) = HBM

∗ (X(1n))Sν
for all ν,

where (−)G denotes the coinvariants of a G-action.

3.4. For each integer r ≥ 0, let Nr-len ⊆ N be the union of the orbits indexed
by partitions of length r, i.e., the subvariety of nilpotent matrices θ such that
dim ker(θ) = r. Let Xr-len = p−1(Nr-len) ⊆ X.

As in the introduction, let Ψ(−, a) : Symn
K → K[a] be the map

Ψ(−, a) = (1 + a)
∑

0≤k≤n−1
ak⟨s(n−k,1k),−⟩.

The following statement is a reformulation of [GORS, Lem. 9.3–9.4]:

Lemma 23. We have

Ψ(Fχ(X(1n), t), a) =
∑

0≤r≤n

χ(Xr-len, t)
∏

0≤j≤r−1
(1 + at2j)

in Q(t)[a].

3.5. For each integer m ≥ 0, let Pn−m,m ⊆ GLn be a parabolic subgroup whose
Levi quotient is isomorphic to GLn−m×GLm: for instance, the appropriate sub-
group of block-upper-triangular matrices. Let Xm-nest and ρX = ρX,m be defined
by the cartesian square:

Xm-nest [pt/Pn−m,m]

X [N/GLn] [pt/GLn]

ρX

p
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In the tautological case where X = [N/GLn], we can check that Xm-nest is the stack
whose A-points form the groupoid of tuples (V, θ, V ′), where (V, θ) ∈ [N/GLn](A)
and V ′ is an A-submodule of ker(θ) such that ker(θ)/V ′ is locally free over A of
rank m.

For all r, the map ρ−1
X,m(Xr-len)→ Xr-len is an fpqc-locally trivial fibration whose

fiber is the Grassmannian of codimension-m subspaces of Cr. The virtual weight
polynomials of Grassmannians can be computed via their Schubert stratifications,
which show them to be q-binomial coefficients for q = t2. Generalizing the argument
in [ORS,GORS], we deduce:

Lemma 24. We have∑
0≤m≤n

amtm(m−1)χ(Xm-nest , t) =
∑

0≤r≤n

χ(Xr-len, t)
∏

0≤j≤r−1
(1 + at2j)

in Q(t)[a].

3.6. We now return to the choices for Xν that we need in the rest of the paper.
Taking Xν = Pc(ν) for varying c, we set

FP(q, t) =
∑
c

qcFχ(Pc((1n)), t).

Fixing an R-module E and taking Xν = Quotℓ(E, ν) for varying ℓ, we set

FQE(q, t) =
∑
ℓ

qℓFχ(Quotℓ(E, (1n)), t).

Now Conjecture 2 can be rewritten as the single identity:

FQR(q, t) ?= FQS(q, q 1
2 t).(3.2)

And Theorem 3 can be rewritten as the single identity:

FQS(q, t) = 1
(1− q)bFP(q, t).(3.3)

Example 25. Take f(x, y) = y2 − x3. In the notation of Example 20, we find
that (M̄d−1,λ, y) has Jordan type (2), while (N̄d, y) has Jordan type (12). From the
Springer theory of GL2 or direct calculation, we deduce:

FP(q, t) = (1 + qt2)s(2) + t2s(12),

FQR(q, t) =
(

1 + q + q2(t2 + 1)
1− q

)
s(2) + qt2

1− q s(12),

FQS(q, t) =
(

1 + q(t2 + 1)
1− q

)
s(2) + t2

1− q s(12).

Now we can verify (3.2) and (3.3) directly.

Finally, let us comment on the interpretation of Xr-len and Xm-nest in the setting
where Xν = Quotℓ(E, ν):

(1) Xr-len is the locally-closed subscheme of X = Quotℓ(E) whose A-points
are those M ∈ X(A) such that M/(xM + yM) ≃ M̄/yM̄ ≃ ker(y | M̄) is
locally free over A of rank r.
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(2) Xm-nest is the scheme of finite type whose A-points parametrize pairs
(M,N), where M ∈ Quotℓ(E)(A) and N ∈ Quotℓ+m(E)(A) and

xM + yM ⊆ N ⊆M.

Note that these containments are together equivalent to requiring that
N/(xN + yN) be a submodule of M/(xM + yM).

We henceforth write Quotℓr-len(E) and Quotℓm-nest(E) in place of Quotℓ(E)r-len and
Quotℓ(E)m-nest , respectively.

In [OS,ORS], the schemes Quotℓm-nest(R) were called the nested Hilbert schemes
of Spec(R). Lemmas 23–24 imply:

Corollary 26. We have

Ψ(FQE(q, t), a) =
∑
ℓ,m

qℓamtm(m−1)χ(Quotℓm-nest(E), t)

for any R-module E.

4. Torus Knots

4.1. In this section, we give two independent proofs of case (1) of Theorem 8,
stating that

X̄n,d(a, q, t2) = Ψ(FQS,n,d(q, t), a) for d coprime to n.

Recall that here, the (n, d) torus link has only one component: i.e., it is a knot.
The structure of our two proofs and their relation to one another are summarized

by this commutative diagram:

(4.1)

EHA Hikita FPn,d(q, t) FQS,n,d(q, t)

Cogen X̄n,d(a, q, t2) Gen

[M21, W]

[M21] [Hi]

[HM] [M22]

Cor 26,

Prop 30

Thm 3

The horizontal arrows indicate identities; the vertical arrows indicate specializa-
tions. The dotted arrows indicate new bridges. Our first proof, labeled (A) in the
introduction, follows the lower-right part of the rectangle; our second proof, labeled
(B), follows the part on the left.

4.2. For the rest of this section, fix an integer d > 0 coprime to n. Let R =
C[[x, y]]/(yn − xd). Setting x = ϖn and y = ϖd lets us write R = C[[ϖn, ϖd]] and
S = C[[ϖ]] and K = C((ϖ)), generalizing Example 20. Note that here,

δ = 1
2(n− 1)(d− 1)

by a classical formula of Sylvester, and b = 1.
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4.3. Let Gm act on Spec(R) according to t · (x, y) = (tnx, tdy), and on Spec(K)
according to t · ϖ = tϖ. These actions are compatible. In particular, for any
R-submodule E ⊆ K and integer ℓ ≥ 0, they induce a Gm-action on Quotℓ(E):
If A is a C-algebra and t ∈ A× = Gm(A) and M ⊆ A ⊗̂ E is an (A ⊗̂ R)-
module corresponding to an A-point of Quotℓ(E), then the rescaling tM remains
an (A ⊗̂ R)-module corresponding to an A-point of Quotℓ(E).

We use the Gm-action to skeletonize Quotℓ(E) into combinatorics. For any
finitely-generated R-submodule E ⊆ K such that KE = K, let

Γ(E) = {valϖ(s) | s ∈ E \ {0}},

I(E) = {∆ ⊆ Γ(E) | ∆ + n ⊆ ∆, ∆ + d ⊆ ∆},

Iℓ(E) = {∆ ∈ I(E) | |Γ(E) \∆| = ℓ}.

Note that Γ(R) = nZ≥0 + dZ≥0 and Γ(S) = Z≥0.

Remark 27. In general, additive submonoids of Z≥0 are also known as numerical
semigroups. A subset of Z stable under addition with a numerical semigroup Γ
is also known a Γ-module. Thus Γ(R) is a numerical semigroup, Γ(E) is a Γ(R)-
module, and I(E) is the set of Γ(R)-submodules of Γ(E).

For all ∆ ∈ I(E), let

Genn(∆) = {k ∈ ∆ | k − n /∈ ∆},

Gen(∆) = {k ∈ ∆ | k − n /∈ ∆, k − d /∈ ∆},

following [GMV20]. The following lemma can be proved by arguments completely
analogous to those of Piontkowski in [P, §3], just taking Quotℓ(E) in place of J .

Lemma 28. In the setup above, the Gm-action on Quotℓ(E) has isolated fixed
points. We have a bijection from Iℓ(E) to the set of fixed C-points, given by

Iℓ(E) ∼−→ Quotℓ(E)Gm ,

∆ 7→ M∆ := R⟨tk | k ∈ ∆⟩.

Moreover, Quotℓ(E) is partitioned by the subschemes

A∆ = {M ∈ Quotℓ(E) | limt→0 (t ·M) = M∆},

and each A∆ forms an affine space.

4.4. Recall the nested Quot schemes Quotℓm-nest(E) that we reviewed at the end
of Section 3. The diagonal Gm-action on Quotℓ(E) ×Quotℓ+m(E) restricts to an
action on Quotℓm-nest(E). Let

Iℓm-nest(E) = {(∆,∆′) ∈ Iℓ(E)× Iℓ+m(E) | ∆ ⊇ ∆′ ⊇ ∆ + ΓE,>0}.

The following lemma is proved in [ORS, §3.3] for E = R, and the proof for any
other E is analogous.
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Lemma 29. The Gm-action on Quotℓm-nest(E) has isolated fixed points. Writing
ΓE,>0 = Γ(E) \ {0}, we have a bijection

Iℓm-nest(E) ∼−→ Quotℓm-nest(E)Gm ,

(∆,∆′) 7→ (M∆,M∆′).

Moreover, Quotℓm-nest(E) is partitioned by the subschemes

A∆,∆′ = {(M,M ′) ∈ Quotℓm-nest(E) | limt→0(M,M ′) = (M∆,M∆′},

and each A∆,∆′ forms an affine space.

4.5. Given ∆ ∈ I(E), let

ξn(∆, k) = {j ∈ Genn(∆) | k − d < j < k} for all k ∈ Gen(∆),

ΠGen
n (∆, a, t) =

∏
k∈Gen(∆)

(1 + at|ξn(∆,k)|).

For E = R, the following proposition is [ORS, Cor. A.5]. To translate into the
notation of [ORS, §A.1], note that our a, t correspond to their a2t, t2, and hence,
our |ξn(∆, k)| corresponds to their βk(∆) − 1. In the proof below, we merely list
the changes needed to extend the proof to any E ∈ P(C).

Proposition 30. In the setup above,∑
0≤m≤n

amtm(m−1)χ(Quotℓm-nest(E), t) =
∑

∆∈Iℓ(E)

t2 dim(A∆)ΠGen
n (∆, a, t2).(4.2)

Proof. Theorems 13 and 14 of [ORS] give formulas for dim(A∆) and dim(A∆,∆′)
in the E = R case. For general E, analogous proofs give the dimension formulas

dim(A∆) =
∑
i

(|Γ(E)>γi
\∆| − |Γ(E)>σi

\∆|),(4.3)

dim(A∆,∆′) =
∑
i

γi /∈∆′

|Γ(E)>γi
\∆|+

∑
i

γi /∈∆′

|Γ(E)>γi
\∆′|(4.4)

−
∑
i

|Γ(E)>σi
\∆′|

for any ∆ ∈ Iℓ(E) with generators γ1, . . . γr, syzygies σ1, . . . , σr, and subset ∆′ ∈
Iℓ+m(E) such that (∆,∆′) ∈ Iℓm-nest(E), where Γ(E)>k = Γ(E) ∩ Z>k.

Next, Lemma A.4 of ibid. shows that in the E = R case, if k ∈ Gen(∆), then

|ξn(∆, k)| = |{i | γi < k}| − |{i | σi < k}|,(4.5)

with the same notation for generators and syzygies as before. Lemma A.1 and
Theorem A.2 of ibid. show that (4.3), (4.4), and (4.5) together imply∑

0≤m≤n

amtm(m−1)
∑
∆′

(∆,∆′)∈Iℓ
m-nest(E)

t2 dim(A∆,∆′ ) = t2 dim(A∆)ΠGen
n (∆, a, t2).

The proofs of these statements for any other E are the same.
Finally, by Lemma 29, summing the left-hand side of the last identity over all

∆ ∈ Gen(E) recovers the left-hand side of (4.2). □
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4.6. Proof (A) of Case (1) of Theorem 8. We have

Ψ(FQS(q, t), a) =
∑
ℓ,m

qℓamtm(m−1)χ(Quotℓm-nest(E), t) by Corollary 26

=
∑
ℓ

qℓ
∑

∆∈Iℓ(S)

t2 dim(A∆)ΠGen
n (∆, a, t2) by Proposition 30.

By definition, if ∆ ∈ I(S), then ∆ + j ∈ I(S) for all nonnegative integers j. We
observe that

∆ ∈ Iℓ(S) =⇒ ∆ + j ∈ Iℓ+j(S),

k ∈ Gen(∆), resp. Genn(∆) =⇒ k + j ∈ Gen(∆ + j), resp. Genn(∆ + j),

and consequently, that:
(1) dim(A∆+j) = dim(A∆).
(2) ξn(∆ + j, k + j) = ξn(∆, k) + j for all k ∈ Gen(∆).
(3) ΠGen

n (∆ + j, a, t) = ΠGen
n (∆, a, t).

Now consider this combinatorial version of the domain D in Section 2:

Dn,d = {∆ ∈ I(S) | min(∆) = 0}.

By the observations above,∑
ℓ

qℓ
∑

∆∈Iℓ(S)

tdim(A∆)ΠGen
n (∆, a, t) = 1

1− q
∑

∆∈Dn,d

q|Z≥0\∆|tdim(A∆)ΠGen
n (∆, a, t).

It remains to match the right-hand side with the Dyck-path formula for X̄n,d for
coprime n, d conjectured in [GN] and proved in [M22].

In [GM13], Gorsky–Mazin gave a bijection from Dn,d to the set of n×d rational
Dyck paths, under which |Z≥0 \ ∆| and dim(A∆) correspond to the statistics on
Dyck paths respectively denoted area and codinv in
[GMV20]. Explicitly, form the semi-infinite grid of unit
squares in the x, y-plane whose vertices are the lattice points
with 0 ≤ x ≤ d and y ≥ 0. Label the bottom left square,
closest to the origin, with the integer −d; label the other
squares with integers that decrease by d as we go across
rows, and increase by n as we go up columns. For instance,
the grid for (n, d) = (4, 5) is shown to the right, with non-
negative labels in blue. For any ∆ ∈ Dn,d, the boundary of
the region of squares with labels in ∆ must contain a lattice
path π(∆) from (x, y) = (0, 0) to (x, y) = (d, n) that stays above the line y = d

nx,
since ∆ contains 0 and every element of ∆ is nonnegative. Gorsky–Mazin’s bijection
sends ∆ 7→ π(∆).

Remark 31. In [GM13], the set Dn,d is described as indexing the fixed points of
a Gm-action on J , rather than D. However, this indexing really factors through
the decomposition D =

∐
cϖ

−cJ c, corresponding to the fact that the elements
of Dn,d are what Gorsky–Mazin call 0-normalized modules for Γ(R). Compare to
Section 2.7, where a similar remark applies to Cherednik’s notation.
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Let π = π(∆) in what follows. Let

v∗(π) = {(x, y) ∈ π | (x− 1, y), (x, y + 1) ∈ π},

v∗(π) = {(x, y) ∈ π | (x+ 1, y), (x, y − 1) ∈ π}.

Following [M22], we refer to elements of v∗(π), resp. v∗(π), as inner vertices, resp.
outer vertices, of π. That is, inner vertices are the bottom right corners of squares
whose bottom and right edges are contained in π, while outer vertices are the top
left corners of squares whose top and left edges are contained in π. (Note that outer
vertices are called “internal vertices”(!) in [GN].)

The squares whose bottom edges are contained in π are precisely those labelled
by elements of Genn(∆). Of these, those whose right edges are also contained in π

are those labelled by elements of Gen(∆) \ {0}. Hence, there is a bijection

Gen(∆) \ {0} ∼−→ v∗(π)

sending any generator of ∆ to the bottom right corner of the square it labels.
For an arbitrary lattice point p, let ld/n(p) be the line of slope d

n through p,
and let κπ(p) be the set of horizontal unit steps of π that intersect ld/n(p) in their
interiors. The following lemma is inspired by the constructions in [GM13] and
[ORS, §A].

Lemma 32. If k ∈ Gen(∆) \ {0} labels the square with bottom right corner p ∈
v∗(π), then the map ξn(∆, k)→ κπ(p) that sends k to the bottom edge of the square
labelled k is a bijection. Thus

1
1 + aΠGen

n (∆, a, t) =
∏

p∈v∗(π)

(1 + at|κπ(p)|).

Proof. We observe that if p is the bottom right corner of a square labelled k, then
the line ld/n(p) intersects the bottom edge of a square labelled j if and only if
k − d < j < k. Indeed, this is easiest to see when p = (n, d) and k = 0, and the
general case follows from translating ld/n(n, d) onto ld/n(p). □

In our notation, the formula for X̄n,d for coprime n, d in [GN,M22] is:

X̄n,d(a, q, t) = 1
1− q

∑
n×d

Dyck paths π

qarea(π)tcodinv(π)
∏

p∈v∗(π)

(1 + at|κπ(p)|).

See the end of Appendix A for the precise matching of grading conventions. By
[GM13], we have area(π) = |Z≥0 \∆| and codinv(π) = dim(A∆). So by Lemma 32,
it remains to show:

Lemma 33. For any n× d Dyck path π as above,∏
p∈v∗(π)

(1 + at|κπ(p)|) = 1
1 + a

∏
p∈v∗(π)

(1 + at|κπ(p)|).

Proof. Since d and n are coprime, no two elements of v∗(π) ∪ v∗(π) have the same
perpendicular distance to the line l := ld/n(n, d). The one farthest from l must
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belong to v∗(π). Let p0 be this element, and let p1, p2, . . . , pm be the remaining
elements ordered by decreasing distance from l. For 1 ≤ i ≤ m, let

ϵi =


−1 (pi−1, pi) ∈ v∗(π)× v∗(π),

0 (pi−1, pi) ∈ v∗(π)× v∗(π) ∪ v∗(π)× v∗(π),
1 (pi−1, pi) ∈ v∗(π)× v∗(π).

Let τi =
∑
j≤i ϵi. Then for all i, we have τi = |κπ(pi)| ≥ 0.

If m = 0, then we are done; else, we must have τ1 = τm = 1. It follows that every
value attained by the sequence τ1, . . . , τm must occur as many times for indices i
with pi ∈ v∗(π) as for indices i with pi ∈ v∗(π) \ {p0}. □

Example 34. The figure below shows a 7 × 5 Dyck path π for which |v∗(π)| = 3
and |v∗(π)| = 4. The corresponding ∆ ∈ D7,5 yields Gen7(∆) = {0, 5, 3, 1, 6, 11, 9}
and Gen(∆) = {0, 3, 1, 9}.

In the notation of Lemma 33, (ϵi)i = (1, 1, 0, 0, 0,−1) and (τi)i = (1, 2, 2, 2, 2, 1).

Remark 35. Lemma 33 refines the last display on [M22, 60], which merely asserts
that

∑
p∈v∗(π) |κπ(p)| =

∑
p∈v∗(π) |κπ(p)|.

4.7. Proof (B) of Case (1) of Theorem 8. We will explain each arrow in the
left-hand portion of diagram (4.1).

For general f , the varieties P(ν) are isomorphic to varieties that have been well-
studied in representation theory: namely, parabolic affine Springer fibers for GLn,
where n is again the C[[x]]-rank of R = C[[x]][y]/(f). In Proposition 53, we give
the explicit isomorphisms for the case where f(x, y) = yn − xd with n, d coprime,
and show that for ν = (1n), they match the Springer actions on the cohomologies
of the two sides. Note that Hikita worked with SLn, not GLn, but we account for
this difference by passing to P0 ≃ P/Λ: See part (3) of the proposition.

For such f , both sides admit affine pavings induced by Gm-actions, analogous to
those in Lemmas 28–29. On the affine Springer fiber for ν = (1n), Hikita introduced
a q, t-symmetric function, jointly describing the dimensions of the strata and a
certain filtration of the variety by unions of strata [Hi]. We review this filtration in
Section 8.4.

Remark 36. Hikita’s symmetric function is now known as the Hikita polynomial for
(n, d). However, it was independently introduced by Armstrong at the 2012 AMS
Joint Mathematics Meetings [A].
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At the same time, there is a filtration of P((1n))/Λ by unions of the subvarieties
Pc((1n))/Λ, which we review in Section 8.2. Theorem 56 says that it differs from
Hikita’s filtration by an involution ι on his affine Springer fiber. Lemma 55(2) says
that on Borel–Moore homology, ι is Springer-equivariant and preserves weights.
We deduce that the Hikita polynomial for (n, d) is unchanged by ι, and matches
FPn,d once we invoke the duality between Borel–Moore homology and compactly-
supported cohomology. His variables t, q correspond to our variables q, t2.

The rational shuffle theorem, formulated for n, d coprime in [GN] and proved
by Mellit in [M21], matches the Hikita polynomial with an expression denoted
Qd,n ·(−1)n in [BGLX]. Here, Qd,n is an element of the elliptic Hall algebra (EHA),
and (−1)n is a vector in the Fock-space representation of the EHA on symmetric
functions. Mellit’s proof implicitly yields a recursive formula for Qd,n · (−1)n, and
hence FPn,d, in terms of the Dyck-path operators from his prior work with Carlsson
[CM18]. This recursive formula is stated explicitly in [W, Thm. 2–3].

Remark 37. The shuffle conjecture of [HHLRU], proved by Carlsson–Mellit in
[CM18], is the d = n + 1 case of the rational shuffle conjecture, except with an
expression ∇en in place of Qn+1,n · (−1)n. It turns out that these symmetric
functions coincide [BGLX, Thm. 7.4]. Haglund proved that ∇en specializes to the
Gorsky–Neguţ formula for X̄n,n+1, as a consequence of his formula for q, t-Schröder
numbers [H04]. See the version in [H16, Thm. 2].

In [HM], Hogancamp–Mellit establish a recursive formula for the unreduced
HOMFLYPT homology of the positive (n, d) torus link, for arbitrary n, d. In
[W, Cor. 1], Wilson shows that for n, d coprime, Mellit’s recursion for Qd,n · (−1)n

specializes under Ψ to Hogancamp–Mellit’s recursion for the knot homology. This
completes proof (B).

Remark 38. Gorsky–Mazin–Vazirani observed that the recursive formula of [HM]
can be written in a closed form [GMV20]. It uses the same set of semigroup modules
Dn,d as in proof (A), but replaces ΠGen

n (∆, a, t) with

ΠCogen
n (∆, b, t) =

∏
k∈Cogen(∆)

(1 + btλ(∆,k)),

where the product runs over the set of (nonnegative) cogenerators

Cogen(∆) = {k ∈ Z≥0 \∆ | k + n ∈ ∆, k + d ∈ ∆},

and for any k ∈ Cogen(∆), we set

λ(∆, k) = |{j ∈ Genn(∆) | k + n+ 1 ≤ j ≤ k + n+ d}|

= |{j ∈ Genn(∆) | k + n < j < k + n+ d}|.

This explains why, in diagram (4.1), the bottom-left corner is labeled Cogen. To
match the resulting formulas for X̄n,d, set b = aq−1.

Remark 39. It is natural to ask how much of diagram (4.1) generalizes to integers
n, d that are not coprime. We will address this question in a sequel paper. In
Section 6, where we address the d = nk case, our proof does not involve generalizing
(4.1). For now, we mention that:
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(1) The rational shuffle conjecture was generalized to arbitrary n, d > 0 in
[BGLX]. This is the actual result proved by Mellit in [M21].

(2) Our Theorem 3 and the Cogen formula for X̄n,d extend to arbitrary n, d.
(3) In [W], Wilson introduces generalizations of Qd,n · (−1)n and the Hikita

polynomial to arbitrary n, d, which differ from those in [BGLX]. He has
nonetheless shown that his Hikita polynomial specializes to the Cogen for-
mula in (2), and hence, to X̄n,d.

4.8. Gen versus Cogen. We end this section by expanding on Remark 38.
Recall that area(∆) = |Γ(S) \∆| and codinv(∆) = dim(A∆). Note that codinv

has a purely combinatorial formula, just like area does: By [P, Thm. 12],

codinv(∆) = |{(k, j) ∈ Genn(∆)× {1, . . . , d− 1} | k + j /∈ ∆}|.

The precise matching between the Gen and Cogen formulas is

1
1 + a

∑
∆∈Dn,d

qarea(∆)tcodinv(∆)ΠGen
n (∆, a, t)(4.6)

=
∑

∆∈Dn,d

qarea(∆)tcodinv(∆)ΠCogen
n (∆, aq−1, t).

It is remarkable because Gen and Cogen behave very differently. Note that at a→ 0,
the terms ΠGen

n ,ΠCogen
n disappear above, and both sides specialize to∑

∆∈Dn,d

qarea(∆)tcodinv(∆).

Thus our proofs of case (1) of Theorem 8 simplify drastically in the a → 0 limit;
almost all of their combinatorial complexity lies in the higher a-degrees.

Remark 40. Let Cn,d(q, t) = Cn,d(t, q) be the q, t-rational Catalan number intro-
duced in [H08]. Via their bijection from Dn,d to the set of n × d Dyck paths,
Gorsky–Mazin showed that the last polynomial above is tδCn,d(q, t−1) [GM13].

Below, we illustrate the contrast between Gen and Cogen in examples where
d = n+ 1. Throughout, we label the elements of Dn,d in the form ∆a1,...,an , where
Genn = {a1, . . . , an} and ai + δ − area(∆) ≡ i− 1 (mod n) for all i

Example 41. Take (n, d) = (2, 3). Then δ = 1 and

D2,3 = {∆0,3,∆1,0}

with these statistics:

∆ area codinv Gen \ {0} 1
1+a ΠGen

n Cogen ΠCogen
n

∆0,3 1 1 ∅ 1 {1} 1 + b
∆1,0 0 0 {1} 1 + at ∅ 1

Here, (4.6) becomes

qt + 1(1 + at) = qt(1 + aq−1) + 1.
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Example 42. Take (n, d) = (3, 4). Then δ = 3 and

D3,4 = {∆0,4,8,∆5,0,4,∆1,5,0,∆4,2,0,∆0,1,2}

with these statistics:

∆ area codinv Gen \ {0} 1
1+a ΠGen

n Cogen ΠCogen
n

∆0,4,8 3 3 ∅ 1 {5} 1 + b
∆5,0,4 2 2 {5} 1 + at {1, 2} (1 + b)(1 + bt)
∆1,5,0 1 2 {1} 1 + at {2} 1 + b
∆4,2,0 1 1 {2} 1 + at {1} 1 + b
∆0,1,2 0 0 {1, 2} (1 + at)(1 + at2) ∅ 1

Here, (4.6) becomes

q3t3 + (q2t2 + qt2 + qt)(1 + at) + 1(1 + at)(1 + at2)

= (q3t3 + qt2 + qt)(1 + aq−1) + q2t2(1 + aq−1)(1 + aq−1t) + 1.

In general, we infer that the maps ∆ 7→ Gen(∆)\{0} and ∆ 7→ Cogen(∆) jointly
define a certain mysterious permutation of Dn,d. It would be interesting to know
whether some duality relates the Gen and Cogen formulas.

5. Polynomial Actions and y-ification

5.1. In this section, we review the precise definition of y-ified Khovanov–Rozansky
homology, then give a precise statement of Conjecture 11, spelling out all of the
gradings involved. This also serves as preparation for Section 6.

5.2. We freely assume the notation of Appendix A. Thus, T = Gn
m and SBim is

the category of Soergel bimodules over S = H∗
T (pt). We explain in Appendix A

that for any braid β on n strands, the Khovanov–Rozansky homology of the link
closure of β can be computed from Hochschild cohomology of the Rouquier complex
T̄β , an object of Kb(SBim).

In [GKS, §5.1], the authors explain that the term-by-term action of S⊗ Sop on
T̄β factors through that of a smaller quotient. Fix matching coordinates

S = C[t1, . . . , tn] and Sop = C[top
1 , . . . , top

n ].

Let w ∈ Sn be the underlying permutation of β. Then the actions of ti and top
w(i) on

T̄β are homotopic for all i. So up to homotopy, the (S⊗ Sop)-action on T̄β factors
through the quotient of S⊗ Sop by the ideal ⟨(ti − top

w(i))i⟩.
At the same time, the actions of ti and top

i on S coincide for all i. So under
the Hochschild cohomology functor HH =

⊕
i,j ExtiS⊗Sop(S, (−)(j)), the (S⊗Sop)-

action on T̄β is transported to an action that also factors through the quotient of
S⊗ Sop by the ideal ⟨(ti − top

i )i⟩.
Thus, HH(T̄β) inherits an action of the quotient ring of w-coinvariants

Sw := S/⟨(ti − tw(i))i⟩.
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This is a polynomial ring on b variables, where b is the number of components of
the link closure of β. It will be convenient to fix coordinates

Sw = C[x⃗] := C[x1, . . . , xb]

so that each xj is the image of some ti. Recalling that Soergel bimodules are graded
so that deg(ti) = 2, we see that x⃗ acts on HH(T̄β) with bidegree (0, 2). Hence, x⃗
acts on HHH(T̄β) =

⊕
I,J,K HK(HHI,J(T̄β)) with tridegree (0, 2, 0).

5.3. In [GH], Gorsky–Hogancamp introduced a deformation of HHH called y-ified
Khovanov–Rozansky homology, which we will denote HY and review below.

We write d for the differential on T̄β . Let hi be a homotopy from the ti-action
on Tβ to the top

w(i)-action, so that [d, hi] = ti − top
w(i) as operators. We may choose

the hi so that they square to zero and anticommute. Let S′ = C[u1, . . . , un] be
another copy of S, and let d′ = d⊗ id +

∑
i hi ⊗ ui as an operator on T̄β ⊗ S′. We

compute that (d′)2 =
∑
i (ti − top

w(i)) ⊗ ui. We deduce that the induced action of
(d′)2 on HH(T̄β)⊗ S′

w vanishes, where

S′
w := S′/⟨(ui − uw(i))i⟩,

like before. By definition, HY(T̄β) =
⊕

I,J,K HYI,J,K(T̄β), where

HYI,J,K(T̄β) = HK(HHI,J(T̄β)⊗ S′
w, d

′).

We again fix coordinates

S′
w = C[y⃗] := C[y1, . . . , yb]

so that each yj is the image of some ui. From the definition of d′, we see that y⃗
acts on the complex (HH(T̄β)⊗S′

w, d
′) with bidegree (0,−2) on the first factor and

cohomological degree 2. Hence, y⃗ acts on HY(T̄β) with tridegree (0,−2, 2).
Altogether, the y-ified homology of β is a triply-graded vector space HY(T̄β)

equipped with a bigraded C[x⃗, y⃗]-module structure, which recovers HHH(T̄β) upon
passing from C[x⃗, y⃗] to C[x⃗, y⃗]/⟨y⃗⟩ = C[x⃗].

5.4. Writing e for the writhe of β, as in Appendix A, let Ȳβ :=
⊕

i,j,k∈Z Ȳi,
j
2 ,

k
2

β be
the (Z× 1

2 Z× 1
2 Z)-graded C[x⃗, y⃗]-module defined by

Ȳi,
j
2 ,

k
2

β = HYi,e−2i+j−k,e−k(T̄β).

From the formula

HYI,J,K(T̄β) = ȲI,I+ J
2 − K

2 ,e− K
2

β ,

we see that

X̄β(a, q, t) =
∑

i,j,k∈Z

aiq
j
2 t k

2 dim(Ȳi,
j
2 ,

k
2

β ⊗Z[x⃗,y⃗] Z[x⃗])

in the notation of Appendix A. Moreover, we see that x⃗ and y⃗ respectively act on
each summand Ȳiβ :=

⊕
j,k∈Z Ȳi,

j
2 ,

k
2

β with bidegrees (1, 0) and (0,−1).
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We return to our setup where f(x, y) = 0 is a generically separable degree-n
cover of the x-axis, embedded in the x, y-plane. The preimage in the cover of a
positively-oriented loop around x = 0 is a braid βf ∈ Brn such that the number
b of branches of f is also the number of components of the link closure of β, and
such that X̄f = X̄βf

. We similarly set Ȳf = Ȳβf
.

Let T (b) = Gb
m. As explained in the introduction, once we fix identifications

C[x⃗] ≃ C[Λ≥0] and C[y⃗] ≃ H∗
T (b)(pt),

the commuting actions of Λ≥0 and T (b) on Quot∗(S, ν)) together produce a C[x⃗, y⃗]-
module structure on ⊕

ℓ

HBM,T (b)
∗ (Quotℓ(S, ν))

for all compositions ν of n. The variables xj and yj respectively act by 1 and 0 on
the length ℓ, by 0 and −2 on the cohomological degree, and by 0 and −2 on the
weight filtration w≤∗.

Let Qx⃗,y⃗
S,ν :=

⊕
ℓ,k Qx⃗,y⃗,ℓ,k

S,ν be the Z2-graded C[x⃗, y⃗]-module defined by

Qx⃗,y⃗,ℓ,k
S,ν = grw

k HBM,T (b)
∗ (Quotℓ(S, ν)).

We abbreviate by writing Q̃x⃗,y⃗
S = Qx⃗,y⃗

S,(1n). The Springer action of Sn on the Borel–
Moore homology of Quot∗(S, (1n)) lifts to its equivariant Borel–Moore homology
and commutes with the C[x⃗, y⃗]-action above. So by Proposition 21, we can use the
bigraded (C[x⃗, y⃗] ×CSn)-module formed by Q̃x⃗,y⃗

S to recover the bigraded C[x⃗, y⃗]-
modules Qx⃗,y⃗

S,ν for all ν.
Abusing notation, let Ψ be the functor from bigraded CSn-modules to triply-

graded vector spaces given by

Ψ(M)i,j,k =
⊕
j,k

HomSn
(V(n−i+1,1i−1) ⊕ V(n−i,1i),M

j,k),

where in general, Vλ is the Specht module of Sn indexed by λ ⊢ n. Altogether, the
most precise version of Conjecture 11 is:

Conjecture 43. In the setup above,

(1) Ȳf is supported in integral tridegrees.
(2) There is an isomorphism of C[x⃗, y⃗]-modules Ȳf

∼−→ Ψ(Q̃x⃗,y⃗
S ) that sends

degree (i, j, k) onto degree (i, j, 2k). In particular, Ψ(Q̃x⃗,y⃗
S ) is supported in

even cohomological degrees.

Remark 44. In the definition of Q̃x⃗,y⃗
S , we did not collapse the cohomological degree

to an Euler characteristic, as in the definition of QS(q, t). Thus, the statement
that Ψ(Q̃x⃗,y⃗

S ) is supported in even cohomological degrees is needed to ensure that
Conjecture 43 specializes to Conjecture 4 upon base change from C[x⃗, y⃗] to C[x⃗].
An analogous statement about the cohomology of P/Λ was shown in [GMO] for
certain unibranch plane curve germs, called “generic” germs in ibid.
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6. (n, nk) Torus Links

6.1. In this section, we prove case (2) of Theorem 8, stating that

X̄n,nk(a, q, t2) = Ψ(FQS,n,nk(q, t), a) for any integer k > 0.

Throughout, we set f(x, y) = yn − xnk. For such f , our argument will implicitly
prove Conjecture 43(1), as well as the matching of trigradings in Conjecture 43(2).
The strategy is to relate both sides to ∇kp(1n) ∈ Symn

q,t, where in general, pλ is the
power-sum symmetric function indexed by λ ⊢ n, and ∇ is the Bergeron–Garsia
operator on Symn

q,t [HHLRU]. We will use the theory of symmetric functions quite
freely; for more background on our tools, we refer to [Ha,M].

6.2. In [CM21], Carlsson–Mellit computed a version of the underlying bigraded
CSn-module of Q̃x⃗,y⃗

S for the chosen f . To make this precise, let

Q̃BM,T (n)
S,n,nk (q, t) =

∑
ℓ,k

qℓtkHBM,T (n)
k (Quotℓ(S, (1n))) ∈ Q(q, t)⊗K0(Sn).

Recall the Frobenius character F : Q(q, t)⊗K0(Sn)→ Symn
q,t from Section 3.

Proposition 45. For all integers n, k > 0, we have

FQ̃BM,T (n)
S,n,nk (q, t) = 1

(1− q)(1− t2)∇
kpn.

Proof. Just as the ind-schemes P(ν) are isomorphic to parabolic affine Springer
fibers for GLn, so the ind-schemes Quot∗(S, ν) =

∐
ℓQuotℓ(S, ν) are isomorphic to

the positive parts of certain affine Springer fibers, in the terminology of [GK,CM21].
This can be shown by adapting the proof of [GK, Thm. 1.1]. In Proposition 51,
we give the explicit isomorphisms for the case where f(x, y) = yn − xnk, and show
that for ν = (1n), they match the Springer actions on the two sides. In particular,
we match Quot∗(S, (1n)) for this choice of f with the ind-scheme denoted Zk in
[CM21].

There is an extra Sn-action on the T (n)-equivariant Borel–Moore homology of
Zk called the dot action, induced by the Sn-action on the homotopy type of the
curve yn = xkn that permutes its branches. The dot action commutes with the
Springer action. In this way, we can upgrade FQ̃BM,T (n)

S,n,nk (q, t) to an element

FX⃗,Y⃗ Q̃BM,T (n)
S,n,nk (q, t) ∈ Symn

q,t[X⃗, Y⃗ ],

where Symq,t[X⃗, Y⃗ ] = Symq,t[X⃗] ⊗Q(q,t) Symq,t[Y⃗ ]. Above, X⃗ and Y⃗ respectively
record the Springer and dot actions. The actual statement of [CM21, Thm. A] is

FX⃗,Y⃗ Q̃BM,T (n)
S,n,nk (q, t 1

2 ) = ∇ken

[
X⃗Y⃗

(1− q)(1− t)

]
,

in plethystic notation.
We want to recover the Frobenius character in X⃗ alone. To this end, it suffices to

pair the right-hand side with p(1n)[Y⃗ ] under the Hall inner product: Indeed, under
F , pairing with p(1n) corresponds to evaluating a character of Sn at the identity
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element. Note that (g, h) 7→ ⟨g[ X⃗Y⃗
(1−q)(1−t) ], h⟩ is a version of the Macdonald q, t-

inner product [Ha, §3.5], with respect to which the power-sum symmetric functions
form an orthogonal basis of Symn

q,t. Therefore〈
∇ken

[
X⃗Y⃗

(1− q)(1− t)

]
, p(1n)[Y⃗ ]

〉
= ∇kp(1n)

[
X⃗

(1− q)(1− t)

]

= 1
(1− q)n(1− t)n∇

kp(1n)[X⃗],

where the second equality used p(1n) = pn1 . Finally, substituting t2 for t everywhere
gives the statement in the proposition. □

Remark 46. Interestingly, the fundamental domain D(1n) from Lemma 16 and its
ensuing discussion appears implicitly in [CM21]: Its complement is an open sub-
ind-scheme of Zk that features heavily in the proof of [CM21, Thm. A].

Corollary 47. For all integers n, k > 0, we have

FQS,n,nk(q, t) = 1
(1− q)n∇

kp(1n).

Proof. Since the homology of Zk is pure [GKM04,GKM06], it is T (n)-equivariantly
formal [GKM04, Lem. 2.2]. We deduce that if QBM

S,n,nk is the analogue of Q̃BM,T (n)
S,n,nk

for non-equivariant Borel–Moore homology, then

FQBM
S,n,nk(q, t) = (1− t2)nFQ̃BM,T (n)

S,n,nk (q, t) = 1
(1− q)n∇

kp(1n).

Next, recall that Borel–Moore homology and compactly-supported cohomology
with complex coefficients are dual to each other. Finally, since both are supported
in even degrees [CM21, 38], and in degree i, pure of weight i [GKM06, Cor. 1.3],
we know that

∑
k tkH∗

c(Zk) = χ(Zk, t). □

6.3. Turning to the KhR side, observe that Gorsky–Hogancamp computed the
y-ified KhR homology of the (n, nk) torus link in [GH], obtaining its usual KhR
homology as a corollary.

We need to fix a typo there. In the proofs of [GH, Thm. 7.13–14], which use
coherent sheaves on the Hilbert scheme of n points on A2 and its isospectral variant,
the authors should be tracking the equivariance parameters coming from the scaling
action of G2

m along the axes. These contribute denominators of the form (1− q)n

or (1− t)n in various places. After correction, [GH, Thm. 7.13] says

Ȳn,nk(a, q, t) :=
∑
i,j,k

aiq
j
2 t k

2 dim(Ȳi,
j
2 ,

k
2

f ) = 1
(1− q)n(1− t)nΨ(∇kp(1n), a).

Similarly, after correction, [GH, Thm. 7.14] says

X̄n,nk(a, q, t) = (1− t)nȲn,nk(a, q, t) = 1
(1− q)nΨ(∇kp(1n), a).

Again, we refer to Section 5 and Appendix A to match our grading conventions
with those in [GH]. This concludes the proof of case (2) of Theorem 8.
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6.4. To conclude this section, we verify the a = 0 limit of [ORS, Conj. 2] for two
plane curve germs of the form yn = xnk. By way of case (2) of Theorem 8, this
also verifies Conjecture 1 in these cases.

Example 48. Take n = 2 and k = 2. By [Ki, Ex. 6.18],

QR(q, t) = 1
(1− q)2 (1− q + q2t2 − q3t2 + q4t4).

At the same time, the recursion of [HM,GMV20] gives

X̄2,2(a, q, t) = 1
(1− q)2 (1 + q(t− 1) + q2(t2 − t)).

These series agree under (q, t) 7→ (q, qt2).

Example 49. Take n = 3 and k = 1. By [Ki, Ex. 6.17],

QR(q, t) = 1
(1− q)3

(
1− 2q + q2(t2 + 1) + q3(t4 − 2t2) + q4(t4 + t2)

−2q5t4 + q6t6

)
.

At the same time, by [GMV20, Ex. 32],

X̄3,3(a, q, t) = 1 + qt
1− q + qt2 + 2q2t2

(1− q)2 + q3t3

(1− q)3 .

Again these agree under (q, t) 7→ (q, qt2).

7. Affine Springer Fibers

7.1. In this section, we establish the comparisons to affine Springer fibers needed
in Section 4 and Section 6. For the convenience of readers unfamiliar with affine Lie
theory, we keep our exposition self-contained beyond the definitions appearing in
finite Lie theory. For the general relationship between local compactified Jacobians
and affine Springer fibers, we refer to [L].

7.2. Suppose that G is a complex reductive algebraic group. Its loop group is
the ind-group scheme Ĝ defined by Ĝ(A) = G(A((x))) for all C-algebras A, where
A((x)) := A[[x]][x−1]. Its arc group is the ind-group scheme K̂ defined by K̂(A) =
G(A[[x]]). Thus there is a projection map K̂ → G that sends g(x) 7→ g(0).

Henceforth, let G = GLn and g = gln. Each integer composition ν of n defines
a block-upper-triangular parabolic subgroup Pν ⊆ G. Its preimage K̂ν ⊆ K̂ is
called the corresponding parahoric subgroup. The partial affine flag variety of G
of parabolic type ν is the fpqc quotient B̂ν = Ĝ/K̂ν , which turns out to be an
ind-scheme. For any γ ∈ g(C[[x]]), let

B̂γν,† = {gK̂ν ∈ B̂ν | Ad(g−1)γ ∈ Lie(K̂ν)}.

The underlying reduced ind-scheme B̂γν ⊆ B̂
γ
ν,† is called the affine Springer fiber

over γ of parabolic type ν.
Since Ĝ/K̂ is also known as the affine Grassmannian, we set Ĝ = Ĝ/K̂ = B̂(n)

and Ĝγ = B̂γ(n).
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7.3. The Functor L, and yn = xnk. There is a well-known description of the
affine Grassmannian as a space of lattices in C((x))n, and more generally, of the
partial affine flag varieties of G as spaces of lattices equipped with partial flags.
Namely, let L be the functor from C-algebras to sets defined by

L(A) =

 A[[x]]-submodules
L ⊆ A((x))n

∣∣∣∣∣∣∣
∃ i such that xiA[[x]]n ⊆ L ⊆ x−iA[[x]]n

and (x−iA[[x]]n)/L is locally free over A
of finite rank


for any C-algebra A. For any ν, let Lν be the functor defined by

Lν(A) =
{

(L,F )

∣∣∣∣∣ L ∈ L(A),
F is a partial flag on L̄ := L/xL of type ν

}
.

Let (vi)n−1
i=0 be the standard ordered basis of Cn, but numbered from 0 through

n− 1. Let F std be the unique partial flag on Cn of type ν with stabilizer Pν under
right multiplication by G, so that the ith subspace of F std is that spanned by vi
for n− νn − · · · − νi ≤ i ≤ n− 1. The following result is explained in [Gö, §2.4] for
ν = (n), (1n); the argument for other ν is similar.

Lemma 50. For each integer composition ν of n, there is an isomorphism of fpqc
sheaves B̂ν

∼−→ Lν that sends

gK̂ν 7→ (Lg, Fg) := (C[[x]]n · g−1, F std · g−1)(7.1)

for all gK̂ν ∈ B̂ν(C). In particular, L is representable by an ind-scheme.

Let L+ ⊆ L be the sub-ind-scheme defined by

L+(A) = {L ∈ L(A) | L ⊆ A[[x]]n}.

We define the positive part of B̂ν to be the corresponding sub-ind-scheme B̂ν,+ ⊆
B̂ν . Similarly, we define the positive part of B̂γν to be B̂γν,+ = B̂γν ∩ B̂ν,+. We set
Ĝ+ = B̂(n),+ and Ĝγ+ = B̂γ(n),+.

Fix a primitive nth root of unity ζ ∈ C×. For any integer k > 0, let

γ(k) = diag(xk, ζxk, . . . , ζn−1xk) ∈ g(C[[x]]).

We see that the centralizer of γ(k) in Ĝ is precisely T̂ ⊆ Ĝ, where T ⊆ G is the
maximal torus of diagonal matrices. The T̂ -action on B̂γ(k)

ν by left multiplication
restricts to a T -action on B̂γ(k)

ν,+ . We note that the ind-scheme B̂γ(k)
(1n),+ is denoted

Zk in [CM21].

Proposition 51. Suppose that

R = C[[x, y]]/(yn − xnk) for some integer k > 0.

Fix an identification S = C[[x]]n, hence an identification T (n) = T . Then:
(1) The map (7.1) restricts to isomorphisms B̂γ(k)

ν
∼−→ P(ν) and B̂γ(k)

ν,+
∼−→

Quot∗(S, ν).
Let B̂γ(k),ℓ

ν,+ ⊆ B̂γ(k)
ν,+ correspond to Quotℓ(S, ν) ⊆ Quot∗(S, ν) under the isomorphism

in (1). Then the isomorphism matches:
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(2) The T -actions on B̂γ(k),ℓ
ν,+ and Quotℓ(S, ν).

(3) The Springer actions of Sn on the T -equivariant Borel–Moore homologies
of Bγ(k),ℓ

(1n),+ and Quotℓ(S, (1n)), for all ℓ.

Proof. Parts (1) and (2) follow from the definitions: Compare to [GK, Thm. 1.1]. To
prove part (3), observe that the usual Springer action on the Borel–Moore homology
of B̂γ(k),ℓ

(1n),+ arises from Proposition 21 and Remark 22 via the outer rectangle in the
following diagram, where every square is cartesian:

[B̂γ(k),ℓ
(1n),+/T ] [Quotℓ(S, (1n))/T ] [Ñ(1n)/GLn]

[Ĝγ(k),ℓ
+ /T ] [Quotℓ(S)/T ] [N/GLn]

∼

∼

π

(Above, Ĝγ(k),ℓ
+ := B̂γ(k),ℓ

(n),+ .) □

Remark 52. In [BL], Boixeda Alvarez–Losev construct commuting actions of two
trigonometric double affine Hecke algebras (DAHAs) on the T -equivariant Borel–
Moore homology of certain equivalued affine Springer fibers, for a certain torus T .
One of their DAHA actions is a generalized Springer action; the other arises from
combining a monodromic action of the affine Weyl group with the action of the
equivariant cohomology H∗

T (pt).
In the GLn case, their affine Springer fibers are precisely our B̂γ(k)

(1n) , and their T
is our T . Via Proposition 51, the monodromic action of the cocharacter lattice and
the action of equivariant cohomology in [BL] respectively correspond to the Λ≥0-
and H∗

T (pt)-actions on the T -equivariant Borel–Moore homology of Quotℓ(S, (1n))
in Section 5. The monodromic action of the finite Weyl group corresponds to the
dot action in Section 6.

7.4. The Functor M, and yn = xd. Writing x = ϖn, let ab : C((x))n ∼−→ C((ϖ))
be the isomorphism of C((x))-vector spaces defined by

ab(vi) = ϖi,

where we have implicitly used C((x))n = C((x))⊗Cn. Let M be the functor from
C-algebras to sets defined by

M(A) =

 A[[ϖn]]-submodules
M ⊆ A((ϖ))

∣∣∣∣∣∣∣
∃ i such that ϖiA[[ϖ]] ⊆M ⊆ ϖ−iA[[ϖ]]
and (ϖ−iA[[ϖ]])/M is locally free over A
of finite rank


for any C-algebra A. Thus M is the analogue of P† with C[[ϖ]] in place of R. For
any ν, let Mν be the functor defined by

Mν(A) =
{

(M,F )

∣∣∣∣∣ M ∈M(A),
F is a partial flag on M̄ := M/ϖnM of type ν

}
.

Then ab induces an isomorphism of fpqc sheaves

Lν
∼−→Mν ,(7.2)
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which we again denote by ab.
We now define the element of g(C[[x]]) studied in [Hi]. Let (X•,Φ, X•,Φ∨) be

the root datum of G with respect to the maximal torus of diagonal matrices. Let
α1, . . . , αn−1 ∈ Φ be the simple roots with respect to the upper-triangular Borel
subgroup P(1n) ⊆ G, and let ρ∨ = 1

2
∑
i α

∨
i ∈ Φ∨, where α∨

i is the coroot corre-
sponding to αi. For any d > 0 coprime to n, let m, b be the integers such that

d = mn+ b and 0 < b < n,

as in [Hi]. For each root α, let eα ∈ g(C) be the zero-one matrix that generates the
root subspace gα ⊆ g, and for each integer j, let ej =

∑
α|⟨α,ρ∨⟩=j eα. Finally, let

ψ(d) = xmeb + xm+1eb−n.(7.3)

In what follows, we will need the composition of isomorphisms

B̂ν
Lem 50−−−−→ Lν

ab−→Mν
ϖδ

−−→Mν ,(7.4)

where the last label means means multiplication by ϖδ, and δ = 1
2 (n − 1)(d − 1),

as in Section 4. We write the map on C-points as gK̂ν 7→ (Mg, Fg).

Proposition 53. Suppose that

R = C[[ϖn, ϖd]] for some d > 0 coprime to n.

Then:
(1) The map (7.4) restricts to an isomorphism B̂ψ(d)

ν
∼−→ P(ν).

Let Pe(ν) ⊆ P(ν) be the preimage of Pe ⊆ P, and let B̂ψ(d),e
ν ⊆ B̂ψ(d)

ν correspond
to Pe(ν) ⊆ P(ν) under the isomorphism in (1). Then:

(2) The isomorphism in (1) matches the Springer action of Sn on the Borel–
Moore homologies of Bψ(d),e

(1n) and Pe((1n)), for all e.
(3) B̂ψ(d),0

ν is the affine Springer fiber studied by Hikita in [Hi].

Proof. Part (1): It suffices to work on C-points. By checking on the basis (vi)i, we
find that ab transports the action of γ on C((x))n by right multiplication onto the
action of ϖd on C((ϖ)) by multiplication. Therefore,

gK̂ν ∈ Bψ(d)
ν (C) ⇐⇒ (C[[x]]n · g−1, F std · g−1) is γ-stable

⇐⇒ (Mg, Fg) is R-stable

for all gK̂ν ∈ B̂ν(C) and fixed e ∈ Z.
Part (2): Similar to the proof of part (3) of Proposition 51, but replacing the

diagram there with this one:

(7.5)

B̂ψ(d),e
(1n) Pe((1n)) [Ñ(1n)/GLn]

Ĝψ(d),e Pe [N/GLn]

∼

∼

π

(Above, Ĝψ(d),e := B̂ψ(d),e
(n) .)
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Part (3): The multiplication by ϖδ in the last arrow of (7.4) ensures that B̂ψ(d),0
ν

contains the identity coset K̂ν ∈ B̂ν . As a consequence, B̂ψ(d),0
ν belongs to the

connected component of B̂ν that corresponds to the partial affine flag variety of
SLn of parabolic type ν. The latter is defined analogously to the partial affine flag
variety of G = GLn, which means that B̂ψ(d),0

ν is precisely the affine Springer fiber
over ψ(d) with structure group SLn. □

8. Filtrations on H∗(P/Λ)

8.1. In this section, we discuss the following filtrations on the variety P/Λ or its
cohomology:

(1) The c-filtration on the variety, defined in terms of the function c(M) =
dimC(SM/M) from the introduction.

(2) The Hikita filtration [Hi], defined on the variety for R = C[[ϖn, ϖd]] with
n, d coprime, by intersecting the affine Springer fiber from Section 7.4 with
increasing unions of affine Schubert cells.

(3) The perverse filtration on cohomology, defined in terms of a versal defor-
mation of a global curve C into which Spec(R) embeds.

(4) The D-filtration on cohomology [R], defined essentially by pulling back
the filtration of

⊕
ℓ H∗(Hilbℓ(C)) by ℓ along the Abel–Jacobi map, where

Hilbℓ(C) is the Hilbert scheme of ℓ points on C.

First, in Theorem 56, we relate (1) and (2) by way of an involution ι, as needed
in Section 4.7. The involution ι is related to a duality studied by Gorsky–Mazin
[GM14], but to our knowledge, our work is the first time it has been used to
relate the filtrations above. Next, we discuss (3), providing further details about
Conjecture 12 relating (1) and (3), and review Rennemo’s work relating (3) and
(4). Finally, we make remarks about related cohomological filtrations in [GORS,
OY17,CO].

8.2. The c-Filtration. Let R = C[[x]][y]/(f) be an arbitrary generically separable
degree-n cover of the x-axis, fully ramified at (x, y) = (0, 0). For any integer
composition ν of n, we define the c-filtration on P(ν) to be its increasing filtration
by the subvarieties

P≤c(ν) =
⋃
c′≤c

Pc′(ν).

It descends to a filtration of P(ν)/Λ by subvarieties P≤c(ν)/Λ. We define q≤∗ to
be the increasing filtration on the Borel–Moore homology of P(ν)/Λ where

q≤c HBM
∗ (P(ν)/Λ) = im(HBM

∗ (P≤c(ν)/Λ)→ HBM
∗ (P(ν)/Λ)).

We define q≥∗ to be the decreasing filtration on the cohomology of P(ν)/Λ where

q≥c H∗(P(ν)/Λ) = ker(H∗(P(ν)/Λ)→ H∗(P≤c(ν)/Λ)).

Since compactly-supported cohomology is dual to Borel–Moore homology, and
P(ν)/Λ is proper, q≥c is orthogonal to q≤c for all c. We note in passing that
these definitions still make sense for non-planar R.
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As in Proposition 53, let Pe(ν) ⊆ P(ν) be the preimage of Pe ⊆ P. We define
Pe≤c(ν),Pe≤c,J≤c analogously to P(ν)≤c. Then Pe≤c(ν) is the preimage of Pe≤c
along the projection P(ν) → P, because Pc′(ν) is the preimage of Pc′ by defini-
tion. Moreover, any isomorphism J = P0 ∼−→ Pe induced by multiplication by a
uniformizer will preserve c, hence restrict to an isomorphism J≤c

∼−→ Pe≤c. This
largely reduces the study of the c-filtration at the level of the varieties to the study
of J≤c. Recall that in the unibranch case, J ≃ P/Λ.

8.3. The c-Filtration for yn = xd. Suppose that R = C[[ϖn, ϖd]] with n, d co-
prime. Recall that in this case, there is a Gm-action on P induced by scaling ϖ,
which necessarily stabilizes the connected component J . As in Section 4, let

Iδ(S) := {∆ ⊆ Z≥0 | ∆ + n ⊆ ∆, ∆ + d ⊆ ∆, |Z≥0 \∆| = δ}.

By [P, §3], the setup of Lemma 28 restricts to a bijection

Iδ(S) ∼−→ JGm
,

∆ 7→ M∆

that partitions J into the affine spaces A∆ for ∆ ∈ Iδ(S).

Lemma 54. If R = C[[ϖn, ϖd]] with n, d coprime, then

c(M) = δ −min(∆) for all ∆ ∈ Iδ(S) and M ∈ A∆(C).

In particular, J c =
⋃

∆|min(∆)=δ−c A∆ and J≤c =
⋃

∆|min(∆)≥δ−c A∆.

Proof. In the notation of Section 2, we have ϖ−min(∆)M ∈ D for all ∆ ∈ Iδ(S) and
M ∈ A∆. Now observe that

c(M) = c(ϖ−min(∆)M) = −min(∆) + ℓ(M) = −min(∆) + δ,

where the second equality holds by Lemma 17. □

8.4. The Hikita Filtration. Next, we (re)turn to Hikita’s work in [Hi]. In the
notation of Section 7.4, recall that Proposition 53 gives us an isomorphism

Ĝψ(d),0 ∼−→ J ,
gK̂ 7→ Mg,

where Ĝψ(d),0 is the affine Springer fiber over ψ(d) with structure group SLn. Hikita
first defines a filtration of Ĝψ(d),0, then lifts it to B̂ψ(d),0

ν along the projection B̂ν →
B̂(n) = Ĝ. Thus, as with the c-filtration, we can largely reduce to studying the
ν = (n) case.

Recall that the affine Schubert decomposition of Ĝ is its stratification by Î-orbits,
where the Iwahori subgroup Î = K̂(1n) acts on Ĝ by left multiplication:

Ĝ =
∐
µ∈X•

Ĝµ, where Ĝµ := ÎxµK̂/K̂.

Above, X• is the same cocharacter lattice as in Section 7.4, and for any µ ∈ X•,
we write xµ to mean the image of x under µ : Ĝm → Ĝ. The strata Ĝµ are affine
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spaces called affine Schubert cells. Henceforth, we fix the identification X• = Zn

under which xµ = diag(xµ1 , . . . , xµn). Then the affine Grassmannian of SLn is the
sub-ind-scheme ĜSLn ⊆ Ĝ given by

ĜSLn
=
∐
µ∈X0

•

Ĝµ, where X0
• := {µ ∈ X• | µ1 + · · ·+ µn = 0}.

The proof of [Hi, Prop. 4.1] shows that there is a bijection

a : X0
•

∼−→ Zn−1
≥0

defined as follows:
(1) ai(0, . . . , 0) = 0 for all i.
(2) If µ ̸= (0, . . . , 0), then

(a1, . . . , an−k, an−k+1, . . . , an−1)(8.1)

= (µk+1 − µk − 1, . . . , µn − µk − 1, µ1 − µk, . . . , µk−1 − µk),

where k is the largest index in {1, . . . , n} such that µk = mini µi. Note that
since µ1 + · · ·+ µn = 0, we must have µk < 0.

For all a ∈ Zn−1
≥0 , let |a| = a1 + · · ·+ an−1. For any integer c, let

ĜSLn,≤c =
⋃
µ∈X0

•
|a(µ)|≤c

Ĝµ.

Following [Hi, Cor. 4.7], we define the Hikita filtration on Ĝψ(d),0 to be its increasing
filtration by the subvarieties

Ĝψ(d),0
≤c = Ĝψ(d),0 ∩ ĜSLn,≤c.

For each integer composition ν of n, we define B̂ψ(d),0
ν,≤c to be the preimage of Ĝψ(d),0

≤c

along the projection B̂ν → Ĝ. We define the Hikita filtration on B̂ψ(d),0
ν to be its

increasing filtration by these subvarieties. This recovers the definition for ν = (1n)
in the proof of [Hi, Thm. 4.17].

8.5. The Involution ι. For any g ∈ G, let gτ be the “anti-transpose” given by
gτ = JgtJ , where gt is the usual transpose and J ∈ G the matrix with 1’s along
the anti-diagonal and 0’s elsewhere. The map ι : G→ G given by

ι(g) := (gτ )−1 = (g−1)τ

is an involutory automorphism with differential ι : g→ g given by

ι(γ) = −γτ .

We extend these automorphisms to Ĝ and its Lie algebra by linearity and comple-
tion. We see that ι(K̂) = K̂ and ι(K̂(1n)) = K̂(1n), from which we deduce that ι
descends to involutions of Ĝ and B̂(1n).

From the definition (7.3), we also see that ι(ψ(d)) = −ψ(d). We deduce that the
affine Springer fibers Ĝψ(d) and B̂ψ(d)

(1n) are stable under ι, as are their SLn variants
Ĝψ(d),0 and B̂ψ(d),0

(1n) .
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Lemma 55. The involutions above have the following properties:

(1) For all µ ∈ X•, we have ι(Ĝµ) = Ĝι(µ), where

ι(µ1, . . . , µn) = (−µn, . . . ,−µ1).

(2) For any integer e, the involution on the Borel–Moore homology of B̂ψ(d),e
(1n)

induced by ι is equivariant with respect to the Springer action of Sn. More-
over, it preserves the homological degree and weight filtration.

In preparation for the proof of part (2), we set up some notation. Recall that
Ĝψ(d),0 ⊆ ĜSLn

, and hence,

Ĝψ(d),0 =
∐
µ∈X0

•

Aµ, where Aµ := Ĝψ(d),0 ∩ Ĝµ.

Let Xψ(d),0
• ⊆ X0

• be the subset of cocharacters µ for which Aµ is nonempty.
It is explained in [Hi, §2.3], following [GKM06], that these Aµ are affine spaces.
Moreover, [Hi, Thm. 2.7] is an explicit combinatorial formula for their dimensions,
which shows that

dim(Aµ) = dim(Aι(µ))(8.2)

for all µ ∈ Xψ(d),0
• .

Proof of Lemma 55. Part (1) follows from computing ι(xµ) = xι(µ).
To show part (2): First, recall that the Springer action in question is defined

via Proposition 21 and Remark 22 via the outer rectangle of (7.5). The bottom
arrow of this outer rectangle sends gK̂ 7→ [Ad(g−1)ψ(d) mod x]. So we must show
that the residues of Ad(g−1)ψ(d) and Ad(ι(g)−1)ψ(d) mod x have the same Jordan
types as nilpotent elements of g. This follows from computing

Ad(ι(g)−1)ψ(d) = −Ad(ι(g)−1)ι(ψ(d)) = −ι(Ad(g−1)ψ(d)),

then observing that ι commutes with reduction mod x and preserves the Jordan
types of nilpotent elements.

The fact that the involution on HBM
∗ (B̂ψ(d),e

(1n) ) preserves the homological degree
and weight filtration follows from B̂ψ(d),e

(1n) being paved by the affine spaces Aµ,
together with the identity (8.2). □

We set J (ν) = P0(ν) and J≤c(ν) = P0
≤c(ν) in what follows, to make parallels

in notation clearer. Together with Lemma 55(2), the following result completes a
necessary step in proof (B) of case (1) of Theorem 8.

Theorem 56. Suppose that R = C[[ϖn, ϖd]] for some d > 0 coprime to n. Then
the composition of isomorphisms

B̂ψ(d),0
(1n)

ι−→ B̂ψ(d),0
(1n)

Prop 53−−−−−→ J ((1n))(8.3)

restricts to an isomorphism ι(B̂ψ(d),0
(1n),≤c)

∼−→ J≤c((1n)) for all c.
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Since J≤c((1n)) and B̂ψ(d),0
(1n),≤c are respectively the preimages of J≤c and Ĝψ(d),0

≤c ,
the ι-equivariance of the projection B̂ψ(d),0

(1n) → Ĝψ(d),0 and the commutativity of the
left square of (7.5) allows us to replace ν = (1n) with ν = (n).

We will match the strata Aµ ⊆ Ĝψ(d),0 with the strata A∆ ⊆ J . Let − ·1/n −
denote the Gm-action on Ĝ defined by

t ·1/n g(x) := c2ρ∨
g(c2nϖ)c−2ρ∨

for all t ∈ Gm and g ∈ Ĝ. It descends to a Gm-action on Ĝ that we again denote
by − ·1/n −. As explained in [Hi,GKM06], we have

Ĝµ = {gK̂ ∈ Ĝ | lim
t→0

(t ·1/n gK̂) = xµK̂} for all µ ∈ X•,

Aµ = {gK̂ ∈ Ĝψ(d),0 | lim
t→0

(t ·1/n gK̂) = xµK̂} for all µ ∈ X0
• .

So we must match − ·1/n − with the Gm-action on J in Section 8.3.

Proposition 57. The map (8.3) transports the Gm-action − ·1/n − on Ĝ onto the
Gm-action on M(n) induced by t ·2 ϖ := t2ϖ.

Proof. It suffices to work on C-points. First, ι is equivariant under −·1/n− because
ι(c2ρ∨) = c2ρ∨ , so we can replace (8.3) with (7.4). Observe that if g = g(x) ∈
G(C((x))), and g′(x) = t ·1/n g(x) for some t ∈ C×, then g′(x)−1 = t ·1/n g−1(x).
Thus the entries of the matrix g′(x)−1 are given by

(g′(x)−1)i,j = t2(j−i)(g(t2nϖ)−1)i,j .

We deduce that

ϖδ ab(vi · (t ·1/n g(x))−1) = ϖδ
∑
j

(g′(ϖn)−1)i,jϖj

= t−2iϖδ
∑
j

(g((t2ϖ)n)−1)i,j(t2ϖ)j

= t−2δ−2i(t ·2 ϖδ ab(vi · g(x)−1)).

Above, t−2δ−2i is just a nonzero scalar depending on i. So the calculation shows
that the vector subspaces of C((ϖ)) formed by Mt·1/ng and t ·2 Mg coincide. □

In the notation of Section 8.3, let ∆ : Xψ(d),0
• → Iδ(S) be defined by

Genn(∆(µ)) = {nµi + n− i+ δ | 1 ≤ i ≤ n}.(8.4)

Then the map xµ 7→ M∆(µ) is precisely the effect of (8.3) on the (− ·1/n −)-fixed
points of Ĝψ(d),0, as we can check from the definition of ι and (7.1)–(7.2). Now
(8.2) and Proposition 57 imply:

Corollary 58. The map ∆ : Xψ(d),0
• → Iδ(S) is bijective, and for all µ ∈ Xψ(d),0

• ,
(8.3) restricts to an isomorphism

Aµ
∼−→ A∆(µ).

To finish the proof of Theorem 56, it remains to show that for all µ ∈ Xψ(d),0
• ,

we have |a(µ)| = c(M∆(µ)). By Lemma 54 and (8.4), this is equivalent to:
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Lemma 59. For all µ ∈ Xψ(d),0
• , we have

|a(µ)| = −min{nµi + n− i | 1 ≤ i ≤ n}.

Proof. If µ = (0, . . . , 0), then both sides equal 0. If µ ̸= (0, . . . , 0), then (8.1) gives

|a(µ)| = (µ1 + · · ·+ µn)− (nµk + n− k),

where k is the largest index in {1, . . . , n} such that µk = mini µi. Since µ ∈ X0
• ,

the right-hand side above simplifies to −(nµk + n− k). □

Remark 60. It is natural to ask what the involution ι on Ĝψ(d),0 looks like after
being transported through (7.4), to an involution on J . From (8.4), we can check
that it is precisely the duality that Gorsky–Mazin denote by ∆ 7→ ∆̂ in [GM14].
Explicitly, for any ∆ ∈ Iδ(S), we have Genn(∆̂) = {d(n− 1)− k | k ∈ Genn(∆)}.

Remark 61. In [GMV16], Gorsky–Mazin–Vazirani assert a simplification of Hikita’s
work in terms of a generalized Pak–Stanley bijection PS. In particular, their maps
A and PS respectively encode the area and codinv statistics in Section 4: See
Section 3.3 in their paper. It would be interesting to know how their combinatorics
is related to our geometry.

Example 62. Take (n, d) = (3, 4). We compute

X
ψ(d),0
• = {(0, 0, 0), (−1, 0, 1), (−1, 1, 0), (0,−1, 1), (1, 0,−1)},

Iδ(S) = {∆3,4,5,∆6,4,2,∆3,7,2,∆6,1,5,∆0,4,8}.

Above, we have labeled the elements of Iδ(S) in the form ∆b1,b2,b3 , where Genn =
{b1, b2, b3} and bi ≡ d(i− 1) (mod n) ≡ i− 1 (mod 3) for all i. We compute these
statistics:

µ a(µ) |a(µ)| (nµi + n− i)i ∆(µ) min(∆(µ))
(0, 0, 0) (0, 0) 0 (2, 1, 0) ∆3,4,5 3
(−1, 0, 1) (0, 1) 1 (−1, 1, 3) ∆6,4,2 2
(−1, 1, 0) (1, 0) 1 (−1, 4, 0) ∆3,7,2 2
(0,−1, 1) (1, 1) 2 (2,−2, 3) ∆6,1,5 1
(1, 0,−1) (2, 1) 3 (5, 1,−3) ∆0,4,8 0

Compare to Example 42.

8.6. The Perverse Filtration. We return to the setup of Section 8.2, where
f(x, y) is arbitrary. For simplicity, we ignore the map to the x-axis in what fol-
lows. Besides q≥∗, there is another filtration on the cohomology of P/Λ, defined as
follows by Maulik–Yun:

Fix a complex, integral, projective curve C, whose normalization has genus zero,
and which is smooth away from a unique planar singularity given in local coordi-
nates by f(x, y) = 0. We emphasize that while C is integral, the germ f can still
have multiple branches. Fix an embedding of C into a family of curves C, whose
base is irreducible, and which satisfies conditions (A1)–(A4) in [MY, §2.1]. For
instance, in any versal deformation of C, we can obtain such a family after base
change to a small-enough Zariski neighborhood around C [MY, Prop. 3.5].
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Condition (A4) entails a nonsingular basepoint s ∈ C(C). Let J (C) be the
compactified Jacobian of (C, s) [AIK]. In more detail, J (C) is a projective variety
whose C-points parametrize torsion-free, coherent sheaves on C of degree 0 and
generic rank 1, equipped with a trivialization at s. In this setting, Section 2.14
of ibid. defines an increasing perverse filtration p≤∗ on H∗(J (C)), in terms of the
perverse truncation of the pushforward of the constant sheaf along the structure
map of J (C). Proposition 2.15 of ibid. shows that p≤∗ is invariant under base
change of the family of curves, so it is canonical. It is strictly compatible with the
weight filtration w≤∗.

Finally, the proof of Theorem 3.11 of ibid. shows that there is a weight-preserving
isomorphism H∗(J (C)) ≃ H∗(P/Λ), canonical up to the choice of uniformization
that defines the Λ-action on P. We define the perverse filtration p≤∗ on H∗(P/Λ)
by transport along this isomorphism. Following Maulik–Yun, we normalize p≤∗ so
that it sits in degrees 0 through 2δ.

For any filtration f≤∗ on the cohomology of P/Λ, strictly compatible with the
weight filtration, we may form the virtual Poincaré polynomial

Pvir,f(q, t) =
∑
i,j,k

(−1)iqjtk dim grf
j grw

k Hi(P/Λ).

Explicitly, Theorem 3.11 of [MY] states that

QR(q, t) = 1
(1− q)b Pvir,p(q, t).

By comparison, Theorem 3 implies that

QS(q, t) = 1
(1− q)b Pvir,q(q, t).

We deduce that:

Corollary 63. Conjecture 1 is equivalent to

Pvir,p(q, t) = Pvir,q(q, q 1
2 t).(8.5)

In particular, this identity would imply that∑
i

(−1)i dim grp
j+k grw

2k Hi(P/Λ) =
∑
i

(−1)i dim grq
j grw

2k Hi(P/Λ)(8.6)

for all j, k.

Thus the motivation behind Conjecture 12 is that it would strictly imply (8.6),
and hence, Conjecture 1 as well.

We emphasize again that while p is defined via auxiliary global methods, q is
intrinsic and purely local. For this reason, Corollary 63 seems remarkable to us.

8.7. The D-Filtration. We now review Rennemo’s work on the perverse filtration,
keeping the curve C and the family of curves C from above. Note that the conditions
on C in [MY, §2.1] are essentially the same as those in [R, §2.1].
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For any integer ℓ ≥ 0, let Hilbℓ(C) be the Hilbert scheme of ℓ points on C, and
let V =

⊕
ℓ V

ℓ, where V ℓ = H∗(Hilbℓ(C)). Let

AJ :
∐
ℓ

Hilbℓ(C)→ J (C)

be the Abel–Jacobi map, defined for general ℓ by means of the basepoint s from
earlier. Then Proposition 1.1 of [R] shows that there is a quotient W of V , defined
via the action of a certain Weyl algebra by Hecke correspondences, such that the
composition H∗(J (C)) AJ∗

−−−→ V → W is an isomorphism. Following Rennemo, the
D-grading on the cohomology of J (C) is defined so that grD

ℓ H∗(J (C)) corresponds
to the image of V ℓ in W .

Proposition 7.1 of ibid. states that D is a splitting of the perverse filtration
p≤∗. Again, we can transport D to the cohomology of P/Λ via the isomorphism
H∗(J (C)) ≃ H∗(P/Λ).

8.8. The GORS Filtrations. To conclude, we review the three filtrations Falg,
Find, Fgeom proposed in [GORS] and their relationship to our story.

We again suppose that R ≃ C[[ϖn, ϖd]] for some d > 0 coprime to n. For
convenience, let B̂d/n = J ((1n)). Let H∗

Gm
(B̂d/n) be the equivariant cohomology of

B̂d/n with respect to the Gm-action induced by scaling ϖ. The perverse filtration
p≤∗ from earlier can be lifted to this equivariant, parabolic setting.

Writing H∗
Gm

(pt) = C[ϵ], with deg(ϵ) = 2, we can form the C[ϵ]-module

grp
∗ H∗

d/n := grp
∗ H∗

Gm
(B̂d/n).

By work of Oblomkov–Yun [OY16, OY17], a symplectic reflection algebra known
as the rational Cherednik algebra (RCA) of Sn with central charge d

n acts on
grp

∗ H∗
d/n|ϵ→1, and under this action, it becomes graded-isomorphic to the simple

RCA module usually denoted Ld/n. More precisely, the perverse grading on the co-
homology corresponds to the grading on Ld/n induced by the action of the so-called
Euler element. As the notation suggests, the RCA action is constructed by view-
ing B̂d/n as an affine Springer fiber in B̂(1n), though over an element of sln(C[[x]])
different in general from the element ψ(d) in Section 8.4.

In [GORS], Gorsky–Oblomkov–Rasmussen–Shende construct two filtrations on
Ld/n called Falg and Find by purely algebraic methods. The former uses the con-
struction of Ld/n as a quotient of the RCA representation on the polynomial ring
C[x1, . . . , xn−1], while the latter uses the shift functors relating Ld/n and L(d+n)/n.
We refer to Section 4 of ibid. for the details.

Via transport from grp
∗ H∗

d/n|ϵ→1, there is another grading on Ld/n of geometric
nature. Namely, following [GORS, 2782], let Fgeom

≤∗ be defined by

(8.7) Fgeom
i Ld/n =

⊕
j,k

j−k≤i−2δ

grp
j Hk

d/n(1).

Now, [GORS, Conj. 1.4] is the three-way equality Falg = Find = Fgeom.
There is another filtration c≤∗ on grp

∗ H∗
d/n|ϵ→1, called the Chern filtration in

[OY16], which ultimately arises from the affine paving of B̂d/n discussed earlier.



44 OSCAR KIVINEN AND MINH-TÂM TRINH

Proposition 8.1.2 of [OY16] shows that Falg can be constructed from c≤∗ by a
saturation formula exactly analogous to (8.7). Theorem 8.2.3(1) of ibid. shows that
c≤∗ = p≤∗. Therefore, the work of Oblomkov–Yun proves Falg = Fgeom. As of this
writing, however, the equality Falg = Find in [GORS, Conj. 4.12] remains open in
general.

Note that grp
∗ H∗

d/n|ϵ→0 is the bigraded vector space grP
∗ H∗(J ((1n)) discussed

elsewhere in this section. It is essentially conjectured in [OY17] that

grp
∗ H∗

d/n|ϵ→0 ≃ grp
∗ H∗

d/n|ϵ→1.

More precisely, Oblomkov–Yun introduce in ibid. a certain family of rings in two
parameters ϵ and s, which recover the cohomology rings grp

∗ H∗
d/n(ϵ) at s = 1. The

isomorphism above would match the rings at (ϵ, s) = (0, 1) and (1, 1). Conjecture
1.1.7 of ibid. would match those at (ϵ, s) = (0, 1) and (1, 0). Conjecture 5.5.1 of
ibid. would match the rings at all values of (ϵ, s).

8.9. The Carlsson–Oblomkov Filtration. We now specialize to the case where
d = n + 1. Recall that the ring of diagonal coinvariants of Sn is the bigraded
CSn-module formed by

DRn = C[x1, . . . , xn, y1, . . . , yn]
C[x1, . . . , xn, y1, . . . , yn]Sn

+
,

where C[x1, . . . , xn, y1, . . . , yn]Sn
+ is the ideal of Sn-invariant homogeneous polyno-

mials, under the grading where deg(xi) = (1, 1) and deg(y) = (−1, 1) for all i. An
argument in [Go, §5] shows that

grFind

∗ L(n+1)/n ≃ sgn⊗DRn,

where sgn denotes the sign twist.
In [CO], Carlsson–Oblomkov construct a filtration Fdesc on DRn that is trian-

gular with respect to one of the gradings, using so-called descent monomials. They
match grFdesc

∗ DRn with a bigraded space of the form grFfp

∗ HBM
∗ (B̂(n+1)/n), where

Ffp is a filtration defined using fixed-point localization and special features of the
inclusion B̂(n+1)/n ⊆ B̂(1n). It is claimed on page 4 of ibid. that this isomorphism
also matches DRn with grh

∗ HBM
∗ (B̂(n+1)/n), where h≤∗ denotes the filtration in-

duced by the Hikita filtration in Section 8.4, and we have suppressed the necessary
grading shifts and substitutions.

We expect their claim is true with the filtration q≤∗ from Section 8.2 in place
of h≤∗. Indeed, this change would suggest a route to proving Conjecture 12 for
R = C[[ϖn, ϖn+1]]. Suppose that:

(1) Falg = Find.
(2) grp

∗ H∗
d/n|ϵ→0 ≃ grp

∗ H∗
d/n|ϵ→1.

(3) DRn ≃ grq
∗ HBM

∗ (B̂(n+1)/n) up to the appropriate shifts/substitutions.
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Then we could match:

grp
∗ H∗(B̂(n+1)/n) = grp

∗ H∗
d/n|ϵ→0

(2)←→ grp
∗ H∗

d/n|ϵ→1

(8.7)←−→ grFgeom

∗ L(n+1)/n

[OY16]←−−−→ grFalg

∗ L(n+1)/n

(1)←→ grFind

∗ L(n+1)/n

[Go]←−→ DRn

(3)←→ grq
∗ HBM

∗ (B̂(n+1)/n)
orthogonal←−−−−−→ gr∗

q H∗(B̂(n+1)/n).

Note that in this case, (8.5) is as strong as the associated graded of Conjecture 12,
since the affine paving of B̂(n+1)/n shows that its cohomology is pure and supported
in even degrees.

Appendix A. Gradings on Link Homology

A.1. In this appendix, we specify our grading conventions for Khovanov–Rozansky
homology; compare them to those of other published works; and illustrate on the
smallest examples (unknot, Hopf link, trefoil, (3, 4) torus knot) to aid the reader’s
sanity. Our exposition closely follows [GH, §1.6], but we correct some mistakes:
See Remarks 64–65.

A.2. Soergel Bimodules. Let T = Gn
m, and let

S := H∗
T (pt) = C[t1, . . . , tn].

We regard S as a graded ring, with deg(ti) = 2 for all i. Thus the Sn-action on
T that permutes coordinates also preserves the grading on S. Let si ∈ Sn be the
transposition that swaps ti and ti+1.

In the category of graded S-bimodules, we write (m) for the grading shift
B(m)i = Bi+m. Let SBim be the full subcategory generated by the identity bi-
module S and the bimodules S⊗Ssi S(1) for all i under isomorphisms, direct sums,
tensor products ⊗ = ⊗S, direct summands, and grading shifts. Objects of SBim are
called Soergel bimodules. We write Kb(SBim) for the bounded homotopy category
of SBim. It is a monoidal additive category whose unit is the complex consisting
of the identity bimodule in degree zero.

Let Brn be the group of braids on n strands up to isotopy. Any braid β ∈ Brn
defines an object T̄β ∈ Kb(SBim) called the Rouquier complex of β. See, e.g.,
[GH, §2.1] for the precise definition. If β = β′β′′ in Brn, then any sequence of
braid moves that transforms β′β′′ into β defines an isomorphism from T̄β′ ⊗ T̄β′′

onto T̄β . Thus, the braid group is categorified by the objects T̄β under ⊗.
Let Vect2 be the category of Z2-graded vector spaces that are finite-dimensional

in each bidegree, such that the first grading is bounded below and the second is
bounded. Let HH = HH∗,∗ : SBim→ Vect2 be the Hochschild cohomology functor:

HHi,j(B) = ExtiS⊗CSop(S,B(j)).
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These Ext’s can be computed using a Koszul resolution of S over S⊗C Sop, which
shows that the Ext grading sits in degrees 0 through (at most) n.

Let Vect3 be the category of Z3-graded vector spaces that are finite-dimensional
in each tridegree, such that the first grading is bounded below and the other two
gradings are bounded. Let HHH = HHH∗,∗,∗ be the composition of functors

Kb(SBim) HH−−→ Kb(Vect2) H∗

−−→ Vect3.

Explicitly, the gradings are ordered so that HHHI,J,K = Hk(HHI,Jn ).
The story above can be redone with the quotient torus T0 := T/TSn in place

of T . Note that T0 is just the image of T along the quotient map GLn → PGLn.
Replacing T with T0 entails replacing S with its subring S0 := H∗

T0
(pt). We write

Tβ , HH, HHH for the objects that respectively replace T̄β , HH, HHH.
Let L be the link closure of β. In [Kh], Khovanov proved that HHH(Tβ) matches

the reduced version of the triply-graded homology of L proposed in [DGR] and
constructed in [KhR], up to an affine transformation of the trigrading. One can
show that

HHH(T̄β) ≃ HHH(T̄id)⊗ HHH(Tβ),(A.1)

and that in consequence, HHH(T̄β) matches the unreduced version of the homology
constructed in [KhR], up to similar regradings.

A.3. The Main Dictionary. For any β ∈ Brn, let

hhhβ(A,Q, T ) =
∑
I,J,K

AIQJTK dim HHHI,J,K(T̄β),

hhhβ(A,Q, T ) =
∑
I,J,K

AIQJTK dim HHHI,J,K(Tβ).

That is:

(1) hhhβ(A,Q, T ) is the series denoted Pβ(Q,A, T ) in [EH, §A] and [GH, §1.6],
and hhhβ is the analogue of hhh for reduced homology.

We write:

(2) P̄norm
L (A,Q, T ) for the series denoted Pnorm

L (Q,A, T ) in loc. cit.
(3) PL,ORS(a, q, t) for the series denoted P(L) in [ORS]. It is denoted P(L−)

in [DGR], where L− is the chiral mirror of L.
(4) P̄L,ORS(a, q, t) for the series denoted P̄(L) in [ORS], which satisfies

P̄L,ORS(a, q, t) = P̄U,ORS(a, q, t)PL,ORS(a, q, t).(A.2)

Remark 64. Contrary to statements suggested by [ORS, 651] and [GH, §1.6], the
series P̄L,ORS does not match the series called the unreduced superpolynomial of
L− and denoted P̄(L−) in [DGR], even after further regrading. Indeed, the series
denoted P(L−) and P̄(L−) in [DGR] are not proportional to each other by any
constant factor, as can be checked from Propositions 6.1 and 6.2 of ibid.
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Let e be the writhe of β, meaning its net number of signed crossings, and let b
be the number of components of L. After correction, [GH, §1.6] states:

P̄norm
L (A,Q, T ) = (A 1

2 )e−n+bQ−e+2n−2b(T 1
2 )−e−n+b hhhβ(A,Q, T ),

P̄L,ORS(a, q, t) = a−bqb P̄norm
L (a2q2t, q, t−1)(A.3)

= ae−nqnte hhhβ(a2q2t, q, t−1).

By combining the last identity above with (A.1)–(A.2), we get a reduced version:

PL,ORS(a, q, t) = ae−n+1qn−1te hhhβ(a2q2t, q, t−1).

In general, we will not work with P̄norm
L . Moreover, we will not discuss at all the

normalizations used in the series P(U),P(T (2, 3)) in [GH, Rem. 1.27].

Remark 65. Above, (A.3) fixes a few more typos in [GH, §1.6]:
First, the discussion on [GH, 599] relates their series Pnorm

L to the series we call
P̄L,ORS, not to the superpolynomial in [DGR]. As explained in Remark 64, the
latter two are different. Next, the identity relating Pnorm

L and P̄L,ORS in loc. cit.
has the wrong prefactor. There, the authors express P̄L,ORS in terms of variables
r, α,Q, T , which correspond to our b, a, q, t−1, respectively. Their prefactor Q2rα−r

should be Qrα−r.
By way of comparison: The variables α,Q, T in [EH, §A] also correspond to our

a, q, t−1. Hence, their series PL(Q,α, T ) is our series P̄L,ORS(a, q, t). The identity
relating Pβ and PL in loc. cit. is correct.

Example 66. The unknot U is the knot closure of the identity in Br1, for which
(n, e, b) = (1, 0, 1). The Hochschild cohomology of the identity Soergel bimodule is

HH∗,j
1 (S) =


S j = 0,
S(2) j = 1,
0 j ̸= 0, 1.

Thus P̄norm
U (A,Q, T ) = hhhid(A,Q, T ) = 1 +AQ−2

1−Q2 , from which

P̄U,ORS(a, q, t) = a−1 + at

q−1 − q
.

A.4. “Our” Series. For any braid β ∈ Brn with writhe e whose link closure L
has b components, let

X̄β(a, q, t) := t e
2 hhhβ(aq, q 1

2 , q 1
2 t− 1

2 ),

Xβ(a, q, t) := X̄β(a, q, t)
X̄id(a, q, t)

= t e
2 hhhβ(aq, q 1

2 , q 1
2 t− 1

2 ).

Above, note that Xid(a, q, t) = 1 + a
1− q . We can check that

P̄L,ORS(a, q, t) = (aq−1)e−n X̄β(a2t, q2, q2t2),

PL,ORS(a, q, t) = (aq−1)e−n+1 Xβ(a2t, q2, q2t2).
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It turns out that in the rest of this paper, X̄β and Xβ are the most convenient series
for us to use.

In particular, suppose that f(x, y) ∈ C[[x]][y] such that f(x, y) = 0 defines a
generically separable, degree-n cover of the x-axis, fully ramified at (x, y) = (0, 0).
Then the preimage in the cover of a positively-oriented loop around x = 0 is a braid
βf ∈ Brn, whose link closure is the link Lf introduced in Section 1.5. We see that
X̄βf

is precisely the series X̄f introduced in (1.4).

A.5. Torus Links. For integers n, d > 0, let Tn,d be the positive (n, d) torus link,
considered negative in [DGR]. Its number of components is b = gcd(n, d). Taking
f(x, y) = yn − xd in the construction above shows that Tn,d is the link closure of a
braid βn,d ∈ Brn for which e = (n− 1)d. Let

δ = 1
2(e− n+ b) = 1

2(nd− n− d+ gcd(n, d)).

Let X̄n,d = X̄βn,d
, as in the rest of this paper, and Xn,d = Xβn,d

.

Example 67. For the Hopf link T2,2, we have

X2,2(a, q, t) = 1 + qt
1− q + at

1− q ,

PT2,2,ORS(a, q, t) = aq−1 + aq3t2

1− q2 + a3qt3

1− q2 .

Example 68. For the trefoil T2,3, we have

X2,3(a, q, t) = 1 + qt + at,

PT2,3,ORS(a, q, t) = a2(q−2 + q2t2) + a4t3.

The latter series is [DGR, Ex. 3.3].

Example 69. For the (3, 4) torus knot T3,4, we have

X3,4(a, q, t) = 1 + qt + qt2 + q2t2 + q3t3

+ a(t + t2 + qt2 + qt3 + q2t3)

+ a2t3,

PT3,4,ORS(a, q, t) = a6(q−6 + q−2t2 + t4 + q2t4 + q6t6)

+ a8(q−4t3 + q−2t5 + t5 + q2t7 + q4t7)

+ a10t8.

The latter series is [DGR, Ex. 3.4].

In Section 4, we implicitly need the following identities that match X̄n,d,Xn,d
with other series in the literature.

(1) Let P̃n,m(u, q, t) be the series in [GN]. For coprime n, d, we have

X̄n,d(a, q, t) = tδ
1− q P̃n,d(−a, q, t−1).
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(2) Let Pm,n = Pm,n(a, q, t) be the series in [M22]. For coprime n, d, we have

X̄n,d(a, q, t) = (−a−1q 1
2 t 1

2 )δ Pn,d(−a, q, t−1).

Note that the substitution sends t 7→ q and q 7→ t−1, not vice versa.
(3) Let P̂0M ,0N (q, t, a), Q̂0M ,0N (q, t, a), R0M ,0N (q, t, a) be the series in [GMV20].

For any n, d, we have

1
1 + a X̄n,d(a, q, t) = 1

1− q Xn,d(a, q, t−1)

= R0n,0d(q, t−1, aq−1)

= Q̂0n,0d(q, t−1, aq−1) by [GMV20, Cor. 5.10]

= q−d−nP̂0n,0d(q, t, aq−1) by [GMV20, (11)].
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