Uniformization of Principal Bundles

Minh-Tâm Quang Trinh

Massachusetts Institute of Technology

§1 Overview

Plan of talk:

1. Overview
2. Gluing
3. Generic Trivialization
4. Smoothness

Sources:

- Beauville-Laszlo, « Un lemme de descente ...»
- Beauville-Laszlo, "Conformal Blocks. . ."
- Drinfeld-Simpson, " B-Structures. . ."
- Heinloth, "Uniformization. . ."
- Lurie, Harvard Math 282y S14 lecture notes
k algebraically closed
G connected reductive algebraic group / k
X smooth projective curve / k
\mathcal{B} un moduli of (fppf) G-torsors over X
Weil observed $\mathcal{B} u n(k) \simeq G\left(F_{X}\right) \backslash G\left(\mathbf{A}_{X}\right) / G\left(\mathbf{O}_{X}\right)$.
For $k=\overline{\mathbf{F}}_{q}$ and G simply-connected semisimple and $v \in X(k)$, strong approximation says

$$
G\left(F_{X}\right) G\left(\hat{F}_{v}\right) \text { is dense in } G\left(\mathbf{A}_{X}\right),
$$

which implies the surjectivity of

$$
G\left(\hat{F}_{v}\right) / G\left(\hat{\mathcal{O}}_{v}\right) \rightarrow \mathcal{B} u n(k) .
$$

$L_{v} G(R):=G\left(R \hat{\otimes} \hat{F}_{v}\right), \quad L_{v}^{+} G(R):=G\left(R \hat{\otimes} \hat{\mathcal{O}}_{v}\right)$
Affine Grassmannian: $\mathcal{G} r_{v}:=\left(L_{v} G / L_{v}^{+} G\right)^{\sharp}$
Thm For simply-connected semisimple G, the map

$$
\mathcal{G} r_{v} \rightarrow \mathcal{B} u n
$$

is étale-surjective. (Also ind-smooth.)

Two steps:

1. Beauville-Laszlo: $\mathcal{G} r_{v} \simeq \mathcal{G} r_{v}^{g l o b}$ as functors.
2. Drinfeld-Simpson: $\mathcal{G} r_{v}^{\text {glob }} \rightarrow \mathcal{B}$ un is étale-surjective.
$\Delta_{v, R}:=\operatorname{Spec}\left(R \hat{\otimes} \hat{\mathcal{O}}_{v}\right), \quad \Delta_{v, R}^{\times}:=\operatorname{Spec}\left(R \hat{\otimes} \hat{F}_{v}\right)$

$$
\mathcal{G} r_{v}(R)=\left\{\begin{array}{l|l}
(E, \alpha) & \begin{array}{l}
E \rightarrow \Delta_{v, R} \text { is a } G \text {-torsor, } \\
\alpha \in \Gamma\left(\Delta_{v, R}^{\times}, E\right)
\end{array}
\end{array}\right\}
$$

On k-points, $g G\left(\hat{\mathcal{O}}_{v}\right) \rightsquigarrow(E, \alpha)=\left(G \times \Delta_{v}, g\right)$.
$X_{R}:=X \times \operatorname{Spec}(R), \quad X_{R}^{\times}:=(X-v) \times \operatorname{Spec}(R)$

$$
\mathcal{G} r_{v}^{g l o b}(R):=\left\{\begin{array}{l|l}
(E, \alpha) & \begin{array}{l}
E \rightarrow X_{R} \text { is a } G \text {-torsor, } \\
\alpha \in \Gamma\left(X_{R}^{\times}, E\right)
\end{array}
\end{array}\right\}
$$

$\mathcal{G} r_{v}^{g l o b} \rightarrow \mathcal{G} r_{v}$ is restricting to Δ_{v}.
$\mathcal{G} r_{v}^{\text {glob }} \rightarrow \mathcal{B} u n$ is forgetting α.

§2 Gluing

Want to show $\mathcal{G} r_{v}^{g l o b} \rightarrow \mathcal{G} r_{v}$ is an isomorphism.
Intuitively, if $(E, \alpha) \in \mathcal{G} r_{v}(R)$, then we use α to glue E to the trivial torsor on X_{R}^{\times}.
That is, descent along:
(*)

$$
X_{R}^{\times} \sqcup \Delta_{v, R} \rightarrow X_{R}
$$

Objections:

1. If R is not noetherian, then $\Delta_{v, R} \rightarrow X_{R}$ may not be flat, ${ }^{*}$ so (*) may not be fpqc.
2. Not clear that a gluing map over $\Delta_{v, R}^{\times}$provides a descent datum for (*).

* Stacks Project Tag OAL8

A 2010 solution by Heinloth:

1. $\mathcal{G} r_{v}$ and $\mathcal{G} r_{v}^{\text {glob }}$ being of ind-finite type, they are determined by their restrictions to noetherian R.
2. Descent datum for (*) is an element of

$$
G\left(X_{R}^{\times}\right) \times G\left(\Delta_{v, R}^{\times}\right) \times G\left(\Delta_{v, R}^{\times}\right) \times G\left(\Delta_{v, R} \times_{X_{R}} \Delta_{v, R}\right)
$$

satisfying a cocycle condition.
Show that $\Delta_{v, R} \times X_{R} \Delta_{v, R}$ is the pushout of $\Delta_{v, R}$ along the diagonal $\Delta_{v, R}^{\times} \rightarrow \Delta_{v, R}^{\times} \times X_{R} \Delta_{v, R}^{\times}$.

$$
\begin{aligned}
g \in G\left(\Delta_{v, R}^{\times}\right) & \rightsquigarrow g^{-1} \boxtimes g \in G\left(\Delta_{v, R}^{\times} \times X_{R} \Delta_{v, R}^{\times}\right) \\
& \rightsquigarrow g^{-1} \boxtimes g \in G\left(\Delta_{v, R} \times_{X_{R}} \Delta_{v, R}\right)
\end{aligned}
$$

The datum is $\left(1, g, g^{-1}, g^{-1} \boxtimes g\right)$.

The 1995 solution by Beauville-Laszlo:
Reduce to $G=\mathrm{GL}_{n}$. Replace $X_{R}^{\times} \sqcup \Delta_{v, R} \rightarrow X_{R}$ with

$$
\operatorname{Spec}\left(A\left[\frac{1}{t}\right]\right) \sqcup \operatorname{Spec}(\hat{A}) \rightarrow \operatorname{Spec}(A)
$$

where $t \in A$ is a non-zerodivisor and $\hat{A}=\lim _{n} A /\left(t^{n}\right)$.
Thm (BL) Fix $M^{\prime} \in \operatorname{Mod}\left(A\left[\frac{1}{t}\right]\right), M^{\prime \prime} \in \operatorname{Mod}(\hat{A})$,

$$
\varphi: M^{\prime} \otimes_{A} \hat{A} \xrightarrow{\sim} M^{\prime \prime} \otimes_{A} A\left[\frac{1}{t}\right] .
$$

If $M^{\prime \prime}$ has no t-torsion, then there exist $N \in \operatorname{Mod}(A)$,

$$
\psi^{\prime}: N \otimes_{A} A\left[\frac{1}{t}\right] \xrightarrow{\sim} M^{\prime}, \quad \psi^{\prime \prime}: N \otimes_{A} \hat{A} \xrightarrow{\sim} M^{\prime \prime}
$$

all essentially unique, such that φ results from $\psi^{\prime}, \psi^{\prime \prime}$. No noetherian hypotheses.

Proof of existence Let N be the kernel of:

$$
(\star) \quad M^{\prime} \rightarrow M^{\prime} \otimes \hat{A} \xrightarrow{\varphi} M^{\prime \prime}\left[\frac{1}{t}\right] \rightarrow\left(M^{\prime \prime}\left[\frac{1}{t}\right]\right) / M^{\prime \prime} .
$$

Tensoring up to $A\left[\frac{1}{t}\right] \times \hat{A}$ shows (\star) is surjective, so $(\star \star) \quad 0 \rightarrow N \rightarrow M^{\prime} \rightarrow\left(M^{\prime \prime}\left[\frac{1}{t}\right]\right) / M^{\prime \prime} \rightarrow 0$ is exact.

Tensoring (**) up to $A\left[\frac{1}{t}\right]$, resp. \hat{A}, gives ψ^{\prime}, resp. $\psi^{\prime \prime}$. Hard part is $\psi^{\prime \prime}$ because $A \rightarrow \hat{A}$ may not be flat. But

$$
\operatorname{Tor}_{1}^{A}\left(\hat{A},\left(M^{\prime \prime}\left[\frac{1}{t}\right]\right) / M^{\prime \prime}\right)=\underset{n}{\lim } \operatorname{Tor}_{1}^{A}\left(\hat{A},\left(\frac{1}{t^{n}} M^{\prime \prime}\right) / M^{\prime \prime}\right)
$$

vanishes, using injectivity of $M^{\prime \prime} \xrightarrow{t^{n}} M^{\prime \prime}$.

§3 Generic Trivializations

Want to show $\mathcal{G} r_{v}^{\text {glob }} \rightarrow \mathcal{B} u n$ is étale-surjective.

Fix a Borel $B \subseteq G$. A B-reduction of a G-torsor E is an isomorphism

$$
(F \times G) / B \xrightarrow{\sim} E,
$$

where F is a B-torsor and $(f, g) \cdot b=\left(f b, b^{-1} g\right)$.

Thm (DS) For any G-torsor $E \rightarrow X_{R}$, there is an étale map $R \rightarrow R^{\prime}$ such that $\left.E\right|_{X_{R^{\prime}}}$ has a B-reduction.

Thm (DS) Take G simply-connected semisimple.
For any $v \in X(R)$ and G-torsor $E \rightarrow X_{R}$, there is an étale map $R \rightarrow R^{\prime}$ such that $\left.E\right|_{X_{R^{\prime}}-v_{R^{\prime}}}$ trivializes.

Lem A B-reduction of $E \rightarrow Y$ is equivalent to a section of the associated bundle

$$
E / B:=(E \times G / B) / G
$$

Explicitly, if s is such a section, then $F \rightarrow Y$ defined by the fiber product

is the B-torsor.
The map $(F \times G) / B \xrightarrow{\sim} E$ sends $[f, g] \mapsto \tilde{s}(f) g$.

Thm A For any G-torsor $E \rightarrow X_{R}$, there is an étale map $R \rightarrow R^{\prime}$ such that $\left.E\right|_{X_{R^{\prime}}}$ has a B-reduction.

Proof Fix R and $E \rightarrow X_{R}$. For any R-algebra R^{\prime}, let

$$
\mathcal{S}_{R, E}\left(R^{\prime}\right)=\Gamma\left(X_{R^{\prime}},\left.(E / B)\right|_{X_{R^{\prime}}}\right)
$$

Want to trivialize $p: \mathcal{S}_{R, E} \rightarrow \operatorname{Spec}(R)$ étale-locally.
Let $\mathcal{S}_{R, E}^{\circ} \subseteq \mathcal{S}_{R, E}$ be the locus where p is smooth. Suffices to show $\left.p\right|_{\mathcal{S}_{R, E}^{\circ}}$ is surjective.

1. Check that p is surjective on k-points.
2. For any $x \in \operatorname{Spec}(R)(k)$, give $y \in p^{-1}(x)$ such that

$$
s_{y} \in \Gamma\left(x^{*}\left(X_{R}\right), x^{*}(E / B)\right)=\Gamma\left(X,\left(x^{*} E\right) / B\right)
$$

satisfies $\mathrm{H}^{1}\left(X, s_{y}^{*} T_{\left(x^{*} E\right) / B \rightarrow X}\right)=0$.

Claim (1) Equivalent to $R=k$ case of $\mathbf{T h m} \mathbf{A}$, with $R^{\prime}=k$ as well.

Take a G-torsor over X. By Steinberg, it trivializes at the generic point η, hence over a dense open $U \subseteq X$.

Pick a section over U. Since G / B is proper, the valuative criterion says it extends to a section over X.

Rem The proof above generalizes to smooth affine algebraic $\mathcal{G} \rightarrow X$ with \mathcal{G}_{η} connected reductive. See Lurie's Math 282y S14 notes.

Rem We can prove Steinberg's theorem using the regular centralizer scheme over $\mathfrak{g} / / G$. See Gaitsgory's 2009 seminar notes.

Claim (2) Suppose we have

$$
\begin{aligned}
E & \in \mathcal{B} u n(R) \\
x & \in \operatorname{Spec}(R)(k) \\
y & \in \mathcal{S}_{R, E}(k) \\
s_{y} & \in \Gamma\left(X,\left(x^{*} E\right) / B\right)
\end{aligned}
$$

$E_{\circ}=X \times G, \quad E_{\bullet}=x^{*} E$.

Start with any y and set $s=s_{y} \in \Gamma\left(X, E_{\bullet} / B\right)$.
Since the B-reduction $s^{*} E_{\bullet}$ is generically trivial, can find a dense open $U \subseteq X$ and an isomorphism

$$
\beta:\left.\left.\left(E_{\circ} / B\right)\right|_{U} \xrightarrow{\sim}\left(E_{\bullet} / B\right)\right|_{U}
$$

such that $\left.\beta \circ \mathbf{1}\right|_{U}=\left.s\right|_{U}$, where $\mathbf{1}$ is the zero section.
Lem There exist $E_{\circ} / B \stackrel{\phi}{\leftarrow} M \xrightarrow{\tilde{\beta}} E_{\bullet} / B$ and a divisor D supported on $X-U$ such that:

1. ϕ restricts to an isomorphism $\left.\left.\left(E_{\circ} / B\right)\right|_{U} \sim M\right|_{U}$.
2. If $\sigma \in \Gamma\left(X, E_{\circ} / B\right)$ satisfies $\left.\sigma\right|_{D}=\left.\mathbf{1}\right|_{D}$, then $\sigma=\phi \circ \tilde{\sigma}$ for some unique lift $\tilde{\sigma} \in \Gamma(X, M)$.
3. $T_{M \rightarrow X} \simeq \phi^{*} T_{E_{\circ} / B \rightarrow X}(-D)$.
4. β factors through $\tilde{\beta}$.
M is the dilitation of E_{\circ} / B along $(\mathbf{1}, D)$.
If $D=\emptyset$, then set $M_{\emptyset}=E_{\circ} / B$ and $\mathbf{1}_{\emptyset}=\mathbf{1}$.
If $D=[p]+D^{\prime}$, then lift $\mathbf{1}_{D^{\prime}}$ to $\mathbf{1}_{D} \in \Gamma\left(M_{D^{\prime}}\right)$ and set

$$
M_{D}=\operatorname{Blowup}_{\mathbf{1}_{D}(p)}\left(M_{D^{\prime}}\right)-\operatorname{Blowup}_{\mathbf{1}_{D}(p)}\left(M_{D^{\prime}, p}\right)
$$

The map $M=M_{D} \rightarrow X$ remains smooth.

Pick $\sigma \in \Gamma\left(X, E_{\circ} / B\right)$ as in the lemma.
$\operatorname{By}(3), \quad \mathrm{H}^{1}\left(\tilde{\sigma}^{*} T_{M \rightarrow X}\right) \simeq \mathrm{H}^{1}\left(\sigma^{*} T_{E_{\circ} / B \rightarrow X}(-D)\right)$.
$\operatorname{By}(4), \quad \mathrm{H}^{1}\left(\tilde{\sigma}^{*} T_{M \rightarrow X}\right) \rightarrow \mathrm{H}^{1}\left(\tilde{\sigma}^{*} \tilde{\beta}^{*} T_{E_{\bullet} / B \rightarrow X}\right)$.
(Use the fact that $\left.\left.\left(\tilde{\sigma}^{*} T_{M \rightarrow X}\right)\right|_{U} \simeq\left(\tilde{\beta}^{*} T_{E_{\bullet} / B \rightarrow X}\right)\right|_{U}$.)
Remains to pick σ so that $\mathrm{H}^{1}\left(\sigma^{*} T_{E_{\circ} / B \rightarrow X}(-D)\right)=0$. Then $\tilde{s}=\tilde{\beta} \circ \tilde{\sigma} \in \Gamma\left(X, E_{\bullet} / B\right)$ is our modification of s.

The section $\sigma \in \Gamma\left(X, E_{\circ} / B\right)$ is equivalent to a map $g: X \rightarrow G / B$.

Lem For any divisor $D \subseteq X$, there is $g: X \rightarrow G / B$ such that $g(p)=B$ for all $p \in D$ and

$$
\mathrm{H}^{1}\left(X, g^{*} T_{G / B}(-D)\right)=0 .
$$

Proof sketch Let $T \subseteq B$ be a maximal torus.
Let $\operatorname{deg}(g) \in \mathrm{X}_{*}(T)=\operatorname{Hom}\left(\mathrm{X}^{*}(T), \mathbf{Z}\right)$ be the map
$\mathrm{X}^{*}(T)=\operatorname{Pic}(p t / B) \xrightarrow{L} \operatorname{Pic}(G / B) \xrightarrow{g^{*}} \operatorname{Pic}(X) \xrightarrow{\text { deg }} \mathbf{Z}$.
Via filtering, reduce from $T_{G / B}$ to $L(\lambda)$ with $\lambda \in \Phi_{-}$.
Reduce to finding g_{n} such that $\left\langle\operatorname{deg}\left(g_{n}\right), \lambda\right\rangle>n$ for all n and $\lambda \in \Phi_{-}$.
Via a branched cover, reduce to $X=\mathbf{P}^{1}$ and $n=0$.

Thm B Take G simply-connected semisimple.
For any $v \in X(R)$ and G-torsor $E \rightarrow X_{R}$, there is an étale map $R \rightarrow R^{\prime}$ such that $\left.E\right|_{X_{R^{\prime}}-v_{R^{\prime}}}$ trivializes.

Etale-locally over $\operatorname{Spec}(R)$, pick a B-reduction F.
Let F^{\prime} be the extension of F along $B \rightarrow T \hookrightarrow B$.
Write $B=T \ltimes U$. As $X_{R}-v$ is affine and U is filtered by copies of \mathbf{G}_{a}, we can show $\left.\left.F^{\prime}\right|_{X_{R}-v} \simeq F\right|_{X_{R}-v}$.

So we can assume F has a T-reduction.

Since T is commutative, T-torsors form a group stack.
Suppose that $\check{\lambda} \in \mathrm{X}_{*}(T)$ and two T-torsors differ by the $\check{\lambda}$-extension of some \mathbf{G}_{m}-torsor.

Suffices to show that the associated G-torsors must be isomorphic étale-locally on $\operatorname{Spec}(R)$.

Since G is simply-connected, it suffices to assume λ^{\vee} is a simple coroot $\check{\alpha}$.

So it suffices to take G generated by T and $r_{\check{\alpha}}\left(\mathrm{SL}_{2}\right)$. Such a group is the product of SL_{2} or GL_{2} with some smaller torus.
"In the first case it suffices to show that the restriction [to $X_{R}-v$] of an SL_{2}-bundle on X is trivial locally [over R]. In the second case it is enough to show that that the restriction. . . of two GL_{2}-bundles on X with the same determinant are isomorphic locally. . "

In fact, Beauville-Laszlo did the SL_{n} case by induction on n, and the GL_{2} case is similar.

Key Idea A high-enough twist at v of the associated vector bundle can be split locally over $\operatorname{Spec}(R)$.

§4 Smoothness

Thm The map $\mathcal{G} r_{v}^{\text {glob }} \rightarrow \mathcal{B} u n$ is (formally) smooth.

That is: Suppose $R \rightarrow R^{\prime}$ is a square-zero extension of k-algebras and $E \in \mathcal{B} u n(R)$ and $E^{\prime}=\left.E\right|_{X_{R^{\prime}}}$. Then

$$
\Gamma\left(X_{v, R}^{\times}, E\right) \rightarrow \Gamma\left(X_{v, R^{\prime}}^{\times}, E^{\prime}\right) \text { is surjective. }
$$

Key idea Below, $X_{v, R^{\prime}}^{\times} \rightarrow X_{v, R}^{\times}$is square-zero and $\left.E\right|_{X_{v, R}^{\times}} \rightarrow X_{v, R}^{\times}$is smooth:

Thank you for listening.

