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Abstract. For any generic finite reductive group G, integer e > 0, and Φe-
cuspidal pair (L, λ), Broué–Malle–Michel conjectured that the endomorphism
rings of the Deligne–Lusztig representations attached to G, (L, λ) all come from
the same generic cyclotomic Hecke algebra. We propose a new conjecture
about the Harish-Chandra theory of such pairs, involving two integers e and
m: namely, that the intersection of an Φe-Harish-Chandra series and a Φm-
Harish-Chandra series is parametrized by both a union of Φm-blocks of the
Φe-Hecke algebra and a union of Φe-blocks of the Φm-Hecke algebra, in a way
that matches blocks. We also conjecture that when blocks match, there is an
equivalence of categories between their highest-weight covers. When e = 1, we
provide evidence that our bijections are essentially realized by bimodules that
Oblomkov–Yun construct from the cohomology of affine Springer fibers. This
suggests a strange analogy: Roughly, homogeneous affine Springer fibers are
to roots of unity as tensor products of Deligne–Lusztig representations are to
prime powers.

We predict the generic Hecke parameters for arbitrary Φ-cuspidal pairs of
the groups GLn and GUn, unifying the known cases. We prove that they would
imply our conjectural bijections for these groups and coprime e, m. Then we
show that the bijections for GLn would be related by affine permutations to
Uglov’s bijections between bases of higher-level Fock spaces. This would reduce
our block equivalences for GLn to those conjectured by Chuang–Miyachi and
proved by several authors under the name of level-rank duality. Finally, for
many cases in exceptional types, we verify that the parameters predicted by
Broué–Malle are compatible with our conjectures.
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1. Introduction

1.1. Double affine Hecke algebras, or DAHAs, were introduced by Cherednik in
proving Macdonald’s conjectures about orthogonal polynomials [Ch]. Their rational
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degenerations, also known as rational Cherednik algebras, were introduced in [D,
EG], and have since found independent applications to symplectic geometry and
representation theory. In particular, rational DAHAs may be viewed as rings of
quantized differential operators, which admit analogues of the Bernstein–Gelfand–
Gelfand category O of a semisimple Lie algebra [GGOR]. Via a Riemann–Hilbert-
type construction, their categories O form the highest-weight covers of the module
categories of cyclotomic Hecke algebras at roots of unity [R08].

In [S76], Springer constructed representations of finite Weyl groups using the
cohomology of fixed-point varieties in flag manifolds, now known as Springer fibers.
In [L96], Lusztig extended this work to affine Weyl groups, using ind-varieties now
known as affine Springer fibers. In [OY], motivated by prior K-theoretic work
in [VV], Oblomkov–Yun developed a double-affine analogue, involving actions of
trigonometric and rational DAHAs on the modified cohomology of homogeneous
affine Springer fibers. In this setting, the Springer actions intertwine with the
actions of certain braid groups, arising via monodromy and associated with smaller
complex reflection groups than the original Weyl group. This paper grew from our
attempts to find formulas for the resulting (DAHA, braid-group) bimodules.

In [T], motivated by a putative Betti analogue of Oblomkov–Yun’s setup, the
first author conjectured a formula for the virtual graded character of their rational
DAHA module in the split case, taking the form

∑
χ

Degχ(e2πiν)[∆ν(χ)].(1.1)

Above, ν ∈ Q>0 is the constant central charge of the rational DAHA, in lowest
terms. The sum runs over the irreducible characters of the Weyl group W . The
expression [∆ν(χ)] is the graded character of the Verma module of the DAHA
indexed by χ, while its coefficient Degχ(e2πiν) ∈ Z is the value at x = e2πiν of
the generic-degree polynomial Degχ(x) ∈ Q[x]. This polynomial can be defined as
follows: For any prime power q > 1 and split finite reductive group G(q) over Fq
with Weyl group W , the degree of the unipotent principal series representation of
G(q) indexed by χ is equal to Degχ(q). In this way, (1.1) suggests a connection
between the rational DAHA modules in [OY] and representations of finite groups
of Lie type.

In [VX], in the context of their ongoing study of character sheaves for graded
Lie algebras,1 Vilonen and the second author constructed a local system over the
same base space as the affine Springer fibration in [OY]. They computed that its
monodromy, a priori a braid action, factors through a cyclotomic Hecke algebra
for the underlying complex reflection group. We expect that the local system of
Oblomkov–Yun, after we forget its DAHA action, is essentially the local system of
Vilonen–Xue, via a double application of Fourier duality passing through work of
Lusztig–Yun [LY17, LY18]. This would mean the braid-group representations in
[OY] factor through the same Hecke algebras.

1Also known as anti-orbital complexes.
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1.2. These starting points have led us to a more general framework, phrased most
clearly and symmetrically in terms of Broué–Malle–Michel’s formalism of generic
finite reductive groups [BMM93]. We review it more fully in Sections 2–3.

Roughly, a generic finite reductive group G consists of a root datum ΓG and a
finite-order automorphism of ΓG, defined up to composition with the Weyl group.
For simplicity, let us exclude the Suzuki and Ree cases. Then, for each prime
power q > 1, the root datum defines a connected reductive group G over F̄q,
and the automorphism defines a q-Frobenius F : G → G, hence a finite reductive
group G(q) := GF . The work of Broué–Malle–Michel concerns the parts of the
representation theory of G(q) where q can be treated as an indeterminate, or which
do not depend on q at all. In particular, the irreducible characters of G(q) which
are unipotent in the sense of Deligne–Lusztig theory can be indexed by a set Uch(G)
depending only on G.

As in Harish-Chandra’s philosophy of cusp forms, the elements of Uch(G) can
be grouped, according to their behavior under Lusztig restriction, into subsets
Uch(G,L, λ) indexed by equivalence classes of pairs (L, λ), where:

(1) L is the generic version of a Levi subgroup whose root system is a parabolic
subsystem of that of G.

(2) λ ∈ Uch(L) is the generic version of a cuspidal unipotent irreducible char-
acter of that Levi.

The equivalence relation is conjugacy under the Weyl group of G.
For any integer e > 0, we say that L is Φe-split iff it is the centralizer of a Φe-

torus, meaning one whose generic order is a power of the eth cyclotomic polynomial
Φe. We say that λ is Φe-cuspidal iff it is not induced from any smaller Φe-split
Levi. The main result of [BMM93] states that for fixed e, the subsets Uch(G,L, λ)
arising from Φe-split L and Φe-cuspidal λ are disjoint and partition Uch(G). They
recover the partition into usual Harish-Chandra series when e = 1, and hence, are
called Φe-Harish-Chandra series.

Each Φe-cuspidal pair (L, λ) defines a finite complex reflection group WG,L,λ: the
centralizer of λ in the generic relative Weyl group of (G,L). Broué–Malle–Michel
predict the existence of an algebra HG,L,λ(x) over a suitable cyclotomic extension
of Z[x], such that:

• The group algebra of WG,L,λ is isomorphic to HG,L,λ(ζe), where ζe is any
primitive eth root of unity.
• For all prime powers q > 1, the endomorphism algebra of the Deligne–

Lusztig representation of G(q) arising from (L, λ) is HG,L,λ(q).

See Conjecture 3.3. Above, the notation HG,L,λ(α) connotes a specialization of the
form x

1
n 7→ α

1
n . By the double-centralizer theorem, the existence of HG,L,λ(x),

together with an appropriate flatness statement, would imply a bijection

χG
L,λ : Uch(G,L, λ) ∼−→ Irr(WG,L,λ)(1.2)

compatible with induction from smaller Φe-split Levis. Even though HG,L,λ(x) has
been constructed only in certain cases, Broué–Malle–Michel were able to construct
the putative bijections χG

L,λ for all G and (L, λ), via case-by-case arguments.
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1.3. Suppose that A is a Φ1-split maximal torus of G for which HG,A,1(x) exists,
and that the automorphisms defining G and A are induced by the same Dynkin-
diagram automorphism. In this case, the BGG category O of the rational DAHA in
[OY], depending on a slope ν ∈ Q>0, defines a highest-weight cover of the module
category of HG,A,1(e2πiν). Note that by the discussion above, the specialization
HG,A,1(1) must be the group algebra of the relative Weyl group of (G,A), but for
ν /∈ Z, the specializations HG,A,1(e2πiν) need not even be semisimple.

On the other hand, if T is a Φm-split maximal torus, then WG,T,1 is the complex
reflection group whose braid group appears in [OY], when ν = d

m for any d > 0
coprime to m. Recall that we expect the braid actions in ibid. to factor through the
Hecke algebras in [VX]. It turns out that the latter are all of the form HG,T,1(1),
for various m and T.

These observations suggest that the (DAHA, braid-group) bimodules in [OY]
reify some sort of duality between the specializations HG,A,1(ζm) and HG,T,1(1).
One is led to guess that beyond this geometric setting, the specific choices A and T
are artificial, and that dualities should exist between certain blocks of HG,L,λ(ζm)
and of HG,M,µ(ζe) for any primitive roots ζe and ζm, any Φe-cuspidal pair (L, λ),
and any Φm-cuspidal pair (M, µ). We have found evidence that this is so.

To state our conjectures, we use the following notation. Assuming that HG,L,λ(x)
has been defined, and that b is a block of the module category for HG,L,λ(ζm), let
Irr(WG,L,λ)b ⊆ Irr(WG,L,λ) be the subset of irreducible characters that index the
standard objects in the highest-weight cover of b. Equivalently, they index the
simple KHG,L,λ(x)-modules in the preimage of b along the Brauer decomposition
map [GP, GJ] from virtual KHG,L,λ(x)-modules to virtual HG,L,λ(ζm)-modules, for
an appropriate field K ⊇ Q(x).

For e,m, (L, λ), (M, µ) as above, let Uch(G,L, λ,M, µ) be the intersection of
the Harish-Chandra series Uch(G,L, λ) and Uch(G,M, µ). Let Irr(WG,L,λ)M,µ ⊆
Irr(WG,L,λ) and Irr(WG,M,µ)L,λ ⊆ Irr(WG,M,µ) be the images of the maps

Irr(WG,L,λ)
χG
L,λ←−−− Uch(G,L, λ,M, µ)

χG
M,µ−−−→ Irr(WG,M,µ).(1.3)

Assuming that HG,L,λ(x) and HG,M,µ(x) have been defined, consider the following
assertions about these Hecke algebras:

(I) Irr(WG,L,λ)M,µ, resp. Irr(WG,M,µ)L,λ, is partitioned by sets taking the form
Irr(WG,L,λ)b for blocks b of HG,L,λ(ζm), resp. Irr(WG,M,µ)c for blocks c of
HG,M,µ(ζe).

(II) Above, χG
L,λ and χG

M,µ induce a bijection between the set of b such that
Irr(WG,L,λ)b ⊆ Irr(WG,L,λ)M,µ and the set of c such that Irr(WG,M,µ)c ⊆
Irr(WG,M,µ)L,λ: hence, a bijection between Irr(WG,L,λ)b and Irr(WG,M,µ)c

when b and c correspond to each other.
(III) Above, the bijection Irr(WG,L,λ)b

∼−→ Irr(WG,M,µ)c is categorified by an
equivalence between the derived categories of the highest-weight covers of
b and c.

The statement below comprises Conjectures 4.1 and 4.3 in the body text.
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Conjecture 1. Whenever Broué–Malle–Michel’s Conjecture 3.3 holds, the Hecke
algebras HG,L,λ(x) and HG,M,µ(x) that it predicts satisfy properties (I)–(III).

1.4. In Section 5, we review the precise setup of Oblomkov–Yun. Then we present
evidence toward a conjectural formula for their (DAHA, braid-group) bimodules,
or rather, its class in a certain Grothendieck group: See Proposition 5.4.

For now, we merely sketch their geometry. Suppose that the root datum ΓG is
irreducible, that G arises from a Dynkin-diagram automorphism, and that A is a
Φ1-split maximal torus of G. Let g be the Lie algebra over C[[z]] corresponding
to G, and let Lg be the formal loop space for which Lg(C) = g(C((z))) with z an
indeterminate. For any ν ∈ Q, Oblomkov–Yun construct:

(1) A (finite-dimensional) subvariety Lgrs
ν ⊆ Lg, stable under a Gm-action on

Lg that depends on ν and a choice of simple roots. The superscript rs is
meant to connote regular semisimple elements.

We write Brν,γ for the fundamental group of Lgrs
ν with basepoint γ. We previously

mentioned that if m is the denominator of ν in lowest terms, and T is a Φm-split
maximal torus of G, then Brν,γ is the braid group of WG,T,1.

Let Drat
G,A(ν⃗) be the rational DAHA of (G,A) with central charge ν⃗ depending

on ν as in [OY, §4.2]. (Note that some of our variable names do not match theirs.)
When G is split, ν > 0, and m is a regular elliptic number for the relative Weyl
group WG,A [VV, §1.1], Oblomkov–Yun construct:

(2) A local system of bigraded vector spaces over Lgrs
ν , which we will denote Eν .

The construction uses the Gm-equivariant cohomology of a certain affine
Springer fibration, together with its perverse filtration.

(3) A fiberwise Drat
G,A(ν⃗)-action on Eν , commuting with the action of Brν,γ on

Eν,γ by monodromy.

The Brν,γ-invariants of Eν,γ form the simple Drat
G,A(ν⃗)-module often denoted Lν⃗(1).

We write [Eν,γ ] for the virtual graded bimodule formed from Eν,γ by taking the
alternating sum over cohomological degrees.

To state our conjectural formula, recall from [BMM93] that for any generic
character ρ ∈ Uch(G,T, 1) and primitive mth root of unity ζ, the generic degree
Degρ(x) ∈ Q[x] satisfies

Degρ(ζ) = εGT,1(ρ) degχG
T,1(ρ) for some sign εGT,1(ρ) ∈ {±1}.(1.4)

We also write χ1 for the character of HG,T,1(1) corresponding to a character χ of
WG,T,1 under Brauer decomposition.

Conjecture 2. Let G,A, ν,m,T be as above, with ν > 0 and m a regular elliptic
number for WG,A, and let γ ∈ Lgrs

ν (C). Assume that either G is split or [OY, Conj.
8.2.5] holds, and that Conjecture 3.3 holds for G,m, (T, 1). Then:

(1) The Brν,γ-action on Eν,γ factors through HG,T,1(1).
(2) In the Grothendieck group K0(CWG,A ⊗HG,T,1(1)op)[[t]][t−1], we have

[Eν,γ ] =
∑

ρ∈Uch(G,A,1,T,1)

εGT,1(ρ)[∆ν⃗(χG
A,1(ρ))⊗ χG

T,1(ρ)1],
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where ∆ν⃗(χ) denotes the standard module of Drat
G,A(ν⃗) indexed by χ, and the

variable t tracks its WG,A-equivariant Euler grading.

In the split case, Conjecture 2 refines (1.1), via (1.4). The refined formula bears
a remarkable analogy with a virtual bimodule that, under the Broué–Malle–Michel
conjectures, can be constructed from Deligne–Lusztig representations:

bimodule algebras H-parameters
Eν,γ (Drat

G,A(ν⃗), HG,T,1(1)) (e2πiν , 1)
RGL (λq)⊗CGF RGM (µq) (HG,L,λ(q), HG,M,µ(q)) (q, q)

(1.5)

Above, q > 1 is a prime power; G,L, λq,M, µq are the finite-group data arising from
q,G,L, λ,M, µ; and RGL (λq), RGM (µq) are the compactly-supported cohomologies of
appropriate Deligne–Lusztig varieties. The top right entry alludes to how Drat

G,A(ν⃗)
provides a highest-weight cover of HG,A,1(e2πiν). Section 5 gives more details.

1.5. Most work on the existence and explicit parameters of the Hecke algebras
HG,L,λ(x) has focused on the case where L is a maximal torus of G. Beyond tori,
the work of Dudas in [Du] implicitly determines their parameters for the generic
general linear groups G = GLn and cuspidal pairs (L, λ) such that WG,L,λ is cyclic,
confirming a prediction of Broué–Malle [BM93, §2.10].

In Conjecture 6.1, we predict the Hecke parameters for arbitrary Φ-cuspidal pairs
of GLn. Then, in Conjecture 6.4, we use Ennola duality to predict the parameters
for the corresponding Φ-cuspidal pairs of GUn. In Propositions 6.2 and 6.5, we
show that our predictions are consistent with all known cases. Note that for G =
GLn,GUn, the groups WG,L,λ are wreath products Ze ≀Sa := (Z/eZ)a⋊Sa; hence,
the Hecke algebras are specializations of Ariki–Koike algebras, whose blocks at roots
of unity were described combinatorially by Lyle–Mathas [LM]. At the conclusion
of Section 6, we use their work to prove:

Theorem 3. If G = GLn, resp. G = GUn, and the integers e,m are coprime, then
the Hecke algebras HG,L,λ(x) and HG,M,µ(x) defined by (6.2), resp. (6.3), satisfy
properties (I) and (II). In fact, Irr(WG,L,λ)M,µ and Irr(WG,M,µ)L,λ each correspond
to a single block.

In fact, for the general linear cases, we will relate the bijections in part (2) of
Conjecture 1 to bijections that previously appeared in Uglov’s work on higher-level
Fock spaces [U]. Recall that for each tuple s⃗ ∈ Ze, the v-deformed Fock space of level
e and charge s⃗ is the vector space Λs⃗v over Q(v) spanned by symbols |λ⃗, s⃗⟩, where λ⃗
runs over e-tuples of integer partitions, or e-partitions. For each integer m > 0, it
may be viewed as a module over the quantum affine algebra Uv(ŝlm), in which case
the residue of s⃗ modulo m describes the highest weight of the simple submodule
generated by |⃗0, s⃗⟩. Generalizing the work of Leclerc–Thibon on the level-1 case,
Uglov constructed a canonical basis for Λs⃗v, related to the standard basis by an
upper-triangular transition matrix of affine Kazhdan–Lusztig polynomials. To do
so, he made use of vector-space isomorphisms⊕

s⃗∈Ze

s1+···+se=s

Λs⃗v
∼←− Λsv

∼−→
⊕
r⃗∈Zm

r1+···+rm=s

Λr⃗v
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for each integer s, relating level-e and level-m Fock spaces to the level-1 Fock space
of charge s. Crucially, these isomorphisms are not defined symmetrically. Their
composition defines a nontrivial bijection from charged e-partitions onto charged
m-partitions. In [G], this bijection is described as a level-rank duality.

As already observed in [U], the left-hand map is essentially induced by the map
sending an integer partition to its e-core and e-quotient. The right-hand map is a
twisted version of the analogous map for m. It turns out that for G = GLn, where
Uch(G) is indexed by partitions of n, the Φe-Harish-Chandra series of a unipotent
irreducible character is indexed by the e-core of its partition, while its image under
(1.2) is indexed by a shifted version of its e-quotient. This similarity of structure
motivates the following result, proved in Section 7:

Theorem 4. Let Π be the set of all integer partitions. In the setup of Theorem 3
for G = GLn, the maps of (1.3) fit into a commutative diagram

Irr(WG,L,λ) Uch(G,L, λ,M, µ) Irr(WG,M,µ)

Πe × Ze Π Πm × Zm

Πe × Ze Πm × Zm

χG
L,λ χG

M,µ

Υ1
e(|ρ, e + ℓλ⟩)← [ ρ ρ 7→ Υ1

m(|ρ,m + ℓµ⟩)

w̃e,m,e+ℓλ
w̃m,e,m+ℓµ

Υe
m

where the integers ℓλ, ℓµ are the respective lengths of λ, µ; the maps w̃(−,−,−) are
induced by affine permutations; and the map Υe

m is Uglov’s bijection in [U, §4.1],
up to normalization. All maps in the diagram are injective or bijective.

Furthermore, the diagram is compatible with Lusztig induction between Φe- and
Φm-split Levis in a precise sense, given by Theorem 2.4(2d).

Chuang–Miyachi conjectured that Uglov’s bijections could be categorified by
Koszul dualities between blocks of highest-weight covers for Ariki–Koike algebras,
i.e., blocks of categories O for cyclotomic rational DAHAs [ChuM]. This categori-
fication of level-rank duality was proved by Shan–Varagnolo–Vasserot in [SVV],
through equivalences between such categories O and truncations of the parabolic
categories O of the affine Lie algebras ŝle. The latter equivalences were proved by
Losev [L] Rouquier–Shan–Varagnolo–Vasserot [RSVV], and Webster [W] indepen-
dently. Using these results, we deduce:

Corollary 5. If G = GLn and the integers e,m are coprime, then the Hecke
algebras HG,L,λ(x) and HG,M,µ(x) defined by (6.2) satisfy property (III).

1.6. In Section 8, we give evidence for Conjecture 1 in exceptional types, again
excluding the Suzuki and Ree cases. More precisely, for explicit Hecke parameters
that were either determined in [L-Cox, L78] or conjectured in [BM93, M], we verify
the partitioning of sets in (I), and the agreement of cardinalities implied by (II),
though not the bijections: See Proposition 8.1. Note that by Corollary 2.7, it
suffices to check pairs of singular numbers e,m. For (split) G of type G2 or F4, we
give the explicit details for all such pairs.
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1.7. Future Work. We expect Conjectures 6.1–6.4 to be tractable, as well as
certain extensions of Theorems 3–4 and Corollary 5:

• In Theorem 3, we expect to remove the hypothesis that e,m be coprime
from the first assertion. In this generality, the second assertion is false: the
partitions in (I) need not be singletons.
• We expect precise analogues of Conjectures 6.1–6.4, Theorems 3–4, and

Corollary 5 for reductive groups in types B,C,D, possibly after restricting
the whole setup to the unipotent principal series.

We will address the items above in a sequel.
The bimodule in Conjecture 2 also seems closely related to work of Boixeda

Alvarez–Losev [BL]. Using the same setup as Oblomkov–Yun, but at an integral
slope d rather than a regular elliptic slope, they construct a (Dtrig

G,A(d), Dtrig
G,A(0))-

bimodule, where Dtrig
G,A(ν) denotes the trigonometric DAHA rather than the rational

DAHA. This seems to add a third row to the analogy in (1.5). In a separate future
paper, we will address evidence toward an analogue of Conjecture 2(2) for the
bimodule in [BL].

1.8. Acknowledgments. We thank Pablo Boixeda-Alvarez, Olivier Dudas, George
Lusztig, Andrew Mathas, Kari Vilonen, and Zhiwei Yun for useful comments. Dur-
ing part of the preparation of this work, the first author was supported by an NSF
Mathematical Sciences Research Fellowship, Award DMS-2002238.

2. Φ-Harish-Chandra Series

2.1. If H is a finite group, then we write Rep(H) to denote the category of finite-
dimensional representations of H over an appropriate algebraically-closed field of
characteristic zero. When we work with algebraic varieties over finite fields and
their algebraic closures, it will be convenient to take the field Q̄ℓ, for a fixed prime
ℓ > 0. Elsewhere, we take the field C and fix isomorphisms Q̄ℓ ≃ C.

We identify isomorphism classes of representations of H with their characters.
We write Irr(H) for the set of irreducible characters.

2.2. Consider a prime power q > 1 and a connected, reductive algebraic group G

over F̄q, equipped with a q-Frobenius map F : G→ G defining an Fq-structure. For
any F -stable Levi subgroup L ⊆ G, Lusztig introduced induction and restriction
functors of the following form [L-Fin]:

RGL : Rep(LF ) ⇄ Rep(GF ) : ∗RGL

For any parabolic subgroup P ⊆ G containing L, not necessarily F -stable, the
induction functor RGL may be defined as H∗c(Y GL⊆P ) ⊗CLF (−), where Y GL⊆P is an
algebraic variety over Fq equipped with commuting actions of GF and LF . Here,
we have written H∗c(Y ) to denote the compactly-supported ℓ-adic cohomology of
YF̄q

, where ℓ is invertible in Fq. The restriction functor ∗RGL is defined as the right
adjoint of RGL . The fact that RGL , ∗RGL do not depend on P was shown by Lusztig
[L90]. For a more detailed exposition of these functors, we refer to the second
edition of the book by Digne–Michel [DM20].
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Under its LF -action, the variety Y GL⊆P forms a torsor over a GF -variety XG
L⊆P .

An irreducible character of GF is unipotent iff it occurs in H∗c(XG
T⊆B) for some

F -stable maximal torus T and Borel B, or equivalently, in RGT (1) for some such T .
Lusztig observed that while Irr(GF ) grows in size with q, the subset of unipotent
irreducible characters Uch(GF ) can be indexed in a way depending only on the root
datum of G and its Frobenius action, not on q itself [L78, L84].

Example 2.1. Suppose that A ⊆ G is a maximally F -split maximal torus, and
that B is an F -stable Borel containing A. Then Y GA⊆B = GF /UF , where U is
the unipotent radical of B, and XG

A⊆B = GF /BF . The representation RGA(1) is
just H0(GF /BF ), which we can view as the space of functions on GF /BF . The
irreducible constituents of RGA(1) form a subset of Uch(GF ) called the unipotent
principal series, parametrized by the irreducible characters of the group WGF ,AF :=
NGF (AF )/AF . Later, we will discuss how to generalize this parametrization.

2.3. Broué–Malle–Michel introduced generic finite reductive groups in order to
study properties of the functors RGL , ∗RGL and the sets Uch(GF ) that only depend
on q through specializations of an indeterminate variable [BMM93, §1]. A generic
finite reductive group G, or generic group for short, consists of:

(1) A root datum ΓG = (X,R,X∨, R∨).
(2) A coset of the form [f ]G := WΓGf ⊆ Aut(ΓG), where WΓG is the Weyl group

of ΓG and f a finite-order automorphism of ΓG normalizing WΓG . We say
that G is split iff [f ]G = WΓG .

An isomorphism between generic groups is an isomorphism between the root data
in (1), matching the coset data in (2).

We say that a generic group G′ is a generic subgroup of G iff its cocharacter
lattice embeds into that of G, its root system embeds into that of G as a parabolic
subsystem, and [f ]G′ ⊆ [f ]G. In this case, we write G′ ≤ G. To indicate that
G′ ̸= G as well, we write G′ < G. Henceforth:

Assumption 2.2. We exclude from consideration any generic group G with a
generic subgroup of the Suzuki type 2C2 or the Ree types 2G2,

2F4. (The letter
and subscript indicate the root datum, while the superscript is the minimal order
among elements of the coset datum.)

Under Assumption 2.2, any choice of prime power q > 1 and representative
f ∈ [f ]G gives rise to a tuple (G,T, F ), where G is a connected, reductive algebraic
group over F̄q with q-Frobenius map F , as above, and T ⊆ G is an F -stable maximal
torus. Conversely, every such (non-Suzuki/Ree) tuple comes from a generic group
this way.

In the situation above, we set G(q) = GF in a slight abuse of notation. As an
abstract group, G(q) only depends on q and G. The orders of the groups G(q)
are generic, in the sense that we can define a polynomial |G|(x) ∈ Q[x] such that
|G|(q) = |G(q)| for all q.

A generic torus is a generic group T whose root and coroot lattices are empty.
For such T, the Weyl group is trivial, so we can write [f ]T = {fT}. The order of T
satisfies |T|(x) = det(x − fT | X∨), where X∨ is the cocharacter lattice of T. The
orbit of fT in [f ]G under conjugation by WΓG is called the type of T in G.
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2.4. Henceforth, fix a generic group G.
A Levi subgroup of G is a generic subgroup L ≤ G whose cocharacter lattice is

the same as that of G. For such L, the relative Weyl group

WG,L := NWΓG
([f ]L)/WΓL ≃ (NWΓG

(WΓL)/WΓL)[f ]L

is a complex reflection group, isomorphic to the relative Weyl group WG(q),L(q) :=
NG(q)(L(q))/L(q) for all q by the Lang–Steinberg theorem. Note that the definition
of WG,L in [B, 75] has a typo.

A subtorus of G is a generic subgroup T ≤ G given by a generic torus. Every
subtorus T ≤ G defines a Levi subgroup ZG(T) ≤ G, called its centralizer : The
root lattice of ZG(T) is the centralizer of the cocharacter lattice of T in the root
lattice of G, and [f ]ZG(T) = WΓZG(T)fT.

2.5. There is a set Uch(G) that indexes the sets Uch(G(q)) uniformly in q. Its
construction is functorial with respect to isomorphisms between generic groups.
The degrees of the unipotent irreducible characters of the groups G(q) are generic,
in the sense that we can define a polynomial Degρ(x) ∈ Q[x] for each ρ ∈ Uch(G)
such that Degρ(q) = deg ρq for all q, where ρq is the corresponding element of
Uch(G(q)).

Recall that WG(q),L(q) acts on Irr(L(q)), stabilizing Uch(L(q)). The action on
Uch(L(q)) is generic, in the sense that it lifts to an action of WG,L on Uch(L). For
all λ ∈ Uch(L), we define WG,L,λ to be the centralizer of λ in WG,L.

The maps induced by RGL ,
∗RGL on Grothendieck rings have generic versions on

the summands spanned by unipotent characters: If G and F arise from G, and L

from L for some Levi subgroup L ≤ G, then we have linear maps

RG
L : ZUch(L) ⇄ ZUch(G) : ∗RG

L

that recover Lusztig’s maps on ZUch(GF ) and ZUch(LF ). The maps RG
L ,
∗RG

L

are moreover compatible with isomorphisms between Levi subgroups induced by
conjugation by WΓG .

2.6. Motivated by observations from the ℓ-modular representation theory of GF

for large primes ℓ, Broué–Malle–Michel used generic groups to formalize a gener-
alization of Harish-Chandra theory, depending on an integer e > 0 by way of the
cyclotomic polynomial Φe(x) ∈ Z[x] [BMM93, §3]. (For a fixed prime power q > 1,
they take e to be the order of ℓ in Fq.)

As preparation: We say that a generic torus T is a Φe-torus iff |T|(x) is a power
of Φe(x). We say that a Levi subgroup L ≤ G is Φe-split iff L = ZG(T) for some
Φe-subtorus T ≤ G. We say that λ ∈ Uch(L) is Φe-cuspidal iff ∗RL

M(λ) = 0 for any
smaller Φe-split Levi M < L.

Remark 2.3. Note that a maximal torus of G that is Φe-split as a Levi subgroup
of G need not be a Φe-torus. This already happens for the generic general linear
group G = GL2, discussed in Section 6, and e = 2.

A Φe-cuspidal pair for G is a pair (L, λ) in which L ≤ G is a Φe-split Levi
subgroup and λ ∈ Uch(L) is Φe-cuspidal. The corresponding Φe-Harish-Chandra
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series of Uch(G) is the set

Uch(G,L, λ) = {ρ ∈ Uch(G) | ρ occurs in RG
L (λ)}.

The action of WΓG on the set of Levi subgroups extends to an action on the set
of Φe-cuspidal pairs, and the Harish-Chandra series of a pair only depends on its
WΓG -orbit. Let HCe(G) be the set of WΓG -orbits of Φe-cuspidal pairs.

Theorem 2.4 (Broué–Malle–Michel). For any integer e > 0:

(1) The Φe-Harish-Chandra series form a partition of Uch(G): That is,

Uch(G) =
∐

[L,λ]∈HCe(G)

Uch(G,L, λ).

(2) For any Φe-cuspidal pair (L, λ) of G, there is a map

(εGL,λ, χG
L,λ) : Uch(G,L, λ)→ {±1} × Irr(WG,L,λ).

These maps are compatible with the action of WΓG on the set of Φe-cuspidal
pairs. Moreover:
(a) χG

L,λ is bijective.
(b) χG

L,λ(λ) is the trivial character 1WG,L,λ
.

(c) For all ρ ∈ Uch(G,L, λ), we have

Degρ(x) ≡ εGL,λ(ρ) degχG
L,λ(ρ) (mod Φe(x)).

(d) For any Φe-split Levi M with L ≤ M ≤ G, we have a commutative
diagram

ZUch(M,L, λ) ZIrr(WM,L,λ)

ZUch(G,L, λ) ZIrr(WG,L,λ)

(εML,λ, χ
M
L,λ)

RG
M Ind

WG,L,λ
WM,L,λ

(εGL,λ, χ
G
L,λ)

in which the horizontal arrows are induced by linearity.

Example 2.5. The generic version of the setup in Example 2.1 consists of a
generic group G and a Φ1-split maximal torus A ≤ G. If G,F,A arise from
q,G,A, then A is a maximally F -split maximal torus of G, and Uch(G,A, 1)
parametrizes the unipotent principal series of GF . Moreover, the endomorphism
algebra HG,A,1(q) := EndCGF (RGA(1)) is isomorphic to CWG,A.

Let ρq ∈ Uch(GF ) correspond to ρ ∈ Uch(G,A, 1). For all ρ ∈ Uch(G,A, 1), the
sign εGA,1(ρ) is positive. The map χG

A,1 : Uch(G,A, 1)→ Irr(WG,A) is determined by
the existence of a (GF , HG,A,1(q))-bimodule isomorphism

RGA(1) =
⊕

ρ∈Uch(G,A,1)

ρq ⊗ χG
A,1(ρ)q

in which χG
A,1(ρ)q is the HG,A,1(q)-module corresponding to χG

A,1(ρ).
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2.7. Singular Numbers. Observe that if ρ ∈ Uch(G) is itself Φe-cuspidal, then
there is a Φe-Harish-Chandra series Uch(G,G, ρ) consisting of ρ alone.

For any polynomial f(x) ∈ Q[x], let re(f) be the largest power to which Φe
divides f. The following fact is [BMM93, Prop. 2.9]:

Proposition 2.6 (Broué–Malle–Michel). ρ ∈ Uch(G) is Φe-cuspidal if and only if
re(Degρ) = re(|G|).

We say that e is a singular number for G iff re(|G|) > 0. Observe that there
are finitely many such numbers; for groups of exceptional type, we list them in
Section 8. It is useful to record that:

Corollary 2.7. If e is not a singular number for G, then every element of Uch(G)
is Φe-cuspidal. In other words, the Φe-Harish-Chandra partition is nontrivial only
if e is a singular number.

Proof. We always have re(Degρ) ≤ re(|G|), because for any prime power q > 1 and
G,F, ρq arising from q,G, ρ, we know that Degρ(q) = Degρq

(1) divides |G|(q) =
|GF | in Z by usual character theory. So when e is not a singular number, we always
have re(Degρ) = re(|G|) = 0. Now the result follows from Proposition 2.6. □

2.8. Regular Numbers. The existence of a Φe-split maximal torus constrains the
number e even more strongly. To explain how this works, we review some notions
due to Springer, following [BMM99, §5B].

Suppose that W is a complex reflection group with reflection representation V

over C, and that f is a finite-order automorphism of V normalizing W . For any
root of unity ζ ∈ Q×cyc and w ∈W , we say that wf is ζ-regular , or just regular , iff
wf has an eigenvector v ∈ V reg with eigenvalue ζ.

Example 2.8. Suppose that there is an f -stable system of simple reflections S ⊆
W , or in other words, f is an automorphism of the Coxeter system (W,S). Let
w ∈W be the product, in any order, of a full set of representatives for the f -orbits
on S, and let c = wf . Then c is a regular element of Wf . Elements that take this
form for some f -stable S and choice of f -orbit representatives are called twisted
Coxeter elements [S74, §7.3].

Suppose that in addition, W = WΓG and Wf = [f ]G for some generic group G.
Then W is crystallographic, so by Galois theory, wf is ζ-regular if and only if it is
ζ ′-regular for any other root of unity ζ ′ of the same order. In this case, we say that
the order of ζ is a regular number for G.

If ΓG is irreducible and f induced by a Dynkin-diagram automorphism, then
we define the twisted Coxeter number of G to be the order of any twisted Coxeter
element of [f ]G.

Proposition 2.9 (Broué–Malle–Michel). (1) If e is a regular number for G,
then G admits a Φe-split maximal torus.

(2) Conversely, if T ≤ G is a Φe-split maximal torus, then T has type [wf ] for
some Φe-regular element wf ∈ [f ]G.

Proof. Part (1) follows from [BMM99, Prop. 5.8]. To show part (2): Suppose that
T = ZG(T′) for some Φe-torus T′. If T is itself a torus, then T′ must be maximal
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or Sylow in the terminology of [BMM93, B]. Then by [BMM99, Cor. 5.10], e must
be a regular number for G, so by part (1), there is a torus of type [wf ] for some
Φe-regular wf . Again by [BMM99, Cor. 5.10], fT must be conjugate to wf under
WΓG . Thus T has the same type. □

Corollary 2.10. Any regular number for G is a singular number.

Proof. If e is a regular number for G, then by Proposition 2.9(1), a Φe-maximal
torus T ≤ G exists. As in the proof of Corollary 2.7, we see that |T(x)| divides |G(x)|
in Q[x] because |T|(q) divides |G|(q) in Z for any prime power q > 1. Therefore,
re(|G|) ≥ re(|T|) > 0. □

3. Cyclotomic Hecke Algebras

3.1. In [L-Cox], Lusztig determined the GF -equivariant endomorphism algebra of
RGT (1) in the case where T ⊆ G is a Coxeter torus, i.e., a maximal torus of type [c]
for some twisted Coxeter element c. He observed that this algebra could be viewed
as a generalized Hecke algebra for the cyclic group WGF ,TF , with parameters given
by the eigenvalues of F on H∗c(XG

T⊆B). Soon afterward, in [L77], Lusztig determined
the algebras EndCGF (RGL (λq)) for various F -split Levi subgroups L of classical
groups G and cuspidal unipotent λq. He observed that again, these could be viewed
as Hecke algebras for the relative Weyl groups WGF ,LF . These calculations were
later extended to general F -split Levis in [L78], and to non-unipotent characters
by Howlett–Lehrer in [HL].

Let C be a complex reflection group of the form WG,L,λ for some generic group
G, integer e > 0, and Φe-cuspidal pair (L, λ), as above. In [BM93] and [BMR],
Broué–Malle–Rouquier study a ring HC(u⃗) that only depends on the structure of
C as a complex reflection group. It may be viewed as a multi-parameter version
of the Hecke algebras studied in the works above, in which the parameters are also
allowed to be as generic as possible.

In [BM93], motivated both by [L-Cox] and by Broué’s Abelian Defect Group
Conjecture, Broué–Malle conjectured the existence of a certain specialization of
HC(u⃗), depending on G, (L, λ) and sending its parameters to various powers of a
single variable x, such that the resulting algebra HG,L,λ(x) would itself specialize to
the algebras EndCLF (RGL (λq)) arising from G,L, λ by varying q. We review their
conjectures below, mainly following [BM93] and [B].

3.2. First, we review HC(u⃗), following [BMR] and [B, Ch. II–III].
Let C be an arbitrary finite complex reflection group and V = V (C) its reflection

representation over C. Let A = A(C) be the set of hyperplanes in V fixed by
pseudo-reflections in C. Let V reg = V −

⋃
H∈AH, the open locus where C acts

freely, and let BrC = π1(V reg/C), the braid group of C.
For each orbit C ∈ A/C and hyperplane H ∈ C, let σH ∈ BrC be a choice of a

generator of the monodromy around H that is a distinguished braid reflection in
the sense of [B, 21–22]. Let the pseudo-reflection sH be the image of σC under the
quotient map BrC → C, and let eC be the order of sH , which only depends on C.
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Let Z[u⃗±1] = Z[u±1
C,j | C ∈ A/C, 0 ≤ j < eC ], and let

HC(u⃗) = Z[u⃗±1]BrC
⟨(σH − uC,0) · · · (σH − uC,eC−1) | C ∈ A/C, H ∈ C⟩ .

It was conjectured in [BMR] that HC(u⃗) is always free over Z[u⃗±1] of rank |C|.
This statement has been verified in all of the infinite families of irreducible complex
reflection groups, and some of the exceptional cases. For our purposes, the following
result from [E] suffices:

Theorem 3.1 (Etingof–Rains, Losev, Marin–Pfeiffer). For any field K of char-
acteristic zero, K ⊗Z HC(u⃗) is a free module over K ⊗Z Z[u⃗±1] of rank |C|. In
particular, if we fix a homomorphism Z[u⃗±1] → K, then the corresponding base
change K ⊗Z[u⃗±1] HC(u⃗) is a K-algebra of dimension |C|.

3.3. Next, we review HG,L,λ(x), following [BM93] and [B].
Let Qcyc be the maximal cyclotomic field extension of Q, and let Zcyc be the ring

of integers of Qcyc. For each integer n > 0, fix a primitive nth root of unity ζn ∈
Zcyc. A Φe-specialization of Z[u⃗±1] is a homomorphism S : Z[u⃗±1] → Zcyc[x± 1

∞ ]
of the form

S(uC,j) = ζjeC
(ζ−1
e x)mC,j for some mC,j = mC,j(S) ∈ Q.

Example 3.2. The ZC-linear homomorphism Z[u⃗±1] → Zcyc[x± 1
∞ ] that sends

uC,j 7→ ζjeC
is a Φe-specialization for every value of e. The base change of HC(u⃗)

along this map is the group algebra of C over Zcyc[x± 1
∞ ] [B, 45–46].

Suppose that G,F, L arise from q,G,L, where we exclude the Suzuki and Ree
cases as usual (Assumption 2.2). Recall the GF -variety Y GL⊆P over Fq. For any
λq ∈ Uch(LF ), we write H∗c(Y GL⊆P )[λq] to denote the λq-isotypic component of
H∗c(Y GL⊆P ), viewed as a graded representation of GF of finite dimension over Q̄ℓ.
What follows is essentially conjecture (HC) of [B, 84].

Conjecture 3.3 (Broué–Malle–Michel). For any integer e > 0 and Φe-cuspidal
pair (L, λ) for G, there is a Φe-specialization SG,L,λ : ZWG,L,λ

[u⃗±1] → Zcyc[x± 1
∞ ]

such that the base change

HG,L,λ(x) := Zcyc[x± 1
∞ ]⊗ZWG,L,λ

[u⃗±1] HWG,L,λ
(u⃗)

of HWG,L,λ
(u⃗) along SG,L,λ has the following property: For any prime power q > 1

and prime ℓ invertible in Fq, there is an isomorphism of algebras

Q̄ℓ ⊗Zcyc[x± 1
∞ ]

HG,L,λ(x) ≃ EndQ̄ℓGF (H∗c(Y GL⊆P )[λq]),(3.1)

where on the left, the base change sends x 1
n to an nth root of q in Q̄ℓ for each

integer n > 0, and on the right, G,F, L, λq arise from q,G,L, λ.

Strictly speaking, HG,L,λ(x) is an abuse of notation, as this algebra may depend
on higher roots of x. Note that the conclusion of the conjecture also implies that
HG,L,λ(x) is uniquely determined up to Galois automorphisms of Zcyc.
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Remark 3.4. It is explained in [B, 81–83] that the Φe-specialization SG,L,λ should
obey several further properties. In particular, (U5.3.4) of loc. cit. states that the
specializations SG,L,λ should be compatible with inclusions of Levi subgroups, in
the manner of Theorem 2.4(2d).

Example 3.5. In Example 2.5, write W = WG,A. Then HW (u⃗) takes the form

HW (u⃗) = ZW [u⃗±1]BrW /⟨(σH − uC,0)(σH − uC,1) | C ∈ A/W, H ∈ C⟩.

Meanwhile, HG,A,1(q) is generated by Hecke operators Ts for each simple reflection
s ∈W , modulo braid relations and quadratic relations.

Suppose that G is split, so that W = WΓG . Here, the quadratic relations take
the form (Ts + 1)(Ts − q) = 0, by [I]. Following the conventions of [BM93], let
SG,A,1 be the Φ1-specialization that sends (uC,0, uC,1) 7→ (1,−x) for all C. Then
(3.1) sends σH 7→ −TsH

.

3.4. In the case where (L, λ) = (T, 1) for some maximal torus T, Broué–Michel
constructed a BrWG,T-action on the associated Deligne–Lusztig cohomologies, and
conjectured that the HG,T,1(x)-action of Conjecture 3.3 would arise from this braid
action. See [BM97] and [B, 84–88] for details. This conjecture has since been
established in many cases by Digne, Michel, and Rouquier [DMR, DM06], building
on [L-Cox]. To summarize the state of the art, we follow [DM06].

Theorem 3.6 (Lusztig, Digne–Michel–Rouquier). Let T ≤ G be a maximal torus.
Then Conjecture 3.3 holds for (L, λ) = (T, 1), with an explicit SG,T,1, in the follow-
ing cases. Throughout, f is a Dynkin-diagram automorphism representing [f ]G.

(1) T is Φ1-split.
(2) T is Coxeter in the sense of [L-Cox, (1.14)]. That is, T is of type [c] for

some twisted Coxeter element c ∈ [f ]G, as defined in Example 2.8.
(3) T is of type [w0f ], where w0 ∈WΓG is the longest element.
(4) G is split of type A.
(5) G is of type B and T is Φe-split for some even e > 0.
(6) G is split of type D4 and T is Φ4-split.

Proof. (1) If G is split, then this is due to Iwahori [I]. The specialization was
described above, in Example 3.5. If G is not split, then it is due to Lusztig
[L78], and the specialization is given by Table II of ibid.

(2) This is due to Lusztig [L-Cox]. The specialization SG,T,1 sends the variables
uC,j to the powers of x that specialize to the eigenvalues of F on H∗c(XG

T⊆B),
when G,F, T arise from q,G,T. When G is almost-simple, the eigenvalues
are listed in (7.3) of ibid.

(3) This is [DMR, Th. 5.4.1], reviewed in [DM06, Prop. 7.2]. The specialization
is described there.

(4) This is [DM06, Thm. 10.1]. Note that in type A, the Weyl group contains
two conjugacy classes of regular elements, corresponding to the two cases of
the theorem. The specialization is described there. The requirement that
G be split is due to Section 9 of ibid.

(5) This is [DM06, Thm. 11.1]. The specialization is described there.
(6) This is [DM06, Prop. 12.2]. The specialization is described there. □
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3.5. Beyond tori, we can also establish Conjecture 3.3 with an explicit SG,L,λ in
the cases where:

(1) L is an arbitrary Φ1-split Levi. This case is again due to Lusztig, with the
specialization given by [L78, Table II].

(2) G is a generic general linear group and WG,L,λ is cyclic. This case follows
from work of Dudas [Du]: See Proposition 6.2(2) below.

Case (2) above, along with case (4) of Theorem 3.6, motivates a prediction for
arbitrary Φ-cuspidal pairs of generic general linear groups, and consequently, of
generic general unitary groups via Ennola duality. We defer the precise statements
to Section 6.

4. Conjectures about Blocks

4.1. Throughout this section, Assumption 2.2 remains in force.
When K is a field and R a finite-dimensional K-algebra, we write RepK(R) for

the category of free R-modules that are finite-dimensional over K. When K can
be inferred, we write K0(R) for the Grothendieck ring of RepK(R).

4.2. To state the first of our conjectures, we will draw freely upon the theory of
blocks and Brauer decomposition [GP, Ch. 7] [GJ, Ch. 3].

Let C be any finite complex reflection group. We keep the notation Z[u⃗±1] of
Section 3. Let S : Z[u⃗±1] → Zcyc[x± 1

∞ ] be an arbitrary specialization, and let
HC,S(x) be the base change of HC(u⃗) along S.

For any root of unity ζ = ζm ∈ Z×cyc, let HC,S(ζ) be the base change of HC,S(x)
along the morphism Zcyc[x± 1

∞ ] → Qcyc that sends x 1
n 7→ ζmn for all n. Then the

category RepQcyc (HC,S(ζ)) is partitioned into blocks, describing the failure of the
ring HC,S(ζ) to be semisimple. This partition defines a corresponding direct-sum
decomposition of K0(HC,S(ζ)) into block ideals. For any block b, let Ib denote the
block ideal generated by its objects.

Let K ⊇ Qcyc(uC,j | C, j) be a splitting field for HC(u⃗), and let

KHC(u⃗) = K ⊗Z[u⃗±1] HC(u⃗).

Then we can form the Brauer decomposition map

dζ : K0(KHC(u⃗))→ K0(HC,S(ζ))

with respect to the composition HC(u⃗) S−→ HC,S(x)→ HC,S(ζ).
Let Irr(KHC(u⃗)) be the set of simple KHC(u⃗)-modules up to isomorphism. By

combining Theorem 3.1, Example 3.2, and Tits deformation [GP, Thm. 7.4.6], we
obtain a bijection Irr(C) ∼−→ Irr(KHC(u⃗)). Let Irr(C)b be the preimage of Ib along
the composition of maps

Irr(C) ∼−→ Irr(KHC(u⃗)) ⊂ K0(KHC(u⃗)) dζ−→ K0(HC,S(ζ)).(4.1)

The composition does not depend on K. Abusing language, we refer to the sets
Irr(C)b as the (Φm,S)-blocks of Irr(C).
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4.3. Now let G be a generic group. For the first time, we fix two separate integers
e,m > 0. Let (L, λ), resp. (M, µ), be a Φe-cuspidal pair, resp. a Φm-cuspidal pair,
for G. As in the introduction, let

Uch(G,L, λ,M, µ) = Uch(G,L, λ) ∩Uch(G,M, µ),

and let Irr(WG,L,λ)M,µ ⊆ Irr(WG,L,λ) and Irr(WG,M,µ)L,λ ⊆ Irr(WG,M,µ) be the
images of Uch(G,L, λ,M, µ) along the maps

Irr(WG,L,λ)
χG
L,λ←−−− Uch(G,L, λ,M, µ)

χG
M,µ−−−→ Irr(WG,M,µ).

Let Se be a Φe-specialization of ZWG,L,λ
[u⃗±1], and let Sm be a Φm-specialization of

ZWG,M,µ
[u⃗±1]. We define properties (I) and (II) for (Se,Sm) to be:

(I) Irr(WG,L,λ)M,µ, resp. Irr(WG,M,µ)L,λ, is a union of (Φm,Se)-blocks, resp.
(Φe,Sm)-blocks.

(II) The bijection between Irr(WG,L,λ)M,µ and Irr(WG,M,µ)L,λ induced by χG
L,λ

and χG
M,µ descends to a bijection

χL,λ
M,µ : {b | Irr(WG,L,λ)b ⊆ Irr(WG,L,λ)M,µ}

∼−→ {c | Irr(WG,M,µ)c ⊆ Irr(WG,M,µ)L,λ}.

In particular, we obtain a bijection

χb
c : Irr(WG,L,λ)b

∼−→ Irr(WG,M,µ)c

whenever χL,λ
M,µ(b) = c.

Conjecture 4.1. For any G, e,L, λ,m,M, µ such that Conjecture 3.3 holds for
G, e, (L, λ) and analogously for G,m, (M, µ), properties (I) and (II) hold for the
pair of specializations (SG,L,λ,SG,M,µ) that it predicts.

4.4. The Rational DAHA. Before stating the next conjecture about blocks, we
review background about rational double affine Hecke algebras (DAHAs).

Again, let C be any finite complex reflection group. We keep the notations
V,A, C, H from Section 3.2. For each H ∈ A, let CH ⊆ C be the centralizer of H.
Fix αH ∈ V ∨ so that H = ker(αH), and fix α∨H ∈ V so that Cα∨H is a CH -stable
complement to H.

Let Refl = Refl(C) be the set of pseudo-reflections of C. Fix a vector

ν⃗ = (νt)t ∈ CRefl

invariant under conjugation by C. We define the rational Cherednik algebra or
rational DAHA of C with central charge ν⃗ to be the C-algebra

Drat
C (ν⃗) = (CC ⋉ (Sym(V )⊗ Sym(V ∨)))/I(ν⃗),

where I(ν⃗) is the two-sided ideal

I(ν⃗) =
〈
Y X −XY − ⟨X,Y ⟩+

∑
H∈A

∑
t∈CH
t̸=1

νtt
⟨X,α∨H⟩⟨αH , Y ⟩
⟨αH , α∨H⟩

∣∣∣∣∣∣∣∣
X ∈ V,
Y ∈ V ∨

〉
.
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This is the definition in [GGOR, §3.1] when their base ring is C.
We write Orat

C (ν⃗) for the BGG category O of Drat
C (ν⃗) defined in [GGOR, §3.2].

Its Verma or standard objects are indexed by Irr(C). For all χ ∈ Irr(C), we write
∆ν⃗(χ) for the corresponding Verma, and Lν⃗(χ) for its simple quotient.

Let eu ∈ Drat
C (ν⃗) be the Euler element reviewed at the end of [GGOR, §3.1]. It

commutes with C and its action on any object of Orat
C (ν⃗) is locally finite. For any

object M of Orat
C (ν⃗), we define the graded character of M to be

[M ] ∈
∑
α

tα[Mα] ∈ K0(CC)[tC],

where Mα is the eigenspace of M with eigenvalue α. In particular,

[∆ν⃗(χ)] = th(χ)[Sym(V )] · χ,

where above, [Sym(V )] =
∑
i t
i[Symi(V )] and

h(χ) = 1
2 dim(V )−

∑
t∈Refl

2νt
1− detV (t)

χ(t)
χ(1) .

4.5. The KZ Functor. Let {κC,j ∈ C | C ∈ A/C, 0 ≤ j < eC} be defined by

κC,j = 2
eC

∑
1≤k<eC

νsk
H

(
1− detV (sH)jk

1− detV (sH)−k

)
for any H ∈ C.(4.2)

Note that κC,0 = 0, and if eC = 2, then κC,1 = νsH
. Let

ζC,j = detV (sH)je2πiκC,j .(4.3)

In the notation of Section 3, let Tζ⃗ : Z[u⃗±1]→ C be the ring homomorphism defined
by Tν⃗(u⃗C,j) = ζC,j for all C, j, and let

HC(ζ⃗) = C⊗Z[u⃗±1] HC(u⃗)

be the base change of HC(u⃗) along Tζ⃗ . The authors of [GGOR] introduced an exact
monoidal functor

KZ : Orat
C (ν⃗)→ RepC(HW (ζ⃗)),

called the Knizhnik–Zamolodchikov (KZ) functor . It can be defined geometrically
by localizing each object of Orat

C (ν⃗) to a local system over V reg/C, then invoking a
monodromy calculation from [BMR]. We refer to [GGOR, §5.3] for details.

The functor KZ is representable by a projective object PKZ, which induces a
morphism of C-algebras HC(ζ⃗)→ End(PKZ)op. It turns out that this is an isomor-
phism. In particular, the restriction of KZ to projective objects of Orat

C (ν⃗) is fully
faithful. Since Orat

C (ν⃗) also forms a highest weight category, we deduce that Orat
C (ν⃗)

is a highest weight cover of RepC(HW (ζ⃗)) in the sense of [R08]. Moreover, KZ
induces a bijection between the blocks of Orat

C (ν⃗) and the blocks of RepC(HW (ζ⃗)).
In some cases, the behavior of KZ on standard objects is known. To explain,

observe that as in Section 4, we can use Brauer decomposition to form a map

Irr(C)→ K0(HC(ζ⃗)).
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We write χζ⃗ ∈ K0(HC(ζ⃗)) to denote the image of χ ∈ Irr(C). If there exists ζ ∈ C
such that ζC,j = ζ for all C, j, then we write χζ in place of χζ⃗ . Theorem 6.8 of
[GGOR] then states:

Theorem 4.2 (Ginzburg–Guay–Opdam–Rouquier). If C is a Weyl group and ν⃗ =
ν is constant, then KZ(∆ν⃗(χ)) = χζ , where ζ = e2πiν .

The argument of loc. cit. can be extended to other situations where HC(ζ⃗) is
cellular in the sense of Graham–Lehrer, cf. Section 6.6.

4.6. Henceforth, we fix the embedding Qcyc ↪→ C under which ζn 7→ e2πi/n. We
also assume that detV (sH) = e2πi/eC for all C ∈ A/C and H ∈ C [B, 10–11].

The algebra HC,S(ζ) in Section 4 now takes the form HC(ζ⃗) whenever S is a
Φe-specialization for some e. Indeed, if ζ = ζm for some integer m > 0, then the
composition HC(u⃗)→ HC,S(x)→ HC,S(ζ) sends

uC,j 7→ e2πi(j/eC+mC,j(S)(1/m−1/e)) for some mC,j(S) ∈ Q.

We see from (4.2)–(4.3) that it suffices to choose ν⃗ = (νt)t so that

2
eC

∑
1≤k<eC

νsk
H

(
1− e2πijk/eC

1− e−2πik/eC

)
∈

(
1
m
− 1
e

)
mC,j(S) + Z.

Let us say that ν⃗ is an S-charge iff it satisfies the condition above. In this case,
for any block b of RepC(HC,S(ζ)), we write Orat

C (ν⃗)b to denote the corresponding
block of Orat

C (ν⃗).
Now we return to the setup of Section 4.3, where Se is a Φe-specialization of

ZWG,L,λ
[u⃗±1] and Sm is a Φm-specialization of ZWG,M,µ

[u⃗±1]. Assuming property
(II) for (Se,Sm), we define property (III) for (Se,Sm) to be:

(III) Whenever χL,λ
M,µ(b) = c, and ν⃗e, resp. ν⃗m, is an Se-charge, resp. Sm-charge,

the bijection χb
c categorifies to a (bounded) derived equivalence

Db(Orat
WG,L,λ

(ν⃗e)b) ∼−→ Db(Orat
WG,M,µ

(ν⃗m)c)

that takes standard objects to standard objects.

Conjecture 4.3. If Conjecture 4.1 holds for some G, e,L, λ,m,M, µ, then property
(III) holds for the pair (SG,L,λ,SG,M,µ) in the conjecture as well.

5. Conjectures about Affine Springer Fibers

5.1. In this section, we give the precise definition of the local system of (DAHA,
braid-group) bimodules Eν , and the evidence for Conjecture 2 arising from twisted
G of rank 2.

Henceforth, we assume that the underlying root datum ΓG is irreducible, and
that θ is an automorphism of its Dynkin diagram that represents [f ]G. Let δ be
the order of θ, and let A ≤ G be the maximal torus defined by [f ]A = WΓGθ.

Fix a rational number ν > 0. We will use the rational DAHA of WG,A with
central charge ν⃗ = (νt)t defined by

νt =
{

ν t is associated with one of the longest roots,
δν else.
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We also choose the vectors αH and α∨H of Section 4.4 to be the roots and coroots of
the relative root system for (G,A). Doing so gives ⟨αH , α∨H⟩ = 2 for all hyperplanes
H. Altogether, our definition of the rational DAHA recovers the definition in [OY,
§4.2.2].

To abbreviate, we will write Drat
G,A(ν⃗) and Orat

G,A(ν⃗) in place of Drat
WG,A

(ν⃗) and
Orat
WG,A

(ν⃗). If νt = ν for all t, then we write ν in place of ν⃗. Note that this situation
occurs when G is split.

5.2. We now shift our geometric setting from finite fields to the field of complex
numbers.

Let G be a simply-connected, connected quasi-split algebraic group over C((z))
defined by the same root datum and the same Dynkin-diagram automorphism as
G. Let A ⊆ G be the maximal torus corresponding to A. Explicitly,

G = ResC((z
1
e ))

C((z)) (Ḡ⊗C((z 1
e )))θ and A = ResC((z

1
e ))

C((z)) (Ā⊗C((z 1
e )))θ,

where Res is Weil restriction, and Ḡ and Ā are the complex algebraic groups defined
by the (split) root data.

Remark 5.1. Note that in [OY, §2.2.2], the variable G is the same as ours, but their
T is our A, and other notations do not match. For instance, their e is not our e.

As explained in [OY, §2.2.3], there is a smooth C[[z]]-group scheme K with generic
fiber G and connected special fiber: that is, an integral model of G over C[[z]]. We
define g to be the Lie algebra of K. Similarly, there is an integral model of A over
C[[z]] with connected special fiber, which we denote by A.

If we fix a θ-stable system of simple roots in ΓG, then its orbits under θ are in
biijection with the simple roots of G with respect to A. In particular, (X∨)θ ≃
A(C((z)))/A(C[[z]]), where (−)θ means the θ-coinvariant quotient. The R-span of
(X∨)θ,free := (X∨)θ/(X∨)θ,tors can be identified with the apartment for A in the
building of G, once we identify the origin with the point corresponding to K. The
facets of the apartment cut out by the affine roots of G with respect to A are in
bijection with the parahoric subgroups of G containing A.

Let LG be the loop group defined by LG(R) = G(R[[z]][z−1]) for any C-algebra
R. Let I ⊆ K be the Iwahori subgroup defined by the simple roots of (G,A) above,
and let I ⊆ LG be the corresponding sub-ind-group, so that I(R) = I(R[[z]]). Recall
that the affine flag variety of G is the fpqc quotient F l = LG/I.

Write ν = d
m in lowest terms, with d,m > 0. Let ρ∨ be the half-sum of the

positive coroots of (G,A). Then there is a Gm-action on LG defined by

t · g(z) = Ad(t−2dρ∨
)g(t2mz).

It descends to an action on F l, and also, the loop Lie algebra Lg := Lie(LG). If
γ ∈ Lg is an eigenvector for this action, then the affine Springer fiber

F lγ = {[g] ∈ LG/I | Ad(g−1)γ ∈ Lie(I)}

is Gm-stable. We write Lgν for the weight-2d eigenspace of Lg under the Gm-
action, and Lgrs

ν ⊆ Lgν for its open locus of generically regular semisimple elements.
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Recall that if γ is generically regular semisimple, then F lγ is finite-dimensional by
[KL, Prop. 1].

Let Brν,γ be the topological fundamental group of Lgrs
ν (C) with basepoint γ. If

m is a regular number for G in the sense of Section 2.8, then [OY, §3.3.6] shows
that Brν,γ is the braid group of WG,T for any Φm-split maximal torus T ≤ G.
Henceforth, we fix such a generic torus. In loc. cit., WG,T is called the little Weyl
group for ν̄ := ν (mod 1).

5.3. Henceforth, we fix γ ∈ Lgrs
ν (C). Let G0 ⊆ LG be the connected reductive

group whose Lie algebra is the weight-0 eigenspace of the Gm-action on Lg. Let
G0,γ be the centralizer of γ in G0. Then the commuting actions of Gm and G0

on LG descend to commuting actions of Gm and G0,γ on F lγ . Note that G0,γ

corresponds to Sa in [OY].
We say that wθ ∈ WΓGθ is elliptic iff its only fixed point on X∨ ⊗ Q is zero.

We say that it is regular elliptic iff it is both regular and elliptic; in this case, its
order is called a regular elliptic number for G. This definition then agrees with the
definitions in [OY, VV]: e.g., by the discussion in [OY, §3.2]. If m is a regular
elliptic number for G, then F lγ is a projective scheme by [KL, Cor. 2] [OY, Lem.
5.2.3], and G0,γ is finite by [OY, Lem. 3.3.5(3)] and the definition of ellipticity.

5.4. Henceforth, we assume that m is a regular elliptic number for G. We write
H∗Gm

(−) to denote Gm-equivariant singular cohomology with C-coefficients. In
particular, we write H∗Gm

(pt) = C[ϵ], so that ϵ sits in degree 2.
As we vary γ, the groups G0,γ form a finite group scheme over Lgrs

ν , and the
vector spaces H∗Gm

(F lγ) form a local system on which this group scheme acts. In
particular, Brν,γ acts on the invariant subspace H∗Gm

(F lγ)G0,γ .
When G is split, meaning θ = 1, Oblomkov–Yun endow H∗Gm

(F lγ)G0,γ with an
increasing, Brν,γ-stable perverse filtration P≤∗. The precise construction uses an
equivariant Ngô-type comparison between F lγ and a fiber of a twisted, parabolic
Hitchin system over a stacky projective line; in the Hitchin setting, the filtration is
defined using perverse truncation of the Hitchin sheaf complex and the Ngô support
theorem. We refer to §8.3.6 of ibid. for details. Moreover, Oblomkov–Yun construct
a Drat

ν -action on the bigraded vector space

Eν,γ := grP
∗ H∗Gm

(F lγ)G0,γ/(ϵ− 1)

that commutes with the Brν,γ-action [OY, Thm. 8.2.3(1)]. What follows are The-
orem 8.2.3(2) and Conjecture 8.2.5 of ibid.

Theorem 5.2 (Oblomkov–Yun). In the setup above, where ν ∈ Q>0 such that its
lowest denominator is a regular elliptic number for G, the Brν,γ-invariants of Eν,γ
form the simple Drat

ν -module Lν(1).

Conjecture 5.3 (Oblomkov–Yun). The constructions above, and Theorem 5.2,
extend from split G to quasi-split G, while still satisfying the further properties of
P≤∗ in [OY, Thm. 8.2.3(1)]. (We may need to write Lν⃗(1) in place of Lν(1).)
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5.5. Evidence for Conjecture 2. In Section 9 of their paper, Oblomkov–Yun
verify Conjecture 5.3 for various non-split cases in which ΓθG has rank ≤ 2 and
ν = 1

m . As they remark, the other possibilities for ν can be reduced to this one by
[OY, Prop. 5.5.8]. They arrive at the following results and conjectures:
(OY1) The Brν,γ-action on Eν,γ is trivial for:

(a) The cases where m is the twisted Coxeter number [OY, Ex. 8.2.6].
(b) The cases where

(type,m) = (2A2, 2), (C2, 2), (G2, 3), (G2, 2).

Here, it is the Drat
G,A(ν⃗)-module Lν(1) by Theorem 5.2.

(OY2) The Brν,γ-action on Eν,γ can be computed for

(type,m) = (2A3, 2), (2A4, 2), (3D4, 6), (3D4, 3).

Here, Oblomkov–Yun state a conjecture for the (Drat
G,A(ν⃗),Brν,γ)-bimodule

structure in terms of a direct sum of simple bimodules, but the existence
of the perverse filtration on the whole cohomology remains open.

Note that Conjecture 3.3 holds for G,m, (T, 1) in (OY1a), by Theorem 3.6(2), and
in the cases where type = 2A2,

2A3,
2A4, by Proposition 6.5 below. So in these

cases, the Hecke algebra HG,T,1(1) in Conjecture 2 is well-defined.
To explain what we can verify: As in the introduction, let

[Eν,γ ] =
∑
i,j

(−1)itj grP
j Hi

Gm
(F lγ)G0,γ/(ϵ− 1) ∈ K0(CWG,A)[t±1].

Let χ1 ∈ K0(HG
G,T,1(1)) be the image of χ ∈ Irr(WG,T) under Brauer decomposition,

or more precisely, under (4.1). Recall that Conjecture 2(2) predicts that

[Eν,γ ] ?=
∑

ρ∈Uch(G,A,1,T,1)

εGT,1(ρ)[∆ν⃗(χG
A,1(ρ))⊗ χG

T,1(ρ)1](5.1)

in K0(CWG,A ⊗HG,T,1(1)op)[[t]][t−1], and via Theorem 2.4(2c), implies that

[Eν,γ ] ?=
∑

ρ∈Uch(G,A,1,T,1)

Degρ(e2πiν)[∆ν⃗(χG
A,1(ρ))](5.2)

in K0(CWG,A)[[t]][t−1]. We will prove:

Proposition 5.4. (1) In the cases above, excluding those of type 2C2 or 2G2,
the formulas of [OY] imply or would imply (5.2).

(2) In case (OY1a), and in the cases where 2A2,
2A3,

2A4 and m = 2, the
Brν,γ-action factors through HG,T,1(1), and the formulas of [OY] imply or
would imply (5.1).

Throughout the proof, it will be convenient to write C for the trivial CBrν,γ-
module. In all cases except (OY1a), the group WG,A will be dihedral; we will
adopt Chmutova’s notation for its irreducible characters [Chm]. To prove (1),
we use her Drat

G,A(ν⃗)-module character formulas in ibid.. To prove (2), we use
the following observation, together with geometric results of Chen–Vilonen–Xue
in [CVX1, CVX2, CVX3]:
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Lemma 5.5. Suppose that HG,T,1(x) is defined, and that there exist Irr(WG,A)ν ⊆
Irr(WG,A) and (εν , Dν) : Irr(WG,A)ν → {±1} × Irr(HG,T,1(1)) ⊔ {0} such that:

(1) In K0(CWG,A ⊗HG,T,1(1)op)[[t]][t−1], we have

[Eν,γ ] =
∑

ψ∈Irr(WG,A)ν

εν(ψ)[Lν⃗(ψ)⊗Dν⃗(ψ)].

(2) For all ρ ∈ Uch(G,A, 1,T, 1) and ψ ∈ Irr(WG,A)ν , we have

(Lν⃗(ψ) : ∆ν⃗(χG
A,1(ρ))) = εν(ψ)εGT,1(ρ)[χG

T,1(ρ)1 : Dν(ψ)],(5.3)

where the left-hand side is the virtual multiplicity of ∆ν⃗(χG
A,1(ρ)) in Lν(ψ)

given by the inverse decomposition matrix for Drat
G,A(ν⃗).

Then (5.1) holds.

Proof. Substitute [Lν⃗(ψ)] =
∑
χ(Lν⃗(ψ) : ∆ν⃗(χ))[∆ν⃗(χ)] into (1). Apply (2). □

In practice, the sign εGT,1(ρ) is most easily calculated as the sign of the integer
Degρ(e2πi/m), via Theorem 2.4(2c). It will be convenient to write Degχ and εGT,1(χ)
in place of Degρ and εGT,1(ρ) whenever χ = χG

A,1(ρ).

5.5.1. The Twisted Coxeter Case. The Brν,γ-action factors through HG,T,1(1) be-
cause it is trivial. Hypothesis (1) in Lemma 5.5 holds with Irr(WG,A)ν = {1} and
(εν , Dν)(1) = (1, 11). Writing V for the reflection representation of WG,A, we have

Degχ(e2πi/m) =
{

(−1)k χ = Λk(V ),
0 else

(5.4)

= (Lν⃗(1) : ∆ν⃗(χ)),

where the first equality follows from [BGK, Thm. 6.6, Rem. 6.9] and the second
from [R08, Thm. 5.15]. So (Lν⃗(1) : ∆ν⃗(χ)) = εGT,1(χ). To show hypothesis (2) in
Lemma 5.5, it remains to show that

[χG
T,1(ρ)1 : 11] = 1 for all ρ ∈ Uch(G,A, 1,T, 1).(5.5)

Indeed, this follows from observing that WG,T,1 is cyclic of order m [S74, Cor. 4.4,
Thm. 7.6(v)], and hence, HG,T,1(1) ≃ Qcyc[σ]/(σ − 1)m.

5.5.2. The Case (2A2, 2). Here, WG,A ≃ WA1 ≃ S2, whereas WG,T ≃ WA3 ≃ S3

by Ennola duality (Section 6.5). Again, the Brν,γ-action factors through HG,T,1(1)
because it is trivial, and hypothesis (1) in Lemma 5.5 holds with Irr(WG,A)ν = {1}
and (εν , Dν)(1) = (1, 11).

Via the case (type,m) = (A1, 2), we compute [Lν(1)] = [∆ν(1)]− [∆ν(sgn)]. At
the same time, we see from [C, §13.8] or Ennola duality that the generic-degree
polynomials are Deg1(x) = 1 and Degsgn(x) = x3, whence Deg1(−1) = 1 and
Degsgn(−1) = −1. So to show hypothesis (2) in Lemma 5.5, we again reduce to
showing (5.5). Here, it follows from observing that HG,T,1(1) ≃ HWS3

(−1), where
HWS3

(x) is the usual Hecke algebra for S3 as a Weyl group, cf. Example 3.5.
Alternately, one can use [GJ, Table 7.2], or more classically, [J].
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5.5.3. The Case (C2, 2). Here, WG,A ≃WG,T ≃WBC2 . The argument is analogous
to that in Section 5.5.2, except that we compute the left-hand side of (5.3) from
[Chm, §3.2]. We again reduce to showing (5.5). It follows fromHG,T,1(1) ≃ CWBC2 .

5.5.4. The Case (G2, 3). Here, WG,T ≃ Z6. The argument is analogous to the
Coxeter case, except that we compute the left-hand side of (5.3) from [Chm, §3.2].
It shows an analogue of (5.4), except with V replaced by the representation where
w ∈WG,A acts on V by w2. Again, (5.5) follows from HG,T,1(1) ≃ Qcyc[σ]/(σ−1)6.

5.5.5. The Case (G2, 2). Here, WG,A ≃ WG,T ≃ WG2 . The argument is analogous
to that in Section 5.5.3.

5.5.6. The Case (2A3, 2). Here, WG,A ≃WBC2 and WG,T ≃WA3 ≃ S4.
Section 9.4 of [OY] predicts an isomorphism of (Drat

G,A(ν⃗),CBrν,γ)-bimodules

Eν,γ
?≃ Lν(1)⊗C⊕ Lν(ε1)⊗H1(Cγ),

where H1(Cγ) is the simple CBrν,γ-module in cohomological degree 1 formed by
the monodromy of a certain family of genus-1 curves.

We can compute the left-hand side of (5.3) from [Chm, §3.2]. We can again
determine the generic-degree polynomials, and hence the signs εGT,1(χ), from [C,
§13.8] or Ennola.

The Hecke algebra HG,T,1(1) has two simple modules, both in the principal
block. One is trivial, and the other arises from the Brν,γ-action on H1(Cγ) above,
by [CVX1, §2.3] combined with [CVX2]. Thus the Brν,γ-action factors through
HG,T,1(1). Hypothesis (1) of Lemma 5.5 holds with Irr(WG,A)ν = {1, ε1} and
(εν , Dν)(1) = (1, 11) and (εν , Dν)(ε1) = (−1,H1(Cγ)). Finally, the multiplicities
on the right-hand side of (5.3) can be computed from the table labeled D(2) in [GJ,
184], or from [J]. In this way, we can verify hypothesis (2) in Lemma 5.5.

5.5.7. The Case (2A4, 2). Here, WG,A ≃WBC2 and WG,T ≃WA4 ≃ S5.
Section 9.5 of [OY] predicts an isomorphism of bimodules

Eν,γ
?≃ Lν(1)⊗C⊕ Lν(ε2)⊗ Λ2 H1(Cγ)prim,

where Λ2 H1(Cγ)prim is the simple CBrν,γ-module in cohomological degree 2 formed
by a certain summand of the monodromy of a family of genus-2 curves.

Again, we compute the left-hand side of (5.3) from [Chm, §3.2] and the signs
εGT,1(χ) from [C, §13.8] or Ennola.

The Hecke algebra HG,T,1(1) again has two simple modules, both principal. One
is trivial, and the other arises from the Brν,γ-action on Λ2 H1(Cγ)prim by [CVX3,
(4.18)] combined with [CVX2]. Thus the Brν,γ-action factors through HG,T,1(1).
The rest of the verification of (5.1) is analogous to that in Section 5.5.6, except
that εν(Λ2 H1(Cγ)prim) = 1.

5.5.8. The Case (3D4, 6). Here, WG,A ≃ WG2 , and WG,T ≃ G4 in Shephard–Todd
notation for complex reflection groups. Explicitly,

G4 = ⟨s, t | s3 = t3 = (st)3 = 1⟩,
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so G4 has the same braid group as WA2 ≃ S3.
This is the first case where the central charge of the rational DAHA is non-

constant. Section 9.8 of [OY] predicts an isomorphism of bimodules

Eν,γ
?≃ Lν⃗(1)⊗C⊕ Lν⃗(ε1)⊗Mγ ,

where Mγ is the simple CBrν,γ-module in cohomological degree 0 formed by the
2-dimensional irreducible representation of its quotient S3.

We can use [Chm, §3.2] and [C, §13.8] to verify (5.2). Our central charge ν⃗

corresponds to the parameters ( 1
2 ,

1
6 ) in Chmutova’s notation. Explicitly,

[Lν⃗(1)] + 2[Lν⃗(ε1)] = [∆ν⃗(1) + 2[∆ν⃗(ε1)] + 2[∆ν⃗(ε2)] + [∆ν⃗(sgn)]− 3[∆ν⃗(τ1)].

5.5.9. The Case (3D4, 3). Here, WG,A ≃ WG2 and WG,T ≃ G4 once again. Section
9.9 of [OY] predicts an isomorphism of bimodules

Eν,γ
?≃ Lν⃗(1)⊗C⊕ Lν⃗(ε1)⊗H1(C ′γ),

where H1(C ′γ) is the simple CBrν,γ-module in cohomological degree 1 formed by
the monodromy of a family of genus-1 curves. The rest of the verification of
(5.2) is analogous to that in Section 5.5.8, but now ν⃗ corresponds to (1, 1

3 ), and
εν(H1(C ′γ)) = −1. Explicitly,

[Lν⃗(1)]− 2[Lν⃗(ε1)] = [∆ν⃗(1)− 2[∆ν⃗(ε1)]− 2[∆ν⃗(ε2)] + [∆ν⃗(sgn)]− [∆ν⃗(τ1)]

+ 2[∆ν⃗(τ2)].

5.6. Comparison to Deligne–Lusztig Bimodules. To conclude this section,
we explain the table of analogies (1.5) from the introduction.

Henceforth, we return to using G to denote a reductive algebraic group over F̄q
arising from G. Thus the group G of our new notation will be most analogous to
the group Ḡ⊗C((z)), not the group G, of our old notation.

Fix an integer e > 0 and a Φe-cuspidal pair (L, λ) for G. For any prime power
q > 1, let HG,L,λ(q) be the base change of HG,L,λ(x) on the left-hand side of
(3.1). There is a stronger form of Conjecture 3.3, roughly stating that whenever
G,F, L, λq arise from q,G,L, λ, the maps (εGL,λ, χG

L,λ) of Theorem 2.4 are induced
by the (GF , HG,L,λ(q))-bimodule stucture of RGL (λq) under Tits deformation.

Conjecture 5.6. Assume that Conjecture 3.3 holds for q,G, F, L, λq. Then in the
Grothendieck group K0(CGF ⊗HG,L,λ(q)op), we have∑

i

(−1)i Hi
c(Y GL⊆P [λq]) =

∑
ρ∈Uch(G,L,λ)

εGL,λ(ρ)[ρq ⊗ χG
L,λ(ρ)q],

where ρq ∈ Uch(GF ) corresponds to ρ ∈ Uch(G,L, λ), and the HG,L,λ(q)-module χq
corresponds to χ ∈ Irr(WG,L,λ).

Note that this conjecture recovers Example 2.5, because if A ≤ G is a Φ1-split
maximal torus, then εGA,1 = 1 uniformly.
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Conjecture 3.3 would imply that for any further integer m > 0 and Φm-cuspidal
pair (M, µ) giving rise to M,µq, we would have∑

i,j

(−1)i+j Hi
c(Y GL⊆P [λq])⊗CGF Hj

c(Y GM⊆Q[µq])(5.6)

=
∑

ρ∈Uch(G,L,λ,M,µ)

εGL,λ(ρ)εGM,µ(ρ)[χG
L,λ(ρ)q ⊗ χG

L,λ(ρ)q]

in K0(HG,L,λ(q) ⊗HG,M,µ(q)op). (Above, Q ⊆ G is a parabolic subgroup, like P .)
This is the bimodule that produces the second row of (1.5).

Returning to the notation we used earlier in this section, let ζ = e2πiν , and let
Ēν,γ be the (HG,A,1(ζ), HG,T,1(1))-bimodule

Ēν,γ =
∑

ρ∈Uch(G,A,1,T,1)

εGT,1(ρ)[χG
A,1(ρ)ζ ⊗ χG

M,1(ρ)1].(5.7)

By Theorem 3.6(1) and Theorem 4.2, we can construct Ēν,γ by applying the KZ
functor term by term to the left factors in the conjectural decomposition of Eν,γ
in Conjecture 2(2). Since εGA,1(ρ) = 1 for all ρ, the bimodules (5.6) and (5.7) only
differ in the following ways:

• (5.6) works for any (L, λ) and (M, µ), whereas (5.7) requires us to take
L, ,M to be the tori A,T.

• (5.6) uses the specializations of HG,L,λ(x) and HG,M,µ(x) at x = q, whereas
(5.7) uses the specializations of HG,A,1(x) and HG,T,1(x) at x = ζ and x = 1,
respectively.

This is the content of the analogy in (1.5).

Remark 5.7. Using an equivariant Künneth formula, it is possible to rewrite the
left-hand side of (5.6) in terms of the G-equivariant cohomology of a single derived
scheme. Here, equivariant cohomology is interpreted as the hypercohomology of
the equivariant constant ℓ-adic sheaf, following [BDR].

In the case where G is split and L,M are maximal tori respectively of types
[w], [v], the derived scheme takes the form Y(w) ×L

GF Y(v) where Y(w),Y(v) are
defined as follows. Let B be the flag variety of G, parametrizing its Borel subgroups.
For any w ∈WΓG , write B x−→ B′ to indicate that a pair of Borels (B,B′) has relative
position w, and let

Y(w) = {(gF,B) ∈ GF × B | B w−→ g(FB)g−1}.

Let G act on Y(w) according to x · (gF,B) = (xgF, xBx−1). The arguments of
[BDR, §2] show that the G-equivariant cohomology of Y(w) recovers RGL (1), and
hence, that of Y(w)×L

GF Y(v) recovers RGL (1)⊗CGF RGM (1). Note that Y(w),Y(v)
are analogues, with GF in place of G, of the varieties Yw appearing in Lusztig’s
work on character sheaves.

6. The General Linear and Unitary Groups

6.1. Fix an integer n ≥ 2. We write GLn for the generic general linear group of
rank n and GUn for the generic general unitary group of rank n, corresponding to
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the finite reductive groups GLn(Fq) and GUn(Fq). These generic groups have the
same root datum, but GLn is split with Weyl group Sn, whereas [f ]GUn = Snf =
−Sn, where f ∈ Aut(ΓGUn) is induced by the nontrivial involution of the Dynkin
diagram of type An−1.

In this section, we first describe the Φ-cuspidal pairs of GLn and GUn in terms
of the combinatorics of partitions. We then predict the explicit Φ-specializations
arising from Conjecture 3.3 in these cases, and prove Theorem 3 for the resulting
Hecke algebras.

6.2. Partitions and Abaci. Let Π be the set of integer partitions of arbitrary
size. We view an element π ∈ Π as a weakly-descreasing sequence of nonnegative
integers π1 ≥ π2 ≥ . . . such that πi = 0 whenever i is large enough. Its size |π| is
the sum of its entries, and its length ℓπ is its number of nonzero entries. We refer
to tuples π⃗ = (π(1), . . . , π(e)) ∈ Πe as e-partitions.

We draw partitions as Young diagrams in French notation, composed of unit
squares or boxes in the upper-right quadrant of the x, y-plane, flush against the
positive x- and y-axes. For any partition π ∈ Π and box □ ∈ π, the hook length of
□ equals 1 plus the number of boxes to its right plus the number of boxes above it.
By definition, π is an e-core iff it contains no boxes whose hook length is divisible
by e. In the language of [JK, §2.3, 2.7], this means we cannot obtain any smaller
Young diagram by removing rim e-hooks from π.

We write Πe-cor ⊆ Π for the subset of e-cores. For each integer e > 0, there is
a bijection Π ∼−→ Πe-cor × Πe, called the corresponding core-quotient bijection. For
our purposes, it is most convenient to express it in terms of the combinatorics of
objects called abaci.

In more detail, let

B = {β ⊆ Z | Z<x ⊆ β ⊆ Z<y for some integers x, y}.

Tuples β⃗ = (β(0), . . . , β(e−1)) ∈ Be are usually called e-abacus configurations, or
more simply, e-abaci. The elements of the sets β(i) are sometimes called beads.
There is a bijection from 1-abaci to e-abaci

υe : B ∼−→ Be

as follows. First, let the bijection (qe, re) : Z ∼−→ Z× {0, 1, . . . , e− 1} be defined by

x = eqe(x) + re(x).

Next, set υe(β) = (υ(0)
e (β), . . . , υ(e−1)

e (β)), where

υ(i)
e (β) = {qe(x) | x ∈ β such that re(x) = i}.

We now explain how υe produces an e-core and an e-quotient.
Recall that a charged partition is a pair (π, s) ∈ Π × Z. Henceforth, to follow

convention, we will use the notation |π, s⟩ rather than (π, s). There is a bijection
from charged partitions to 1-abaci

β : Π× Z ∼−→ B,
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which we abbreviate by writing βπ,s = β(|π, s⟩) and define by

βπ,s = {πi − i+ s | i = 1, 2, 3, . . .}.

More generally, a charged e-partition is a pair |π⃗, s⃗⟩ ∈ Πe × Ze. We again write β
to denote the bijection from charged e-partitions to e-abaci: β : Πe × Ze ∼−→ Be.
We then get a bijection from charged partitions to charged e-partitions:

Υe : Π× Z β−→ B υe−→ Be β−1

−−→ Πe × Ze.

With this notation, a partition π ∈ Π is an e-core if and only if, for some (equiv.,
any) s ∈ Z, the charged e-partition Υe(|π, s⟩) takes the form (∅e, t⃗) for some t⃗ ∈ Ze,
where ∅e = (∅, . . . , ∅). That is, no bead in the output e-abacus can be pushed to a
more negative position.

In general, if Υe(|π, s⟩) = |ϖ⃗, r⃗⟩, then the charged version of the core-quotient
bijection sends |π, s⟩ to the pair consisting of:

(1) The charged e-core (Υe)−1(|∅e, r⃗⟩). The underlying e-core depends only on
π, so we call it the e-core of π. As in [JK, §2.7], it is the partition that
remains after removing as many rim e-hooks from π as possible.

(2) The e-partition ϖ⃗, which we call the e-quotient of |π, s⟩.
Thus the charged core-quotient bijection is a map

Π× Z ∼−→ (Πe-cor × Z)×Πe.

In practice, we will use its precomposition with maps Π → Π × Z of the form
π 7→ |π, e+ ℓπ⟩.

6.3. In what follows, we fix a Φ1-split maximal torus A ≤ GLn. A special feature
of GLn is that Uch(GLn) = Uch(GLn,A, 1): Every generic unipotent irreducible
character belongs to the principal series. Since WGLn,A = Sn, the symmetric group
on n letters, we may now regard χGLn

A,1 as a bijection:

χ : Uch(GLn) ∼−→ {partitions of n}.

Henceforth, we conflate each element ρ ∈ Uch(G) with its partition χ(ρ).
Following [BMM93, 45–48], we explain how the Φ-Harish-Chandra series for

GLn are described by cores and quotients. First, a full set of representatives for
the elements of HCe(GLn) are the Φe-cuspidal pairs (L, λ) in which:

(1) The Levi subgroup L takes the form

L = T×GLn−ae for some integer a > 0,

where T ≤ GLae is a subtorus such that |T|(x) = (xe − 1)a. Note that in
this case, L = ZG(T′) for a Φe-subtorus T′ ≤ T.

(2) The character λ ∈ Uch(L) corresponds to an e-core partition of n − ae

under the identification Uch(L) = Uch(GLn−ae) induced by (1).
In general, not every Φe-split Levi subgroup of GLn is Sn-conjugate to a Levi of
the form in (1). But for L of that form, the Φe-cuspidal elements of Uch(L) are
precisely those in (2).
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Suppose that (L, λ) is a Φe-cuspidal pair of the form in (1)–(2). It turns out
that [f ]L = Sn−aev for some v ∈ Sae of cycle type ea, where we embed Sae×Sn−ae
into Sn as a parabolic subgroup. Moreover,

WG,L,λ ≃ ZSae
(v) ≃ Ze ≀ Sa,

where Ze := Z/eZ. In Shephard–Todd notation, this wreath product is denoted
G(e, 1, a). Explicitly, if c1, . . . , ca are the individual e-cycles that comprise v, then
ci generates the ith copy of Ze in the wreath product. Note that the isomorphisms
above depend only on L, not on λ.

By Clifford theory, the irreducible characters of Ze ≀ Sa are indexed by the e-
partitions π⃗ = (π1, . . . , πe) with

∑
i |πi| = a. Henceforth, we conflate each element

of Irr(WGLn,L,λ) with the corresponding e-partition.
The Harish-Chandra series indexed by (L, λ) is

Uch(GLn,L, λ) = {ρ ∈ Uch(GLn) | χ(ρ) has e-core λ}.

In this sense, the map sending ρ ∈ Uch(GLn) to the Φe-Harish–Chandra series
containing ρ is essentially the map sending a partition of n to its e-core. At the
same time, the map

χGLn

L,λ : Uch(GLn,L, λ)→ Irr(WGLn,L,λ)

is essentially the map sending a partition of n to its e-quotient. To make this more
precise: For any s ∈ Z, let ϱ⃗e,s be the composition

ϱ⃗e,s : Π |−,e+s⟩−−−−−→ Π× Z Υe−−→ Πe × Ze ↠ Πe.

Then the map χGLn

L,λ of [BMM93, 46–47] is determined by the commutative diagram
below, in which the vertical arrows are injective:

(6.1)
Uch(GLn,L, λ) Irr(WGLn,L,λ)

Π Πe

χGLn
L,λ

ϱ⃗e,ℓλ

In loc. cit., Broué–Malle–Michel verify that under this definition, the maps χGLn

L,λ
satisfy the commutativity constraint in Theorem 2.4(2d).

6.4. In what follows, we write C = Ze ≀ Sa. For such groups, the Hecke algebra
HC(u⃗) is more commonly known as an Ariki–Koike algebra. To describe it, recall
the Coxeter presentation:

C =
〈
t, s1, . . . , sa−1

∣∣∣∣∣ te = s2
1 = · · · = s2

a−1 = 1,
(ts1)4 = (s1s2)3 = · · · = (sa−2sa−1)3 = 1

〉
.

In the notation of Section 3.2, the C-orbits on the set of hyperplanes A correspond
to the sets of pseudo-reflections {t} and {s1, . . . , sa−1}. Fix distinguished braid
reflections τ, σ1, . . . , σa−1 that respectively lift t, s1, . . . , sa−1 to generators of the
monodromy around these hyperplanes, such that the braid relations in [LM, §2.1]
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hold with our a, τ, σi in place of their n, T0, Ti. We will write τ, σi in place of σH ,
and similarly, uτ,j , uσ,j in place of uC,j . With this notation,

HC(u⃗) = Z[u⃗±1][BrC ]
⟨(τ − uτ,0) · · · (τ − uτ,e−1), (σi − uσ,0)(σi − uσ,1) | 1 ≤ i < a⟩

.

Extending Theorem 3.6(4), we will predict the specializations of these Ariki–Koike
algebras that arise from Conjecture 3.3 when G = GLn and (L, λ) is arbitrary. As
preparation, we define a map

a⃗e : Πe-cor → Ze

as follows. First, for any s ∈ Z, let b⃗e,s = (b(0)
e,s, . . . , b

(e−1)
e,s ) be the composition

b⃗e,s : Π |−,e+s⟩−−−−−→ Π× Z Υe−−→ Πe × Ze ↠ Ze.

Equivalently b⃗e,s is given by |ϱ⃗e,s(π), b⃗e,s(π)⟩ = Υe(|π, e + s⟩). Next, set a⃗e(λ) =
(a(0)(λ), . . . , a(e−1)(λ)), where

a(i)
e (λ) = eb

(i)
e,ℓλ

(λ) + i.

Conjecture 6.1. Let (L, λ) be a Φe-cuspidal pair for GLn taking the form in
Section 6.3. Then Conjecture 3.3 holds for G = GLn and (L, λ), with the explicit
specialization 

SGLn,L,λ(uτ,j) = xa
(j)
e (λ) for all j,

SGLn,L,λ(uσ,0) = 1,
SGLn,L,λ(uσ,1) = −xe.

(6.2)

(The definition of a⃗e ensures that this is, in fact, a Φe-specialization.)

Proposition 6.2. Conjecture 6.1 holds in the cases where:
(1) L is a maximal torus of GLn.
(2) L = T × GLn−e for some Coxeter maximal torus T ≤ GLe. Equivalently,

WGLn,L,λ is cyclic.
In the notation of Section 6.3, (1) corresponds to n− ae = 0, 1, and (2) to a = 1.

Proof. Case (1) is precisely case (4) of Theorem 3.6. Here, λ is the trivial character,
which corresponds to the empty partition, so a⃗e(λ) = (0, 1, . . . , e − 1). Therefore,
(6.2) recovers the specialization in [DM06, Thm. 10.1].

In case (2), the group BrC is freely generated by τ . So it suffices to construct,
uniformly for any prime power q > 1 and prime ℓ invertible in Fq, a GLn(Fq)-
equivariant action of τ on H∗c(Y GL⊆P )[λq] with eigenvalues qa(0)

e (λ), . . . , qa
(e−1)
e (λ),

where L, λq arise from q, L, λ. As it turns out, we can map τ to the Frobenius
F . Indeed, the work of Dudas in [Du] shows that for the cuspidal pairs we are
consdering, the multiset of eigenvalues of F is precisely {qa(i)

e (λ)}i. To translate
his notation into ours, observe that his d is our e, his µ is our λ, and his multiset
{γd(X,x)}x∈X′ is our multiset {qa(i)

e (λ)}i. □

Remark 6.3. The strategy of the proof of [DM06, Thm. 10.1] is to reduce from
the general case to that of Coxeter maximal tori, via a subtle interplay between
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the positive braids and Frobenius maps that define the relevant (braid-theoretic)
Deligne–Lusztig varieties. It seems plausible that this strategy could be generalized
to the parabolic Deligne–Lusztig varieties of [DM14]. One could then try to reduce
the general case of Conjecture 6.1 to case (2) of Proposition 6.2.

6.5. Ennola Duality. For any generic group G, write G− to denote the generic
group defined by ΓG− = ΓG and [f ]G− = [−f ]G. Note that the map L 7→ L− sends
each Φe-split Levi subgroup of G to a Φe− -split Levi subgroup of G−, where

Φe−(x) := Φe(−x), meaning e− =


2e e odd,
e e ≡ 0 (mod 4),
1
2e e ≡ 2 (mod 4).

As explained in [BMM93, 44–45] and [B, 57–58, 72], Ennola duality for G amounts
to the existence of a similar map

ρ 7→ (ε(ρ), ρ−) : Uch(G)→ {±1} ×Uch(G−),

together with analogous maps for all Φ-split Levi subgroups L ≤ G, such that:
(1) ρ 7→ ρ− is bijective.
(2) For any integer e > 0 and Φe-split Levi L ≤ G, we have a commutative

diagram:

ZUch(L) ZUch(L−)

ZUch(G) ZUch(G−)

ρ 7→ ε(ρ)ρ−

RG
L RG−

L−

λ 7→ ε(λ)λ−

(3) For all ρ ∈ Uch(G), we have Degρ(x) = ε(ρ)Degρ−(−x). See [BM93, 137]
or [B, 72].

Classical Ennola duality is the case where G = GLn and G− = GUn for some n,
using the fact that [f ]GUn = [−1]GLn . It turns out that:

(4) For all ρ ∈ Uch(GLn), we have χGLn

A,1 (ρ) = χGUn

A−,1(ρ−) under the canonical
isomorphisms WGLn,A ≃ Sn ≃ WGUn,A− . For details, see [BMM93, 45] or
[DM20, §11.7].

From items (3)–(4), we are led to expect that SGUn,L−,λ− and HGUn,L−,λ−(x) are
related to SGLn,L,λ and HGLn,L,λ(x) by the substitution x 7→ −x.

Conjecture 6.4. Let (L, λ) be a Φe-cuspidal pair for GLn taking the form in
Section 6.3. Then Conjecture 3.3 holds for G = GUn and (L−, λ−), with the
explicit specialization

SGUn,L−,λ−(uτ,j) = (−x)a(j)
e (λ) for all j,

SGUn,L−,λ−(uσ,0) = 1,
SGUn,L−,λ−(uσ,1) = −(−x)e.

(6.3)

Proposition 6.5. Conjecture 6.4 holds in the cases where L is a maximal torus of
GLn and e ∈ {1, 2, nodd}, where:

nodd =
{

n− 1 n even,
n n odd.
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Proof. The values 1, 2, nodd for e respectively correspond to the values 2, 1, 2nodd

for e−. If e− = 1, then L− ≤ GUn belongs to case (1) of Theorem 3.6. It remains
to handle e− = 2 and e = 2nodd.

If n = 2, then 2nodd = 2. If instead n > 2, then 2nodd is the twisted Coxeter
number of GLn by [S74, §7]. Similarly, 2 is the order of w0f = −1, where w0 ∈ Sn
is the longest element and f is the Dynkin-diagram automorphism defining GUn.
So by [BMM99, Cor. 5.10], e− = 2, resp. e− = 2nodd implies that L− belongs to
case (2), resp. case (3), of Theorem 3.6. □

6.6. Ariki–Koike Blocks. To prove Theorem 3, we need the work of Lyle–Mathas
describing the blocks of specialized Ariki–Koike algebras.

Recall from Section 6.2 that we draw partitions as Young diagrams in the xy-
plane, flush against the positive axes. For any partition π and box □ ∈ π, let
(x(□), y(□)) be the coordinates of the top right corner of □. What follows is a
version of [LM, Thm. 2.11].

Theorem 6.6 (Lyle–Mathas). Let C = Ze ≀ Sa. Fix a field K ⊇ Q and units
α0, α1, . . . , αe−1, ω ∈ K×, where ω ̸= 1. Let T : Z[u⃗±1]→ K be the specialization


T (uτ,j) = αj for all j,
T (uσ,0) = 1,
T (uσ,1) = −ω,

and let KHC,T = K ⊗Z[u⃗±1] HC(u⃗) be the base change of HC(u⃗) along T . For any
e-partition ϖ⃗ with

∑
i |ϖi| = a, let cTϖ⃗ : K× → Z≥0 be defined by

cTϖ⃗(u) =

∣∣∣∣∣∣∣
(j,□)

∣∣∣∣∣∣∣
0 ≤ j ≤ e− 1,
□ ∈ ϖ(j),

u = ωy(□)−x(□))αj


∣∣∣∣∣∣∣ .

Then two elements of Irr(C) map into the same block ideal of K0(KHC,T ) if and
only if they correspond to e-partitions ϖ⃗, ϱ⃗ such that cTϖ⃗ = cTϱ⃗ .

Above, the map Irr(C) → K0(KHC,T ) is defined by the following replacement
for the construction in Section 4. Note that by the work of Dipper–James–Mathas,
KHC,T is a cellular algebra in the sense of Graham–Lehrer [LM, 857]. Thus there
is a map Irr(C) → K0(KHC,T ) that sends each irreducible character of C to a
corresponding cell module of KHC,T , called its Specht module. When K = Qcyc,
and T is the specialization we consider in the corollary to follow, this construction
will agree with that of Section 4.

For any charged e-partition |π⃗, s⃗⟩, written out as π⃗ = (π(0), . . . , π(e−1)) and
s⃗ = (s(0), . . . , s(e−1)), let c|π⃗,s⃗⟩ : Z→ Z≥0 be defined by

c|π⃗,s⃗⟩(k) =

∣∣∣∣∣∣∣
(j,□)

∣∣∣∣∣∣∣
0 ≤ j ≤ e− 1,
□ ∈ π(j),

k = e(y(□)− x(□) + s(j)) + j


∣∣∣∣∣∣∣ .
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That is, c|π⃗,s⃗⟩ describes the multiset of values e(y(□)− x(□) + s(j)) + j as we run
over indices j and boxes □ ∈ π(j). Let cΦm

|π⃗,s⃗⟩ : Zm → Z≥0 be defined by

cΦm

|π⃗,s⃗⟩(k̄) =
∑

k̄=k+mZ

c|π⃗,s⃗⟩(k).(6.4)

Note that c|π⃗,s⃗⟩(k) = 0 for all k positive enough or negative enough, so cΦm

|π⃗,s⃗⟩ is
well-defined.

Corollary 6.7. Let SGLn,L,λ be the specialization defined by (6.2). Then in the
notation of Section 4, two elements of WGLn,L,λ belong to the same (Φm,SGLn,L,λ)-
block of Irr(WGLn,L,λ) if and only if they correspond to elements π, ρ such that

cΦm

Υe(|π,e+ℓλ⟩) = cΦm

Υe(|ρ,e+ℓλ⟩).

Proof. Apply Theorem 6.6, then use the commutativity of (6.1) and the definition
of a⃗e. □

Corollary 6.8. An analogue of Corollary 6.7 holds with GUn and (6.3) in place
of GLn and (6.2).

Proof. The minus signs by which (6.3) differs from (6.2) do not affect the deduction
of Corollary 6.7 from Theorem 6.6. □

6.7. Proof of Theorem 3. The proof will amount to manipulating generating
functions. As preparation: For any function f : Z → Z such that f(k) = 0 for k
positive enough, let Z(t, f) ∈ Z[[t−1]][t] be defined by

Z(t, f) =
∑
k∈Z

f(k)tk.

For any bounded-above subset β ⊆ Z, let Z(t, β) ∈ Z[[t−1]][t] be defined by

Z(t, β) = Z(t, 1β),

where 1β is the indicator function on β.

Lemma 6.9. For any charged partition |π, s⟩, we have

(1− t−1) Z(t, c|π,s⟩) = Z(t, βπ,s)− Z(t,Z<s).

More generally, if e > 0 is an integer and λ is the e-core of π, then

(1− t−e) Z(t, cΥe(|π,s⟩)) = Z(t, βπ,s)− Z(t, βλ,s).

Proof. By explicit calculation. □

Proposition 6.10. Fix integers n, e > 0 and partitions π, ρ of size n that have the
same e-core. Then the following statements are equivalent for any integer m > 0
coprime to e:

(1) π, ρ have the same m-core.
(2) cΦm

Υe(|π,s⟩) = cΦm

Υe(|ρ,s⟩) for any s ∈ Z.
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Proof. From the abacus definition of the m-core of a partition, we see that

(1) ⇐⇒ 1− t−m divides Z(t, βπ,s)− Z(t, βρ,s).

Similarly, from (6.4),

(2) ⇐⇒ 1− t−m divides Z(t, c|π,s⟩)− Z(t, c|ρ,s⟩).

By Lemma 6.9, we can match the right-hand sides when m is coprime to e. □

By combining Proposition 6.10 with Corollary 6.7, resp. Corollary 6.8, we get
Theorem 3 for the generic general linear groups, resp. unitary groups:

Corollary 6.11. Let (L, λ), resp. (M, µ), be a Φe-cuspidal pair, resp. Φm-cuspidal
pair, for G = GLn. Let SGLn,L,λ and SG,M,µ be the specializations defined by (6.2).
If e and m are coprime, then Irr(WG,L,λ)M,µ is a single (Φm,SG,L,λ)-block and
Irr(WG,M,µ)L,λ is a single (Φe,SG,M,µ)-block. Thus Conjecture 4.1 holds for the
pair (SG,L,λ,SG,M,µ).

Moreover, analogues of these statements hold with GUn and (6.3) in place of
GLn and (6.2).

7. Uglov’s Bijections

7.1. The goal of this section is to prove Theorem 4, relating the bijections in
Theorem 3 to those introduced by Uglov in [U]. We first introduce the maps Υe

m

and w̃e,m,s needed for the statement. It will be convenient to write

Z[0,e) = {0, 1, . . . , e− 1}

throughout what follows.

7.2. The maps Υe
m will recover the maps Υm when e = 1. Just as we defined Υm

in terms of υm : B ∼−→ Bm, so we will define Υe
m in terms of

υem : Be ∼−→ Bm.

Recalling the bijection (qm, rm) : Z ∼−→ Z× Z[0,m) from Section 6.2, let

(qem, rem) : Z× Z[0,e)
∼−→ Z× Z[0,m)

be the bijection defined by

qem(x, y) = ℓqm(x) + y,

rem(x, y) = rm(x).

In particular, (q1
m, r

1
m) = (qm, rm).

Remark 7.1. For any e,m, we have (qme , rme ) ◦ (qem, rem) = id. Indeed, this follows
from observing that for all (x, y) ∈ Z×Z[0,e), we have qe(eqm(x) + y) = qm(x) and
re(eqm(x) + y) = y.
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Next, we set υem(β) = (υe,(0)
m (β), . . . , υe,(m−1)

m (β)), where

υe,(i)m (β) = {qem(x, y) | x ∈ β such that rem(x, y) = i}.

Finally, we define Υe
m to be the composition

Υe
m : Πe × Ze β−→ Be υe

m−−→ Bm β−1

−−→ Πm × Zm.

In particular, Υe
m is also bijective for any e and m.

Once we set (e,m) = (l, n), the map Υe
m is essentially the map (λl, sl) 7→ (λn, sn)

constructed by Uglov on pages 273–274 in [U, §4.1]. The main source of differences
is that Uglov’s version of β differs from ours by an overall shift by 1.

For another exposition of Uglov’s bijection, see Appendix A in [G], where our
map Υe

m is essentially the map that Gerber would denote by τ̇ ◦ τ−1.

7.3. To motivate the maps w̃e,m,s, we first study the maps (qem, rem) more deeply.

Lemma 7.2. Let (a, b) ∈ Z× Z[0,e) and (c, d) ∈ Z× Z[0,m).
(1) If qem(a, b) = c and rem(a, b) = d, then ea+mb = mc+ ed.
(2) If e and m are coprime, then the converse of (1) holds.

Proof. If qem(a, b) = c and rem(a, b) = d, then

mc+ ed = m(eqm(a) + b) + erm(a) = e(mqm(a) + rm(a)) +mb = ea+mb.

Conversely, if ea+mb = mc+ ed, then ea ≡ ed (mod m). If e and m are coprime,
then a ≡ d (mod m), whence rm(a) = d and

qem(a, b) = eqm(a) + b = e( 1
m (a− d)) + b = c,

as claimed. □

Henceforth, suppose that e and m are coprime. We will rewrite Lemma 7.2(2) in
stages. First, it is equivalent to the statement that, for all b ∈ Z[0,e) and d ∈ Z[0,m)

and x ∈ Z such that {
x≡ mb (mod e),
x≡ ed (mod m),

(7.1)

the map (qem, rem) sends

( 1
e (x−mb), b) 7→ ( 1

m (x− ed), d).

Fix s, t ∈ Z. We observe that

1
e (x−mb) = qe(x+ s)− qe(mb+ s),
1
m (x− ed) = qm(x+ t)− qm(ed+ t),

re(mb+ s) = re(x+ s),

rm(ed+ t) = rm(x+ t).

Let we,m,s : Z[0,e)
∼−→ Z[0,e) be the permutation such that

we,m,s(re(mb+ s)) = b for all b ∈ Z[0,e).
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Let ξe,m,s : Z× Z[0,e)
∼−→ Z× Z[0,e) be defined by

ξe,m,s(a, b) = (a− qe(mb+ s), b).

Then for all x satisfying (7.1), we have

ξe,m,s(qe(x+ s), we,m,s(re(x+ s)) = ( 1
e (x−mb), b),

ξm,e,t(qm(x+ t), wm,e,t(rm(x+ t)) = ( 1
m (x− ed), d).

Finally, let w̃e,m,s be the composition

w̃e,m,s : Z× Z[0,e)
id×we,m,s−−−−−−→ Z× Z[0,e)

ξe,m,s−−−−→ Z× Z[0,e).(7.2)

It may be regarded as an element of Ze ⋊ Se: that is, an affine permutation of the
cocharacter lattice of GLe. Our work has shown:

Proposition 7.3. For any coprime integers e,m > 0 and arbitrary integers s, t,
the following diagram commutes:

Z× Z[0,e) Z Z× Z[0,m)

Z× Z[0,e) Z× Z[0,m)

(qe(x + s), re(x + s))← [ x x 7→ (qm(x + t), rm(x + t))

w̃e,m,s w̃m,e,t

(qe
m, r

e
m)

We again write w̃e,m,s and w̃m,e,t for the self-maps of Be and Bm that these
affine permutations respectively induce. Explicitly, if β⃗ = (β(0, . . . , β(e−1)) ∈ Be,
then w̃e,m,s(β⃗) = (w̃(0)

e,m,s(β⃗), . . . , w̃(e−1)
e,m,s (β⃗)), where

w̃(j)
e,m,s(β⃗) = {y ∈ Z | (y, j) = w̃e,m,s(x, i) for some x ∈ β(i)}.

We do the same for the corresponding self-maps of Πe × Ze and Πm × Zm. With
this notation, we arrive at:

Corollary 7.4. For any coprime integers e,m > 0 and arbitrary integers s, t, the
following diagram commutes:

Be B Bm

Be Bm

υe(β + s)← [ β β 7→ υm(β + t)

w̃e,m,s w̃m,e,t

υe
m

Hence the following diagram commutes:

Πe × Ze Π Πm × Zm

Πe × Ze Πm × Zm

Υe(|π, s⟩)← [ π π 7→ Υm(|π, t⟩)

w̃e,m,s w̃m,e,t

Υe
m
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7.4. Proof of Theorem 4. The theorem asserts that if G = GLn and e,m are
coprime, then we have a commutative diagram:

Irr(WG,L,λ) Uch(G,L, λ,M, µ) Irr(WG,M,µ)

Πe × Ze Π Πm × Zm

Πe × Ze Πm × Zm

χG
L,λ χG

M,µ

Υ1
e(|ρ, e + ℓλ⟩)←[ ρ ρ 7→ Υ1

m(|ρ,m + ℓµ⟩)

w̃e,m,e+ℓλ
w̃m,e,m+ℓµ

Υe
m

That the bottom rectangle commutes is Corollary 7.4. The top left and right squares
commute, and are compatible with the commutative squares of Theorem 2.4(2d),
due to their definition in (6.1) and the comment that follows it.

7.5. Proof of Corollary 5. Let SGLn,L,λ and SG,M,µ be defined by (6.2). Let b
be the unique block of RepQcyc (HG,L,λ(ζm)) determined by (M, µ), and let c be the
unique block of RepQcyc (HG,M,µ(ζe)) determined by (L, λ). As in Conjecture 4.3,
suppose that ν⃗e, resp. ν⃗m, is an SGLn,L,λ-charge, resp. SG,M,µ-charge. We want to
show that χb

c categorifies to an equivalence

Db(Orat
WG,L,λ

(ν⃗e)b) ∼−→ Db(Orat
WG,M,µ

(ν⃗m)c).

We first generalize some constructions from Section 6 in order to state the Chuang–
Miyachi equivalence.

In the notation of Section 4, take C = Ze ≀Sa, and for any s⃗ = (s(0), . . . , s(e−1)) ∈
Ze, let Te,m,s⃗ : Z[u⃗±1]→ C be the ring homomorphism given by

Te,m,s⃗(uτ,j) = e2πi(es(j)+j)/m for all j,
Te,m,s⃗(uσ,0) = 1,
Te,m,s⃗(uσ,1) = −e2πie/m.

We say that ν⃗ = (νt, . . . , νte−1 , νs1) ∈ Ce−1 ×C is a Te,m,s⃗-charge iff

2
e

∑
1≤k<e

νtk

(
1− e2πijk/e

1− e−2πik/e

)
∈ es(j)

m
+ Z,

νs1 ∈
e

m
+ Z.

Such a vector ν⃗ defines, for all a > 0, a vector ν⃗(a) ∈ CRefl(Ze≀Sa) once we impose
conjugation invariance under Ze ≀ Sa. For any Te,m,s⃗-charge ν⃗, we set

Orat
s⃗,ν⃗ =

⊕
a≥0

Orat
Ze≀Sa

(ν⃗(a)).

By construction, Orat
Ze≀Sa

(ν⃗(a)) is a highest-weight cover of RepC(HZe≀Sa,m,s⃗), where
HZe≀Sa,m,s⃗ is the base change of the Hecke algebra HZe≀Sa

(u⃗) along Te,m,s⃗.
Recall that the standard objects of the category Orat

Ze≀Sa
(ν⃗(a)) are indexed by

e-partitions π⃗ such that
∑
i |πi| = a. Thus, the Grothendieck group of Orat

s⃗,ν⃗ admits
a basis of standard objects indexed by e-partitions of arbitrary size.
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The following result is a special case of [SVV, Thm. 3.12], stated in a form closest
to that of [ChuM, Conj. 6, Rem. 7]. The key ingredient in [SVV] is the theorem
proved independently as [L, Thm. 7.7], [RSVV, Thm. 7.4], and [W, Thm. B(5)].

Theorem 7.5 (Categorical Level-Rank Duality). Fix coprime integers e,m > 0.
Let s⃗ ∈ Ze and r⃗ ∈ Zm such that

∑
i si =

∑
j rj, and let

Πe
s⃗ = {|ϖ⃗, s⃗⟩ | ϖ⃗ ∈ Πe} and Πm

r⃗ = {|ϱ⃗, r⃗⟩ | ϱ⃗ ∈ Πm}.

Let ν⃗e, resp. ν⃗m, be an Te,m,s⃗-charge, resp. Tm,e,r⃗-charge. Then:
(1) Πe

s⃗ ∩ Υm
e (Πm

r⃗ ) indexes a set of the form
∐
a Irr(Ze ≀ Sa)ba

, where ba is a
block of RepC(HZe≀Sa,m,s⃗).

(2) Πm
r⃗ ∩ Υe

m(Πe
s⃗) indexes a set of the form

∐
d Irr(Zm ≀ Sd)cd

, where cd is a
block of RepC(HZm≀Sd,e,r⃗).

(3) The bijection Πe
s⃗ ∩ Υm

e (Πm
r⃗ ) ∼−→ Πm

r⃗ ∩ Υe
m(Πe

s⃗) induced by Υe
m preserves

blocks. If it restricts to a bijection

Irr(Ze ≀ Sa)ba

∼−→ Irr(Zm ≀ Sd)cd

for some ba, cd, then there is a Koszul duality equivalence

Uem : Db(Orat,gr
Ze≀Sa

(ν⃗e(a))ba
) ∼−→ Db(Orat,gr

Zm≀Sd
(ν⃗m(d))cd

),

where Orat,gr
Ze≀Sa

(ν⃗e(a))ba and Orat,gr
Zm≀Sa

(ν⃗m(a))cd
are respectively graded lifts of

the categories Orat
Ze≀Sa

(ν⃗e(a))ba and Orat
Zm≀Sd

(ν⃗m(d))cd
.

Now we finish the proof of Corollary 5. Write WG,L,λ = Ze ≀ Sa and WG,M,µ =
Zm ≀ Sd. It is enough to construct equivalences

Db(Orat
WG,L,λ

(ν⃗e)b) ∼−→ Db(Orat
WG,L,λ

(ν⃗†e(a))b†
a
)

Db(Orat
WG,M,µ

(ν⃗m)c)
∼−→ Db(Orat

WG,M,µ
(ν⃗†m(d))c†

d
)

such that b†a, resp. c†d, is a block of RepC(HZe≀Sa,m,s⃗†) for some s⃗ ∈ Ze, resp. a
block of RepC(HZm≀Sd,e,r⃗†) for some r⃗† ∈ Zm, and b†a, c

†
d correspond to each other

in Theorem 7.5; and ν⃗†e , resp. ν⃗†m, is a Te,m,s⃗†-charge, resp. Tm,e,r⃗†-charge.
By [W, Thm. B(3)], the action of affine permutations such as w̃m,e,m+ℓµ on the

sets Πe × Ze categorify to strong categorical actions of the corresponding affine
braid groups, in which braids define functors of the form

Orat
s⃗,ν⃗

∼−→ Orat
s⃗†,ν⃗† .

These functors necessarily preserve blocks, so it remains to show that the input
parameters ν⃗e, b, ν⃗m, c give rise to output parameters ν⃗†e , b†a, ν⃗†m, c

†
d such that b†a and

c†d match under Υe
m. This is what the commutativity of the diagram in Theorem 4

provides.

Remark 7.6. Above, s⃗† and ν⃗†e can be related more explicitly to ν⃗e. From the
discussion in Section 6.2, we see that the charged e-partitions in the image of

Irr(WG,L,λ)M,µ ⊆ Irr(WG,L,λ)→ Πe × Ze
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all have a common e-charge, say s⃗ ∈ Ze. Next, from the definition of w̃e,m,s in
(7.2), we see that the action of w̃e,m,e+ℓλ

on charged e-partitions descends to an
action on e-charges. Therefore, we can write s⃗† = w̃e,m,e+ℓλ

(s⃗). Finally, we can
check that ν⃗e and s⃗† together determine a Te,m,s⃗† -charge ν⃗†e .

8. The Exceptional Groups

8.1. To conclude the paper, we explain how to check the numerical predictions of
Conjecture 1 for the Hecke specializations that were either determined in [L-Cox,
L78] or conjectured in [BM93] for generic simple groups of exceptional type. As
in the rest of the paper, we will exclude the Suzuki type 2C2 and the Ree types
2G2,

2F4.

8.2. Φ-Harish-Chandra Series. By Corollary 2.7, it suffices to study the Φe-
Harish-Chandra series in the cases where e is a singular number for G.

Below we list the singular numbers e > 1 for each exceptional type, which can
be deduced from the table in [C, §2.9]. For the term twisted Coxeter number , see
Section 2.8. It is the usual Coxeter number except for the twisted types 3D4 and
2E6, where it is given by [S74, Table 10].

type nontrivial singular numbers twisted Coxeter number
3D4 2, 3, 6 12
G2 2, 3 6
F4 2, 3, 4, 6, 8 12
E6 2, 3, 4, 5, 6, 8, 9 12

2E6 2, 3, 4, 6, 8, 10, 12 18
E7 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14 18
E8 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 24 30

For maximal tori and Φ1-split cuspidal pairs, the associated Harish-Chandra series
and complex reflection groups were determined in [L-Cox, L78]. Note that for Φ2-
split maximal tori, the relative Weyl groups can also be determined via Ennola
duality, and for Φe-split maximal tori of the generic simple exceptional groups with
e > 2, they are given by [BMM93, Table 3]. For all other Φ-cuspidal pairs of these
groups, they can be determined from combining [BMM93, Table 1], [BM93, Table
8.1], and Ennola duality (Section 6.5).

Observe that the tables of [BMM93] use Shephard–Todd notation to label the
complex reflection groups. We will also use it in what follows.

8.3. Specializations. As stated in Section 3, the putative specializations SG,L,λ of
Conjecture 3.3 were determined for Φ1-cuspidal pairs in [L78, Table II], for Coxeter
maximal tori in [L-Cox, (7.3)], and for maximal tori of type [w0f ] in [DMR, Th.
5.4.1]. For almost all other Φe-cuspidal pairs, a formula for SG,L,λ compatible with
generic-degree data was conjectured by Broué–Malle in [BM93] or by Malle in [M],
either explicitly, in the form of tables, or implicitly, via Ennola duality and/or
reduction to parabolic subalgebras.

The data in [BM93, M] is organized according to the isomorphism class of the
group WG,L,λ, rather than the tuple (G,L, λ). In addition, these references use a
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different system of notation to label the complex reflection groups. Thus, in the
tables at the end of this section, we have reorganized the data for the convenience
of the reader. For each (G, e), we list the set HCe(G) of Φe-cuspidal pairs for
G up to conjugation by WΓG , omitting those of the form (G, ρ) for some ρ ∈
Uch(G), since Conjecture 4.1 is trivial for these pairs. For each pair, we state the
isomorphism class of the group WG,L,λ in Shephard–Todd notation, the parameters
of the specialization SG,L,λ, and the reference we used for the latter, possibly in
conjunction with Ennola duality. The references are abbreviated as follows:

• “E” refers to Ennola.
• [L-Fin] refers to (7.3) of ibid.
• [L78] refers to Table II of ibid. Lusztig uses Iwahori’s sign conventions, cf.

Example 3.5; in our tables, we have flipped the signs.
• “BM, _” refers to [BM93, _].
• In type E6, “[L78] + E” means that we use Ennola to derive the prediction

for SG,L,λ from the corresponding entry for 2E6 in [L78, Table II].
• In type E8, “BM/M” means that the given entry or its Ennola dual can be

derived from [BM93, 180] and [M, Table 9].

We have fixed an apparent typo in [BM93, 180] for G of type E7 and e = 3, 6.
The only case where we have been unable to derive a conjecture for SG,L,λ from

the literature is when G is of type E7 and e = 4 and WG,L,λ = G4,1,2.

8.4. Blocks. Suppose that C = WG,L,λ, and that HG,L,λ(x) is the base change of
HC(u⃗) along the specialization SG,L,λ described above. Then, in the notation of
Section 4, the blocks of RepQcyc (HG,L,λ(ζm)) can be determined from:

• [LM, Thm. 2.11] when C = Ge,1,a := Ze ≀ Sa, as in Section 6.
• [GP, Appendix F] and [GJ, §7.2] when C is an irreducible Weyl group of

split exceptional type.
• [CM, §3] when C = G4, G5, G8, G9, G10, G16. See also Section 1.3 of ibid.

8.5. What We Can Verify. For each generic simple exceptional group G, and
certain pairs of singular numbers (e,m), the information in Sections 8.2–8.4 makes
it possible to compare the following numbers as we run over [L, λ] ∈ HCe(G) and
[M, µ] ∈ HCm(G):

(1) The sizes of the sets Uch(G,L, λ,M, µ) = Uch(G,L, λ) ∩Uch(G,M, µ).
(2) The sizes of the (Φm,SG,L,λ)-blocks of Irr(WG,L,λ), where SG,L,λ is the Φe-

specialization described in Section 8.3.
(3) The analogue of (2) with e,m, (M, µ) in place of m, e, (L, λ).

We have verified directly that:

Proposition 8.1. In each case where the data of Sections 8.3–8.4 are sufficient,
(1)–(3) are consistent with the existence of the partitions and bijections predicted
by Conjecture 4.1.

In the cases where the references listed in Section 8.4 give the decomposition
numbers of the blocks of the Hecke algebras, we can even verify Conjecture 4.3. We
will return to this point in a sequel.
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Below, we provide the details of the complete verification for types G2 and F4.
For each pair (e,m), we list the possibilities for [L, λ] ∈ HCe(G) and [M, µ] ∈
HCm(G). We omit all cases where L = G or M = G, since the associated Φ-
Harish-Chandra series would be singletons, rendering Conjecture 4.1 trivial. For
each choice of [L, λ] and [M, µ], we state a partition of |Uch(G,L, λ,M, µ)| that
simultaneously gives the sizes of the (Φm,SG,L,λ)-blocks occuring in Irr(WG,L,λ)M,µ
and those of the (Φe,SG,M,µ)-blocks occuring in Irr(WG,M,µ)L,λ.

For the other generic simple exceptional groups, we have prepared similar lists
and tables for many pairs of singular numbers. They are available upon request.

8.6. Type G2. Here, all Φ-cuspidal pairs with L ̸= G arise from taking L to be a
maximal torus T. Below, we just state the order |T|.

e T WG,T SG,T,1(uC,j) reference
1 Φ2

1 WG2 1,−x; 1,−x Ex. 3.5
2 Φ2

2 WG2 1, x; 1, x E
3 Φ3 Z6 1,±x, x2,−ζ3x,−ζ2

3x E
6 Φ6 Z6 1,±x, x2, ζ3x, ζ

2
3x [L-Cox]

8.6.1. Verifying Conjecture 4.1 for G2. For each pair of distinct singular numbers
(e,m), the preceding table shows there is a unique choice of [L, λ] ∈ HCe(G) and
[M, µ] ∈ HCm(G) such that L,M ̸= G.

• If (e,m) = (1, 2), then |Uch(G,L, λ,M, µ)| = 4 and the partition is trivial:
Irr(WG,L,λ)M,µ is a single (Φm,SG,L,λ)-block and Irr(WG,M,µ)L,λ is a single
(Φe,SG,M,µ)-block.
• If (e,m) = (1, 3), (1, 6), (2, 3), (2, 6), then |Uch(G,L, λ,M, µ)| = 3 and the

partition is trivial.
• If (e,m) = (3, 6), then the partition of |Uch(G,L, λ,M, µ)| is 2 + 2.

8.7. Type F4. We omit λ when L is a torus, since λ = 1, and in other cases where
disambiguation is not needed. The notation Φae .B2 means we extend a generic
almost-simple group of type B2 by a torus of order Φae . The notations ϕ12,− and
ϕ−,2 are based on [C, §13.8].

e L λ WG,L,λ SG,L,λ(uC,j) reference
1 Φ4

1 WF4 1,−x; 1,−x Ex. 3.5
1 Φ2

1.B2 WBC2 1,−x3; 1,−x3 [L78]
2 Φ4

2 WF4 1, x; 1, x E
2 Φ2

2.B2 WBC2 1, x3; 1, x3 E
3 Φ2

3 G5 1, x, x2 BM, 5.9
4 Φ2

4 G8 1,±x, x2 BM, 5.12
4 Φ4.B2 ϕ12,− Z4 1,±x3, x6 BM, 8.1
4 Φ4.B2 ϕ−,2 Z4 1,±x3, x6 BM, 8.1
6 Φ2

6 G5 1,−x, x2 BM, 5.9
8 Φ8 Z8 1, x2,±x3,±ζ4x

3, x4, x6 BM, 8.1
12 Φ12 Z12 1,±x,±x2,±x3, x4,±ζ4x

2, ζ3x
2, ζ2

3x
2 [L-Cox]
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8.7.1. Verifying Conjecture 4.1 for F4. First, we handle the cases where there is a
unique choice of [L, λ] ∈ HCe(G) and [M, µ] ∈ HCm(G) such that L,M ̸= G.

• If (e,m) = (1, 3), then the partition of |Uch(G,L, λ,M, µ)| is 9 + 9.
• If (e,m) = (1, 8), then |Uch(G,L, λ,M, µ)| = 5 and the partition is trivial.
• If (e,m) = (3, 6), then the partition of |Uch(G,L, λ,M, µ)| is 6 + 6.
• If (e,m) = (3, 8), then |Uch(G,L, λ,M, µ)| = 3 and the partition is trivial.
• If (e,m) = (3, 12), (4, 8), then the partition of |Uch(G,L, λ,M, µ)| is 3 + 3.
• If (e,m) = (4, 12), then the partition is 3 + 3 + 3.
• If (e,m) = (8, 12), then the partition is 2 + 2.

For (e,m) = (1, 2), we get the following table with [L, λ] along the rows and [M, µ]
along the columns:

(Φ4
2, 1) (Φ2

2B2,−)
(Φ4

1, 1) 18 4
(Φ2

1B2,−) 4 1

(That is, all four partitions are trivial.) For (e,m) = (1, 4), (1, 6), (1, 12), we get, in
order, the following tables:

(Φ4
2, 1) (Φ4B2, ϕ12,−) (Φ4B2, ϕ−,2)

(Φ4
1, 1) 9 3 3

(Φ2
1B2,−) 3 1 1

(Φ2
6, 1)

(Φ4
1, 1) 13

(Φ2
1B2,−) 4

(Φ12, 1)
(Φ4

1, 1) 5
(Φ2

1B2,−) 3

We can check that the cases where e = 2 have the same sizes and partitions as the
Ennola-dual cases where e = 1. Finally, for (e,m) = (3, 4), we get the table:

(Φ4
2, 1) (Φ4B2, ϕ12,−) (Φ4B2, ϕ−,2)

(Φ2
3, 1) 6 3 3

8.8. The Other Exceptional Types.

8.8.1. 3D4. As in type G2, all Φ-cuspidal pairs with L ̸= G arise from taking L to
be a maximal torus T.

e T WG,T SG,T,1(uC,j) reference
1 Φ2

1Φ3 WG2 1,−x; 1,−x3 [L78]
2 Φ2

2Φ6 WG2 1, x; 1, x3 E
3 Φ2

3 G4 1, x, x2 BM, §5.6
6 Φ2

6 G4 1,−x, x2 E
12 Φ12 Z4 1,±x3, x6 [L-Cox]

8.8.2. E6. The notation is similar to that of Section 8.7. The notations ϕ22 , ϕ2, ϕ12

are based on [C, §13.8], while the notation 3D4[−1] is based on [C, §13.9].
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e L λ WG,L,λ SG,L,λ(uC,j) reference
1 Φ6

1 WE6 1, −x Ex. 3.5
1 D4 WA2 1, −x4 [L78]
2 Φ2

1Φ4
2 WF4 1, x; 1, −x2 [L78] + E

2 Φ2.A5 Z2 1, x9 [L78] + E
3 Φ3

3 G25 1, x, x2 BM, §5.16
3 Φ3.3D4 3D4[−1] Z3 1, x4, x8 BM, §8.1
4 Φ2

4Φ2
1 G8 1, −x, x2, −x3 BM, §5.12

4 Φ1Φ4.2A3 ϕ22 Z4 1, x3, x6, x9 BM, §8.1
5 Φ1Φ5.A1 ϕ2 Z5 1, x3, x4, x6, x12 BM, §8.1
5 Φ1Φ5.A1 ϕ12 Z5 1, x6, x8, x9, x12 BM, §8.1
6 Φ2

6Φ3 G5 1, −x, x2; 1, x2, x4 BM, §5.9
8 Φ1Φ2Φ8 Z8 1, ±x3, x4, x5, ±x6, x9 BM, §8.1
9 Φ9 Z9 1, x2, x3, x4, ζ3x4, ζ2

3 x4, x5, x6, x8 BM, §8.1
12 Φ3Φ12 Z12 1, x, ±x2, ±x3, ±x4, x5, x6, ζ3x3, ζ2

3 x3 [L-Cox]

8.8.3. 2E6. By Ennola duality, this table can be derived from the table for E6 by
substituting −x for x everywhere.

8.8.4. E7. The notation is similar to that of Sections 8.7 and 8.8.2, but for further
concision, we write the Ennola-dual cases in the same rows, omitting some of their
data. The question marks “?” indicate the cases where we could not derive a
prediction for SG,L,λ from [BM93, M].

8.8.5. E8. The notation is similar to that of Section 8.8.4.



44 MINH-TÂM TRINH AND TING XUE

E
7
.

e
L

λ
W

G
,L

,λ
S G

,L
,λ

(u
C

,j
)

re
fe

re
nc

e
e

L
λ

1
Φ

7 1
W

E
7

1,
−

x
E

x.
3.

5
2

Φ
7 2

1
D

4
W

B
C

3
1,

−
x

4
;1

,−
x

[L
78

]
2

Φ
3 2
.D

4

1
E

6
Z

2
1,

−
x

9
[L

78
]

2
Φ

2
.E

6

4
Φ

2 4
.A

3 1
ϕ

3 2
G

8
1,

±
x

,−
x

4
B

M
,§

5.
12

4
Φ

2 4
.A

3 1
ϕ

3 12
G

8
1,

±
x

3
,−

x
4

B
M

,§
5.

12
4

Φ
2 4
.A

3 1
ϕ

2 2
ϕ

12
G

4,
1,

2
?

4
Φ

2 4
.A

3 1
ϕ

2
ϕ

2 12
G

4,
1,

2
?

6
Φ

3 6
Φ

2
G

26
1,

−
x

,x
2
;1

,x
3

B
M

,1
80

3
Φ

3 3
Φ

1

6
Φ

2
Φ

6
.3

D
4

ϕ
21

11
Z

6
1,

x
,x

4
,x

5
,x

8
,x

9
B

M
,§

8.
1

3
Φ

1
Φ

3
.3

D
4

3
D

4
[−

1]

6
Φ

6
.2

A
5

ϕ
4.

2
Z

6
1,

±
x

,x
3
,x

5
,x

8
B

M
,§

8.
1

3
Φ

3
.A

5
ϕ

41
21

6
Φ

6
.2

A
5

ϕ
22

12
Z

6
1,

x
3
,x

5
,±

x
7
,x

8
B

M
,§

8.
1

3
Φ

3
.A

5
ϕ

22
12

8
Φ

8
2
.D

4
ϕ

2 2
Z

8
1,

x
2
,±

x
3
,±

x
5
,x

6
,x

12
B

M
,§

8.
1

8
Φ

8
2
.D

4
ϕ

2
ϕ

12
Z

8
1,

±
x

,x
4
,x

6
,±

x
7
,x

10
B

M
,§

8.
1

8
Φ

8
2
.D

4
ϕ

2 12
Z

8
1,

x
6
,±

x
7
,±

x
9
,x

10
,x

12
B

M
,§

8.
1

8
Φ

8
2
.D

4
ϕ

12
ϕ

2
Z

8
1,

±
x

3
,x

4
,x

6
,±

x
9
,x

10
B

M
,§

8.
1

10
Φ

1
Φ

5
.2

A
2

ϕ
3

Z
10

1,
−

1,
x

,±
x

2
,±

x
3
,x

4
,x

6
,x

9
B

M
,§

8.
1

5
Φ

1
Φ

5
.A

2
ϕ

3

10
Φ

1
Φ

5
.2

A
2

ϕ
21

11
Z

10
1,

x
,x

3
,x

4
,±

ζ 4
x

9 2
,x

5
,x

6
,x

8
,x

9
B

M
,§

8.
1

5
Φ

1
Φ

5
.A

2
ϕ

2.
1

10
Φ

1
Φ

5
.2

A
2

ϕ
13

Z
10

1,
x

3
,x

5
,±

x
6
,±

x
7
,x

8
,±

x
9

B
M

,§
8.

1
5

Φ
1
Φ

5
.A

2
ϕ

13

12
Φ

12
.A

1
(q

3
)

ϕ
2

Z
12

1,
±

x
,x

2
,ζ

3
x

2
,ζ

2 3
x

2
,±

x
3
,x

4
,±

x
5
,x

8
B

M
,§

8.
1

12
Φ

12
.A

1
(q

3
)

ϕ
12

Z
12

1,
±

x
3
,x

4
,±

x
5
,x

6
,ζ

3
x

6
,ζ

2 3
x

6
,±

x
7
,x

8
B

M
,§

8.
1

14
Φ

2
Φ

14
Z

14
1,

x
2
,±

x
3
,±

x
4
,±

ζ 4
x

9 2
,±

x
5
,±

x
6
,x

7
,x

9
B

M
,§

8.
1

7
Φ

1
Φ

7

18
Φ

2
Φ

18
Z

18
1,

x
,±

x
2
,±

x
3
,±

x
4
,±

x
5
,±

ζ 4
x

7 2
,ζ

3
x

3
,ζ

3
x

4
,ζ

2 3
x

3
,ζ

2 3
x

4
,x

6
,x

7
[L

-C
ox

]
9

Φ
1
Φ

9



DUALITIES FROM Φ-HARISH-CHANDRA SERIES AND AFFINE SPRINGER FIBERS 45

E
8
.

e
L

λ
W

G
,L

,λ
S G

,L
,λ

(u
C

,j
)

re
fe

re
nc

e
e

λ

1
Φ

8 1
W

E
8

1,
−

x
E

x.
3.

5
2

1
Φ

4 1
.D

4
W

F
4

1,
−

x
4
;1

,−
x

[L
78

]
2

1
Φ

2 1
.E

6
W

G
2

1,
−

x
9
;1

,−
x

[L
78

]
2

1
Φ

1
.E

7
Z

2
1,

−
x

15
[L

78
]

2
4

Φ
4 4

G
31

1,
x

2
B

M
,1

80
4

Φ
2 4
.D

4
ϕ

3,
1

G
8

1,
−

1,
−

x
,x

5
B

M
,§

5.
12

4
Φ

2 4
.D

4
ϕ

12
3,

01
3

G
8

1,
−

x
4
,±

x
5

B
M

,§
5.

12
4

Φ
2 4
.D

4
ϕ

01
3,

2
G

8
1,

−
x

,−
x

4
,x

5
B

M
,§

5.
12

4
ϕ

01
2,

3

6
Φ

4 6
G

32
1,

−
x

,x
2

B
M

,1
80

3
6

Φ
2 6
.3

D
4

ϕ
2,

1
G

5
1,

−
x

,x
2
;1

,x
4
,x

8
B

M
,§

5.
9

3
3
D

4
[−

1]

6
Φ

6
.2

E
6

ϕ
′ 9,

6
Z

6
1,

−
1,

x
2
,x

5
,

x
7
,x

10
B

M
,§

8.
1

3
6

Φ
6
.2

E
6

ϕ
′′ 9,

6
Z

6
1,

x
3
,x

5
,x

8
,±

x
10

B
M

,§
8.

1
3

6
Φ

6
.2

E
6

ϕ
′′ 6,

6
Z

6
1,

x
,±

x
5
,x

9
,x

10
B

M
,§

8.
1

3
8

Φ
2 8

1
G

9
1,

x
2
,x

4
,x

6
;1

,x
4

B
M

/M
8

Φ
8
.2

D
4

ϕ
13

,−
Z

8
±

1,
x

,x
3
,x

5
,±

x
6
,x

15
B

M
,§

8.
1

8
Φ

8
.2

D
4

ϕ
01

23
,1

3
Z

8
1,

±
x

9
,x

10
,x

12
,x

14
,±

x
15

B
M

,§
8.

1
8

Φ
8
.2

D
4

ϕ
02

3,
1

Z
8

1,
x

3
,x

5
,−

x
6
,x

9
,−

x
10

,x
12

,x
15

B
M

,§
8.

1
8

ϕ
01

2,
3

8
Φ

8
.2

D
4

ϕ
12

3,
0

Z
8

1,
x

3
,−

x
5
,x

6
,−

x
9
,x

10
,x

12
,x

15
B

M
,§

8.
1

8
ϕ

01
3,

2

10
Φ

2 10
1

G
16

1,
−

x
,x

2
,−

x
3
,x

4
B

M
/M

5
10

Φ
10

.2
A

4
ϕ

31
21

Z
10

±
1,

±
x

3
,x

4
,±

x
6
,x

7
,x

9
,x

12
B

M
,§

8.
1

5
10

Φ
10

.2
A

4
ϕ

22
11

Z
10

1,
x

3
,x

5
,±

x
6
,x

8
,±

x
9
,±

x
12

B
M

,§
8.

1
5

12
Φ

2 12
1

G
10

1,
x

3
,−

x
3
,x

6
;1

,−
x

2
,x

4
B

M
/M

12
Φ

12
.3

D
4

ϕ
′ 1,

3
Z

12
1,

ζ 3
,ζ

2 3
,±

x
,x

2
,±

x
3
,±

x
5
,x

6
,x

10
B

M
,§

8.
1

12
Φ

12
.3

D
4

ϕ
′′ 1,

3
Z

12
1,

x
4
,±

x
5
,±

x
7
,x

8
,±

x
9
,x

10
,ζ

3
x

10
,ζ

2 3
x

10
B

M
,§

8.
1



46 MINH-TÂM TRINH AND TING XUE

12
Φ

12
.3

D
4

ϕ
2,

2
Z

12
1,

−
x

,x
2
,x

4
,±

x
5
,ζ

3
x

5
,ζ

2 3
x

5
,x

6
,x

8
,−

x
9
,x

10
B

M
,§

8.
1

12
3
D

4
[−

1]

14
Φ

2
Φ

14
.A

1
ϕ

2
Z

14
1,

±
x

3
,±

x
5
,±

x
6
,x

7
,±

ζ 4
x

15 2
,x

8
,±

x
9
,x

15
B

M
,§

8.
1

7
14

Φ
2
Φ

14
.A

1
ϕ

12
Z

14
1,

±
x

6
,x

7
,±

ζ 4
x

15 2
,x

8
,±

x
9
,±

x
10

,±
x

12
,x

15
B

M
,§

8.
1

7
18

Φ
18

.2
A

2
ϕ

3
Z

18
1,

−
1,

x
,x

2
,ζ

3
x

2
,ζ

2 3
x

2
,±

ζ 4
x

5/
2
,±

x
3
,±

x
4
,x

5
,ζ

3
x

5
,ζ

2 3
x

5
,±

x
6
,x

10
B

M
,§

8.
1

9
18

Φ
18

.2
A

2
ϕ

21
11

Z
18

1,
x

,±
x

3
,±

x
4
,±

x
5
,±

ζ 3
x

5
,±

ζ
2 3
x

5
,±

x
6
,±

x
7
,x

9
,x

10
B

M
,§

8.
1

9
18

Φ
18

.2
A

2
ϕ

13
Z

18
1,

±
x

4
,x

5
,ζ

3
x

5
,ζ

2 3
x

5
,±

x
6
,±

x
7
,±

ζ 4
x

15 2
,x

8
,ζ

3
x

8
,ζ

2 3
x

8
,x

9
,±

x
10

B
M

,§
8.

1
9

20
Φ

20
Z

20
1,

±
x

3
,x

4
,±

x
5
,±

x
6
,±

x
7
,x

8
,±

x
9
,±

ζ 4
x

6
,ζ

5
x

6
,ζ

2 5
x

6
,ζ

3 5
x

6
,ζ

4 5
x

6
,x

12
B

M
,§

8.
1

24
Φ

24
Z

24
1,

x
2
,±

x
3
,±

x
4
,±

x
5
,±

x
6
,±

x
7
,x

8
,x

10
,±

ζ 4
x

5
,ζ

3
x

4
,±

ζ 3
x

5
,ζ

3
x

6
,

B
M

,§
8.

1
ζ

2 3
x

4
,±

ζ
2 3
x

5
,ζ

2 3
x

6

30
Φ

30
Z

30
1,

x
,±

x
2
,±

x
3
,±

x
4
,±

x
5
,±

x
6
,±

x
7
,x

8
,±

ζ 4
x

7/
2
,±

ζ 4
x

9/
2
,ζ

3
x

3
,±

ζ 3
x

4
,

[L
-C

ox
]

15
±

ζ 3
x

5
,ζ

2 3
x

3
,±

ζ
2 3
x

4
,±

ζ
2 3
x

5
,ζ

5
x

4
,ζ

2 5
x

4
,ζ

3 5
x

4
,ζ

4 5
x

4



DUALITIES FROM Φ-HARISH-CHANDRA SERIES AND AFFINE SPRINGER FIBERS 47

References

[BGK] F. M. Bleher, M. Geck, W. Kimmerle. Automorphisms of Generic Iwahori–Hecke Algebras
and Integral Group Rings of Finite Coxeter Groups. J. Algebra, 197 (1997), 615–655.

[BL] P. Boixeda Alvarez & I. Losev. Affine Springer Fibers, Procesi Bundles, and Cherednik
Algebras. With an appendix by P. Boixeda Alvarez, O. Kivinen, I. Losev. Preprint (2021).
arXiv:2104.09543

[BDR] C. Bonnafé, O. Dudas, R. Rouquier. Translation by the Full Twist and Deligne–Lusztig
Varieties. J. Algebra, 558 (2020), 129–145.

[B] M. Broué. Reflection Groups, Braid Groups, Hecke Algebras, Finite Reductive Groups. Cur-
rent Developments in Mathematics (2000), 1–107.

[BM93] M. Broué & G. Malle. Zyklotomische Heckealgebren. Représentations unipotentes
génériques et blocs des groupes réductifs finis. Astérisque, 212 (1993), 119–189.

[BM97] M. Broué & J. Michel. Sur certains éléments réguliers des groupes de Weyl et les variétiés
de Deligne–Lusztig associées. Finite Reductive Groups: Related Structures and Representa-
tions. Ed. M. Cabanes. Birkhäuser Boston (1997), 73–139.

[BMM93] M. Broué, G. Malle, J. Michel. Generic Blocks of Finite Reductive Groups. Représenta-
tions unipotentes génériques et blocs des groupes réductifs finis. Astérisque tome 212 (1993),
7–92.

[BMM99] M. Broué, G. Malle, J. Michel. Toward Spetses I. Transform. Groups, 4(2–3) (1999),
157–218.

[BMR] M. Broué, G. Malle, R. Rouquier. Complex Reflection Groups, Braid Groups, Hecke Al-
gebras. J. reine angew. Math., 500 (1998), 127–190.

[C] R. W. Carter. Finite Groups of Lie Type: Conjugacy Classes and Complex Characters. Wiley
Classics Library Edition. John Wiley & Sons (1993).

[CVX1] T. H. Chen, K. Vilonen, T. Xue. On the Cohomology of Fano Varieties and the Springer
Correspondence. Adv. Math., 318 (2017), 515–533.

[CVX2] T. H. Chen, K. Vilonen, T. Xue. Springer Correspondence for the Split Symmetric Pair
in Type A. Compos. Math., 154(11) (2018), 2403–2425.

[CVX3] T. H. Chen, K. Vilonen, T. Xue. Hessenberg Varieties, Intersections of Quadrics, and the
Springer Correspondence. Trans. Amer. Math. Soc., 373(4) (2020), 2427–2461.

[Ch] I. Cherednik. Double Affine Hecke Algebras and Macdonald’s Conjectures. Ann. of Math.
(2), 141(1) (1995), 191–216.

[CM] M. Chlouveraki & H. Miyachi. Decomposition Matrices for d-Harish-Chandra Series: The
Exceptional Rank Two Cases. LMS J. Comput. Math., 14 (2011), 271–290.

[Chm] T. Chmutova. Representations of the Rational Cherednik Algebras of Dihedral Type. J.
Algebra, 297(2) (2006), 542–565.

[ChuM] J. Chuang & H. Miyachi. Hidden Hecke Algebras and Koszul Duality. Preprint (2012).
https://www.math.nagoya-u.ac.jp/~miyachi/preprints/lrkszl21.pdf

[CR] C. W. Curtis and I. Reiner. Methods of Representation Theory: With Applications to Finite
Groups and Orders. Vol. I. John Wiley & Sons (1981).

[DM06] F. Digne & J. Michel. Endomorphisms of Deligne–Lusztig Varieties. Nagoya Math. J.,
183 (2006), 35–103.

[DM14] F. Digne & J. Michel. Parabolic Deligne–Lusztig Varieties. Adv. Math., 257 (2014), 136–
218.

[DM20] F. Digne & J. Michel. Representations of Finite Groups of Lie Type. 2nd Edition. London
Mathematical Society Student Texts, 95, London Mathematical Society (2020).

[DMR] F. Digne, J. Michel, R. Rouquier. Cohomologie des variétés de Deligne–Lusztig. Adv.
Math., 209 (2007), 749–822.

[D] V. G. Drinfeld. Degenerate Affine Hecke Algebras and Yangians. Func. Anal. Appl., 20 (1986),
58–60.

[Du] O. Dudas. Cohomology of Deligne–Lusztig Varieties for Unipotent Blocks of GLn(q). Rep.
Theory, 17 (2013), 647–662.

[E] P. I. Etingof. Proof of the Broué–Malle–Rouquier Conjecture in Characteristic Zero (after I.
Losev and I. Marin–G. Pfeiffer). Arnold Math. J., 3(3) (2017), 445–449.

https://arxiv.org/abs/2104.09543
https://www.math.nagoya-u.ac.jp/~miyachi/preprints/lrkszl21.pdf


48 MINH-TÂM TRINH AND TING XUE

[EG] P. Etingof & V. Ginzburg. Symplectic Reflection Algebras, Calogero–Moser Space, and De-
formed Harish-Chandra Homomorphism. Invent. math., 147 (2002), 243–348.

[GJ] M. Geck & N. Jacon. Representations of Hecke Algebras at Roots of Unity. Algebra and
Applications, Vol. 15. Springer-Verlag (2011).

[GP] M. Geck & G. Pfeiffer. Characters of Finite Coxeter Groups and Iwahori–Hecke Algebras.
Clarendon Press, Oxford (2000).

[G] T. Gerber. Heisenberg Algebra, Wedges and Crystals. J. Algebr. Comb., 49 (2019), 99–124.
[GGOR] V. Ginzburg, N. Guay, E. Opdam, R. Rouquier. On the Category O for Rational Chered-

nik Algebras. Invent. math., 154 (2003), 617–651.
[HL] R. B. Howlett & G. I. Lehrer. Induced Cuspidal Representations and Generalised Hecke

Rings. Invent. math., 58 (1980), 37–64.
[I] N. Iwahori. On the Structure of a Hecke Ring of a Chevalley Group over a Finite Field. J.

Faculty of Sci., Univ. of Tokyo, 10 (1964), 215–236.
[J] G. D. James. The Decomposition Matrices of GLn(q) for n ≤ 10. Proc. Lond. Math. Soc.,

3(2), 225–265.
[JK] G. D. James & A. Kerber. The Representation Theory of the Symmetric Group. Encyclope-

dia of Mathematics and its Applications, 16, Addison-Wesley Publishing Co., Reading, MA
(1981).

[KL] D. Kazhdan & G. Lusztig. Fixed Point Varieties on Affine Flag Manifolds. Israel J. Math.,
62(2) (1988), 129–168.

[L] I. Losev. Proof of Varagnolo–Vasserot Conjecture on Cyclotomic Categories O. Sel. Math.
New Ser., 22 (2016), 631–668.

[L-Fin] G. Lusztig. On the Finiteness of the Number of Unipotent Classes. Invent. math., 34
(1976), 201–213.

[L-Cox] G. Lusztig. Coxeter Orbits and Eigenspaces of Frobenius. Invent. math., 38 (1976), 101–
159.

[L77] G. Lusztig. Irreducible Representations of Finite Classical Groups. Invent. math., 43 (1977),
125–175.

[L78] G. Lusztig. Representations of Finite Chevalley Groups. Conference Board of the Mathe-
matical Sciences. Number 39. American Mathematical Society (1978).

[L84] G. Lusztig. Characters of Reductive Groups over a Finite Field. Princeton University Press
(1984).

[L90] G. Lusztig. Green Functions and Character Sheaves. Ann. of Math. (2), 131(2) (Mar., 1990),
355–408.

[L96] G. Lusztig. Affine Weyl Groups and Conjugacy Classes in Weyl Groups. Transform. Groups,
Vol. 1, Nos. 1 & 2 (1996), 83–97.

[LY17] G. Lusztig & Z. Yun. Z/m-Graded Lie Algebras and Perverse Sheaves, I. Represent. The-
ory, 21 (2017), 277–321.

[LY18] G. Lusztig & Z. Yun. Z/mZ-Graded Lie algebras and Perverse Sheaves, III: Graded Double
Affine Hecke Algebra. Represent. Theory, 22 (2018), 87–118.

[LM] S. Lyle and A. Mathas. Blocks of Cyclotomic Hecke Algebras, Adv. Math., 216 (2007),
no. 2, 854–878.

[M] G. Malle. Degrés relatifs des algèbres cyclotomiques associées aux groupes de réflexions com-
plexes de dimension deux. In Finite Reductive Groups: Related Structures and Representa-
tions. Proceedings of an International Conference held in Luminy, France. Ed. M. Cabanes.
Progress in Mathematics, Vol. 141. Birkhäuser (1997), 311–332.

[OY] A. Oblomkov & Z. Yun. Geometric Representations of Graded and Rational Cherednik
Algebras. Adv. Math., 292 (2016), 601–706.

[R08] R. Rouquier. q-Schur Algebras and Complex Reflection Groups. Moscow Math. J., 8(1)
(January-March 2008), 119–158.

[RSVV] R. Rouquier, P. Shan, M. Varagnolo, E. Vasserot. Categorifications and Cyclotomic Ra-
tional Double Affine Hecke Algebras. Invent. math., 204 (2016), 671–786.

[SVV] P. Shan, M. Varagnolo, E. Vasserot. Koszul Duality of Affine Kac–Moody Algebras and
Cyclotomic Rational Double Affine Hecke Algebras. Adv. Math., 262 (2014), 370–435.



DUALITIES FROM Φ-HARISH-CHANDRA SERIES AND AFFINE SPRINGER FIBERS 49

[S74] T. A. Springer. Regular Elements of Finite Reflection Groups. Invent. math., 25 (1974),
159–198.

[S76] T. A. Springer. Trigonometric Sums, Green Functions of Finite Groups and Representations
of Weyl Groups. Invent. math., 36 (1976), 173–207.

[T] M. Q. Trinh. From the Hecke Category to the Unipotent Locus. Preprint (2021).
arXiv:2106.07444

[U] D. Uglov. Canonical Bases of Higher-Level q-Deformed Fock Spaces and Kazhdan–Lusztig
Polynomials. Physical Combinatorics. Ed. M. Kashiwara and T. Miwa. Springer, New York
(2000).

[VV] M. Varagnolo & E. Vasserot. Finite-Dimensional Representations of DAHA and Affine
Springer Fibers: The Spherical Case. Duke Math. J., 147(3) (2009), 439–540.

[VX] K. Vilonen & T. Xue. Character Sheaves for Graded Lie Algebras: Stable Gradings. Adv.
Math., 417, 108935 (2023), 59 pp.

[W] B. Webster. Rouquier’s Conjecture and Diagrammatic Algebra. Forum Math. Sigma, Vol. 5,
e27 (2017), 71 pp.

Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA
02139

Email address: mqt@mit.edu

School of Mathematics and Statistics, University of Melbourne, VIC 3010, Australia
Email address: ting.xue@unimelb.edu.au

https://arxiv.org/abs/2106.07444

	1. Introduction
	2. Φ-Harish-Chandra Series
	3. Cyclotomic Hecke Algebras
	4. Conjectures about Blocks
	5. Conjectures about Affine Springer Fibers
	6. The General Linear and Unitary Groups
	7. Uglov's Bijections
	8. The Exceptional Groups
	References

