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Abstract. A simple braid is a positive braid that can be drawn so that any
two strands cross at most once. We prove that as n → ∞, the proportion
of simple braids on n strands that have positive topological entropy tends
toward 100%. Notably, such braids are either pseudo-Anosov or reducible
with a pseudo-Anosov component. Our proof involves a method of reduction
from simple braids to non-simple 3-strand braids that may be of independent
interest.

1. Introduction

1.1. Let Brn be the braid group on n strands. A braid β ∈ Brn is simple iff, in
some planar diagram for β, the crossings are all positive and any two strands cross
at most once. The subset of simple braids En ⊆ Brn forms a generating set: the
most natural one for the Garside theory of Brn [EM].

At the same time, Brn can be identified with the mapping class group of a disk
with n marked points rel its boundary. By [AKM], every self-map of a compact
topological surface can be assigned a nonnegative real number called its topological
entropy, or entropy for short, roughly measuring the growth rate of its mixing of
open covers. The entropy of a mapping class is defined to be the infimum of the
entropies of the maps it represents. The goal of this note is to prove:

Theorem 1. The proportion of simple braids on n strands that have positive topo-
logical entropy tends to 100% as n tends to infinity.

In fact, we give a more precise version: Theorem 17. The idea of the proof is to
reduce from studying simple braids on n strands to studying non-simple braids on
3 strands, whose positive entropy can be detected via the quotient homomorphism
Br3 → SL2(Z). The reduction step, as well as the combinatorics that ensures that
sufficiently many of the resulting 3-strand braids have positive entropy, may be of
independent interest.

1.2. One motivation for Theorem 1 is the study of a different, but closely related,
property of braids. Recall that under the Nielsen–Thurston classification, a map-
ping class is either periodic, reducible, or pseudo-Anosov. These options amount
to the possible dynamics for its action on simple closed curves [T]. The entropy
and Nielsen–Thurston type of a mapping class constrain each other: Namely, its
entropy is zero if and only if it is either periodic or reducible with solely periodic
components [BB].

Caruso and Wiest showed that if n ≥ 3, then in the Cayley graph of (Brn, En),
the proportion of pseudo-Anosov braids in the ball of radius ℓ tends to 100% as ℓ

tends to infinity [C,CW]. This confirmed a folklore expectation dating to the work
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of Thurston. Mahler and Sisto showed similar results, phrased in terms of random
walks in non-elementary subgroups [M,S].

The following sharpening of Theorem 1, which we leave to future work, would
be directly complementary to the work of Caruso and Wiest.

Conjecture 2. The proportion of simple braids on n strands that are pseudo-
Anosov tends to 100% as n tends to infinity.

1.3. We thank the 2021 MIT PRIMES-USA program for putting us in contact,
and for helping to fund this research. We thank Stephen Bigelow, Benson Farb,
and Reid Harris for answering questions about the Burau representation and topo-
logical entropy, and Tanya Khovanova and Kent Vashaw for proofreading an earlier
draft. During the PRIMES program, the second author was supported by an NSF
Mathematical Sciences Research Fellowship, Award DMS-2002238.

We dedicate this note to the memory of Kevin James, who mentored the second
author at the 2012 Clemson University REU in Computational Algebraic Geometry,
Combinatorics, and Number Theory.

2. Topological Entropy

In this section, we collect the only properties of topological entropy that we
actually need.

2.1. Let S be an compact topological surface, possibly with boundary, and I ⊂ S

a finite set of points in its interior. Let M = Mod(S, I, ∂S) be the mapping class
group of (S, I) rel the boundary ∂S. Explicitly, M = π0(Homeo+(S, I, ∂S)), where
Homeo+(S, I, ∂S) is the group of self-homeomorphisms of S that stabilize I and fix
∂S, endowed with the compact-open topology [FM, §2.1].

2.2. We define the entropy of a map f : S → S to be its topological entropy h(f)
in the sense of [AKM]. We define the entropy of a mapping class ϕ ∈ M to be

h(ϕ) = inf
f∈ϕ

h(f),

where the notation f ∈ ϕ means f is a representative of ϕ.

Lemma 3. The function h : M → R≥0 has the following properties:

(1) h is constant along conjugacy classes.
(2) For any ϕ ∈ M and integer k > 0, we have h(ϕk) ≤ kh(ϕ).

Proof. Parts (1) and (2) respectively follow from Theorems 1 and 2 in ibid. □

2.3. Suppose that I ′ ⊆ I. By construction, a mapping class ϕ ∈ M can be lifted
to M ′ := Mod(S, I ′, ∂S) if and only if some, or equivalently any, representative of
ϕ stabilizes I ′. We deduce that:

Lemma 4. If ϕ ∈ M lifts to ϕ′ ∈ M ′, then h(ϕ) ≥ h(ϕ′).



SIMPLE BRAIDS TEND TOWARD POSITIVE ENTROPY 3

2.4. Let D be a closed disk, and I ⊂ D a finite set of points in its interior. Let

BrI = π1(Conf |I|(D), I),

where Conf n(D) denotes the configuration space of n unordered points in D. As
explained in [FM, §9.1.3], there is an explicit isomorphism

β 7→ ϕ(β) : BrI
∼−→ Mod(D, I, ∂D).

At the same time, we can identify BrI with the usual braid group on |I| strands,
up to fixing an ordering of I.

We define the entropy of a braid β to be that of the corresponding mapping
class: h(β) = h(ϕ(β)). Now we can rewrite Lemma 4 in terms of braids. For any
β ∈ BrI and I ′ ⊆ I, we say that I ′ is stable under β iff we can delete strands from
β to obtain an element of BrI′ . In this case, we denote the new braid by β|I′ . Since
ϕ(β) lifts to ϕ(β|I′), Lemma 4 says that

h(β) ≥ h(β|I′).(2.1)

2.5. For any integer N > 0 and g ∈ MatN (C[t±1]), the characteristic polynomial
of g is a polynomial of degree N with coefficients in C[t±1]. For any complex
number z ̸= 0, let Spec(g(z)) be the eigenvalue spectrum of g(z) := g|t→z, viewed
as an unordered multiset of N complex numbers. The spectral radius of g, which
we will denote rad(g), is the maximum value of |λ| as we run over z on the unit
circle and λ ∈ Spec(g(z)). The following result linking spectral radius to entropy
was shown by Fried [F] and Kolev [K] independently:

Theorem 5 (Fried, Kolev). Let ρ : Brn → GLn(Z[t±1]) be the unreduced Burau
representation of Brn, as in [K, §2]. Then log rad(ρ(β)) ≤ h(β) for all β ∈ Brn.

Corollary 6. In Theorem 5, the same conclusion would hold were ρ the reduced,
rather than unreduced, Burau representation.

Proof. As a Z[t±1][Brn]-module, the unreduced representation is the direct sum of
the reduced representation and the trivial representation [Tu, §1.3]. □

Corollary 7. Let γ : Br3 → SL2(Z) be the reduced Burau representation at n = 3
and t = −1. Then |tr(γ(β))| > 2 implies h(β) > 0 for all β ∈ Br3.

Proof. If |tr(γ(β))| > 2, then γ(β) must have an eigenvalue greater than 1. □

3. Simple Braids

3.1. Following Artin, the braid group on n strands has the presentation

Brn =
〈

σ1, . . . , σn−1

∣∣∣∣∣ σiσi+1σi = σi+1σiσi+1 i = 1, . . . , n − 1,

σiσj = σjσi |i − j| > 1

〉
,

where σi represents the positive simple twist of the ith and (i + 1)th strands. The
writhe of a braid on n strands is its image under the quotient map ℓ : Brn → Z
that sends ℓ(σi) = 1 for all i.
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3.2. Let Sn be the symmetric group on n letters. Let si be the simple transposition
that swaps i and i + 1. There is a quotient homomorphism Brn → Sn given by
σi 7→ si.

The set of simple braids En ⊆ Brn is the image of a right inverse to this quotient
map. Indeed, every permutation w ∈ Sn can be written as

w = (si1 · · · s1)(si2 · · · s2) · · · (sin
· · · sn)

for some uniquely determined i1, i2, . . . , in such that j − 1 ≤ ij ≤ n − 1. Let

σw = (σi1 · · · σ1)(σi2 · · · σ2) · · · (σin
· · · σn).

Then w 7→ σw is a right inverse of the quotient map Brn → Sn, and furthermore,
En = {σw | w ∈ Sn} [EM].

3.3. For any w ∈ S3 and integer N > 0, let

P (w, N) = {w⃗ = (w1, . . . , wN ) ∈ SN
3 | w1 · · · wN = w}.

For any w⃗ ∈ SN
3 , let σw⃗ = σw1 · · · σwN

. We now show that many 3-strand braids of
the form σw⃗ for some w⃗ ∈ P (w, N) are braids of positive entropy.

Lemma 8. Let β1, . . . , βk ∈ Br3 be a list of 3-strand braids such that:
(1) They are all positive, i.e., can be written without negative powers of the σi.
(2) They are all pure, i.e., map to the identity of Sn.
(3) There is no matrix g ∈ SL2(Z) such that

|tr(gγ(βi))| ≤ 2 for all i.

Let L = maxi ℓ(βi), the maximum writhe among the βi. Then

|{w⃗ ∈ P (w, N) | h(σw⃗) > 0}| ≥ 6N−L−1

for any integer N ≥ L + 1.

Proof. By Corollary 7, it suffices to give a lower bound on the number of w⃗ ∈
P (w, N) such that |tr(γ(σw⃗))| > 2.

We have complete freedom to pick the first N − L − 1 entries of w⃗. We pick the
(N − L)th entry to ensure that the product of the first N − L entries of w⃗ equals
w. By condition (3), there must be some i such that

|tr(γ(σw1 · · · σwN −L)γ(βi))| > 2.

Using condition (1), we can write βi = σwN−L+1 · · · σwN−L+k
for some k ≤ L and

wN−L+1, . . . , wN−L+k ∈ S3. For j such that k < j ≤ L, we set wN−L+j = 1.
Finally, by condition (2), the product of all of the entries in the resulting tuple w⃗

equals w. □

Lemma 9. In the setup of Lemma 8, it is possible to choose the braids βi ∈ Br3

so that k = 4 and L = 6. Explicitly,

(βi)4
i=1 = (1, σ2

1σ2
2 , σ2

2σ2
1 , σ4

1σ2
2).
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Proof. Conditions (1)–(2) on the βi are immediate; it remains to check condition
(3). Without loss of generality, we can normalize the reduced Burau representation
so that the homomorphism γ in Corollary 7 takes the form

γ(σ1) =
(

1 1
0 1

)
, γ(σ2) =

(
1 0

−1 1

)
.

We compute that

(γ(βi))4
i=1 =

((
1 0
0 1

)
,

(
−3 2
−2 1

)
,

(
1 2

−2 −3

)
,

(
1 −2
4 −7

))
.

So we must show that there cannot exist
(

a b
c d

)
∈ SL2(Z) such that

|a + d| ≤ 2,(3.1)

|−3a − 2b + 2c + d|, |a − 2b + 2c − 3d| ≤ 2,(3.2)

|a + 4b − 2c − 7d| ≤ 2.(3.3)

(The structure of our argument will clarify why we group the inequalities in this
way.) In what follows, set f = −2a + 2b. First, by (3.2),

4|a − d| ≤ |−3a + f + d| + |a + f − 3d| ≤ 4,

from which we deduce

|a − d| ≤ 1.(3.4)

Next, by (3.1), 2|a| ≤ |a − d| + |a + d| ≤ 3, from which a ∈ {−1, 0, 1}.
If a = 0, then by (3.4), d ∈ {−1, 0, 1}. If d = 0, then (3.2) says |f | ≤ 2, from

which −b + c ∈ {−1, 0, 1}. This contradicts the fact that bc = ad − bc = 1. If d = 1,
then (3.2) says |f + 1|, |f − 3| ≤ 2. This forces f = 1, contradicting the fact that
f ∈ 2Z. The argument when d = −1 is similar, but with flipped signs.

If a = 1, then by (3.4), d ∈ {0, 1}. If d = 0, then the same argument as for
(a, d) = (0, 1) shows that f = 1, contradicting f ∈ 2Z. If d = 1, then (3.2) says
|f − 2| ≤ 2, from which −b + c ∈ {0, 1, 2}. But also, 1 − bc = ad − bc = 1, from
which bc = 0. Therefore, (b, c) ∈ {(0, 0), (0, 1), (0, 2), (−1, 0), (−2, 0)}, and each
option contradicts (3.3).

Finally, the argument when a = −1 is similar to that when a = 1, except that
in the d = −1 subcase, the options for (b, c) have flipped signs in both entries, so
we can again conclude using (3.3). □

3.4. Next we explain how, using the sets P (w, N) above, we can pass from simple
braids on many strands to non-simple braids on 3 strands that have equal or lower
entropy. For any integer N > 0, let

CN = {w ∈ S3N | w is a single cycle of length 3N}.

We define a map

p⃗ : CN → P (s1s2, N) ⊔ P (s2s1, N)(3.5)
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as follows. First, for any c ∈ CN and residue class i mod 3N , let ai = ai(c) be the
image of 1 under ci, where we view ci as a permutation of {1, 2, . . . , 3N}. In other
words, c is the cycle 1 = a0 7→ a1 7→ · · · 7→ a3N = 1. We define a permutation of
{1, 2, 3} in three stages:

(1) A bijection {1, 2, 3} ∼−→ {ai−1, ai−1+N , ai−1+2N } sending 1 to the smallest
element of the target, 2 to the next-smallest, and 3 to the largest.

(2) A bijection {ai−1, ai−1+N , ai−1+2N } ∼−→ {ai, ai+N , ai+2N } sending ak 7→
ak+1 for all k.

(3) A bijection {ai, ai+N , ai+2N } ∼−→ {1, 2, 3} sending the smallest element of
the domain to 1, the next-smallest to 2, and the largest to 3.

For i = 1, 2, . . . , N , let pi = pi(c) ∈ S3 be the permutation of {1, 2, 3} resulting
from the construction above.

Lemma 10. For all c ∈ CN , the product w1(c) · · · wN (c) is a 3-cycle, so (3.5) can
be defined using p⃗(c) := (p1(c), . . . , pN (c)). Moreover,

|{c ∈ CN | p⃗(c) = w⃗}| = |CN |
2 · 6N−1

for all w⃗ ∈ P (s1s2, N) ⊔ P (s2s1, N). That is, the fibers of p⃗ are equinumerous.

Proof. In the notation of the discussion above, the product w = w1(c) · · · wN (c) is
the permutation of {1, 2, 3} defined in stages by:

(1) A bijection {1, 2, 3} ∼−→ {1, aN , a2N } sending 1 to 1, 2 to the next-smallest
element, and 3 to the largest.

(2) A permutation of {1 = a0, aN , a2N } sending ak 7→ ak+N for all k.
(3) A bijection {1, aN , a2N } ∼−→ {1, 2, 3} sending 1 to 1, the next-smallest ele-

ment to 2, and the largest to 3.

We deduce that w is the 3-cycle that sends 1 7→ 2, resp. 1 7→ 3, when aN < a2N ,
resp. a2N < aN . This proves the first assertion.

Next, observe that there are |CN |
2·6N−1 ways to form an ordered N -tuple A⃗ =

(A1, . . . , AN ) of sets of size 3 such that their union is {1, . . . , 3N} and A1 ∋ 1.
For any w⃗ = (w1, . . . , wN ) ∈ P (s1s2, N) ⊔ P (s2s1, N), we claim that there is an
injective map from the set of such tuples into the set of cycles c ∈ CN for which
p⃗(c) = w⃗. Since the number of possible w⃗, resp. c, is 2 · 6N−1, resp. |CN |, this will
prove the second assertion.

It suffices to show that w⃗ determines a way of assigning the elements of Ai

bijectively to variables ai−1, ai−1+N , ai−1+2N for every i, such that a0 = 1. We
use induction: If A1 = {1, a, b}, then the 3-cycle w1 · · · wN determines whether we
assign (aN , a2N ) to be (a, b) or (b, a). In general, once we have assigned the elements
of Ai, the permutation wi determines how we assign the elements of Ai+1. □

Lemma 11. For all c ∈ CN , we have

h(σc) ≥ 1
N

h(σp⃗(c)).

Proof. We use the setup and language of Section 2. Let I ⊆ D be a finite set of
3N points, and order them from 1 to 3N , so that we can identify Br3N with BrI .
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If c is the 3N -cycle 1 = a0 7→ a1 7→ · · · 7→ a3N = 1, then cN contains the 3-cycle
1 7→ aN 7→ a2N 7→ 1. Thus I ′ := {1, aN , a2N } is stable under σN

c . In fact, if we
identify BrI′ with Br3 via some ordering, then σN

c |I′ can be identified with σp⃗(c)

up to conjugacy. Now,

Nh(σc) ≥ h(σN
c ) ≥ h(σN

c |I′) = h(σp⃗(c))

by Lemma 3 and display (2.1). □

3.5. Combining Lemmas 8–11 gives:

Lemma 12. For any N ≥ 7, we have

|{c ∈ CN | h(σc) > 0}|
|CN |

≥ 6−6.

For any n and w ∈ Sn, we will call a cycle of w relevant if its length is divisible
by 3 and at least 3 · 7 = 21, and irrelevant otherwise. We apply the same name to
the corresponding orbit, i.e., to the underlying unordered subset of {1, . . . , n}. We
define an equivalence relation on Sn as follows: w ≈ w′ means that w and w′ have
the same irrelevant cycles and the same relevant orbits.

We arrive at the following result, reducing the proof of Theorem 1 to exhibiting
sufficiently many elements of Sn with sufficiently many relevant cycles.

Proposition 13. Let D ⊆ Sn be an equivalence class for the relation ≈ in which
the elements each have r relevant cycles. Then

|{w ∈ D | h(σw) > 0}|
|D|

≥ 1 − (1 − 6−6)r.

Proof. Let O be the collection of relevant orbits arising from elements of D. By
restricting any element of D to its behavior on these orbits, we get a bijection

D
∼−→ {(cO)O∈O | cO is an |O|-cycle with underlying orbit O}.

Moreover, if w 7→ (cO)O, then h(σw) ≥ maxO h(σcO(w)) by (2.1). So it remains to
bound the proportion of tuples (cO)O that have h(σcO

) = 0 for all O.
For any O ∈ O, we must have |O| = 3N for some N ≥ 7. Fix an ordering of the

elements of O, so that we can identify the possibilities for cO with elements c ∈ CN .
Then, by Lemma 3(1) and Lemma 12, the proportion of possibilities for cO with
h(σcO

) = 0 is at most 1 − 6−6. Applying this argument to each of the r relevant
orbits, we see that the proportion of tuples (cO)O that have h(σcO

) = 0 for all O is
at most (1 − 6−6)r. □

4. Permutations with Many Long Cycles

4.1. For any integers n, ℓ, r > 0, let

Sn(ℓ, r) =
{

w ∈ Sn

∣∣∣∣∣ w has at least r cycles of length divisible by 3
and length at least 3ℓ

}
.

The goal of this section is to prove:
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Proposition 14. For fixed ℓ, r > 0 and n ≫ℓ,r 0, we have

|Sn(ℓ, r)|
|Sn|

= 1 − o

(
r
( n

3ℓ · 2r

)− 1
6ℓ·2r

)
,

where the little-o constant is independent of ℓ, r.

Proof. By Lemma 16 below, we know that the proportion of elements of Sn that
have no cycles of length j · 3 · 2i with j odd is O((n/(3 · 2i))− 1

6·2i ).
Let i0 = ⌈log2(ℓ)⌉. Then the proportion of elements that have at least one cycle

of length j · 3 · 2i with j odd, for each i such that i0 + 1 ≤ i < i0 + r, is

1 − o

(
r
( n

3ℓ · 2r

)− 1
6ℓ·2r

)
for n ≫ℓ,r 0.

In any such element, these r cycles must be pairwise distinct because their lengths
are. Moreover, their lengths are divisible by 3 and at least 3ℓ. □

4.2. For any integers n, k > 0, let

Xn,k = {w ∈ Sn | w has no cycles of length k, 3k, 5k, . . .}.

Lemma 15. We have∑
n≥0

|Xn,k|x
n

n! = (1 − x)−1(1 − xk) 1
k (1 − x2k)− 1

2k .(4.1)

Proof. For each integer m > 0, fix an indeterminate tm, and for each w ∈ Sn, let
λm(w) be the number of m-cycles in w. Display (5.30) of [St] says that

∑
n≥0

∑
w∈Sn

t
λ1(w)
1 · · · tλn(w)

n

xn

n! = exp

∑
m≥1

tm
xm

m

 ,

where exp(X) =
∑

n≥0
Xn

n! as a formal series. Now set tm = 0 whenever m = jk

with j odd and tm = 1 for all other m. The left-hand side simplifies to that of
(4.1), while the right-hand side simplifies to

exp

∑
m≥1

xm

m
−
∑
j≥1

xjk

jk
+
∑
i≥1

x2ik

2ik

 .

To finish, use exp(
∑

m≥1
Xm

m ) = (1 − X)−1. □

Lemma 16. For fixed k > 0 and n ≫k 0, we have

|Xn,k|
|Sn|

= O

((n

k

)− 1
2k

)
,

where the big-O constant is independent of k.

Proof. We will study the right-hand side of (4.1). First, we expand

(1 − x)−1(1 − xk) 1
k = 1 − xk

1 − x

∑
i≥0

( 1
k − 1

i

)
(−1)ixik,(4.2)

(1 − x2k)− 1
2k =

∑
i≥0

(
− 1

2k

i

)
(−1)ix2ik(4.3)
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The right-hand side of (4.2) simplifies to a power series with nonnegative coeffi-
cients. As for (4.3): Observe that for any α ∈ (0, 1] and integer i ≥ 0, we have(

−α

i

)
(−1)i = α(α + 1) · · · (α + i − 1)

i! ≤ 2 · α(α + 1) · · · (α + 2i − 1)
(2i)! = 2

(
−α

2i

)
,

where we handle i = 0 separately to prove the inequality. Therefore, for each
i ≥ 0, the coefficient of x2ik on the right-hand side of (4.3) is nonnegative and
bounded above by 2

(−1/(2k)
2i

)
. That is, the coefficients in the series expansion of

(1 − x2k)− 1
2k are nonnegative and bounded above by the respective coefficients in

the series expansion of 2(1 − xk)− 1
2k .

Altogether, by Lemma 15, |Xn,k|/|Sn| is bounded above by the coefficient of xn

in the series expansion

2(1 − x)−1(1 − xk) 1
k (1 − xk)− 1

2k = 2(1 − x)−1(1 − xk) 1
2k

= 2
(

1 − xk

1 − x

)∑
i≥0

( 1
2k − 1

i

)
(−1)ixik

= 2
∑
n≥0

( 1
2k − 1
⌊ n

k ⌋

)
(−1)⌊ n

k ⌋xn.

Finally, for any α ∈ R \ Z≥0, it is known [L, Thm. 2] that∣∣∣∣(α

m

)∣∣∣∣ ∼ 1
|Γ(−α)m1+α|

as m → ∞.

Note that taking α = 1
2k − 1 gives 1

2 ≤ −α ≤ 1. On this interval, Γ(−α) ≥ 1, so
we’re done. □

5. Conclusion

What follows is a quantitative refinement of Theorem 1.

Theorem 17. For any 0 < ϵ < 1 and integer r > log1−6−6(ϵ), we can pick N large
enough that for all n ≥ N , we have

|Sn(7, r)|
|Sn|

· (1 − (1 − 6−6)r) > 1 − ϵ

in the notation of Section 4. For such n, the proportion of simple braids on n

strands that have positive topological entropy is greater than 1 − ϵ.

Proof. Proposition 14 implies the first claim. Proposition 13 gives

|{w ∈ Sn(7, r) | h(σw) > 0}|
|Sn(7, r)| ≥ 1 − (1 − 6−6)r,

from which

|{w ∈ Sn | h(σw) > 0}|
|Sn|

≥ |Sn(7, r)|
|Sn|

· |{w ∈ Sn(7, r) | h(σw) > 0}|
|Sn(7, r)|

> 1 − ϵ,

proving the second claim. □
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