WHAT GAUSS KNEW ABOUT KNOTS AND BRAIDS

MINH-TÂM QUANG TRINH

Problem 1. Show that the figure-8 knot is not tricolor.

Problem 2. Read about the diagrammatic definition of the linking number. Show that the link below, appropriately oriented, has linking number zero:

Problem 3. Show that for all $n \geq 2$, there is a braid on n strands whose closure is the unknot. It is not the identity.

Problem 4. Let σ_{1} denote the generator of Br_{2}.
(1) Show that the HOMFLY invariants $\mathbf{P}\left(\widehat{\sigma_{1}^{n}}\right)$ satisfy a linear recurrence in n.
(2) Deduce that the $(2, n)$-torus links are pairwise non-isotopic.

Problem 5. Show that in Br_{4}, the elements

$$
\left(\sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2}\right)^{3} \sigma_{1}^{7} \quad \text { and } \quad\left(\sigma_{1} \sigma_{2} \sigma_{3}\right)^{6} \sigma_{1}
$$

have the same link closure. How would you generalize this observation?

References

[1] J. W. Alexander. A Lemma on Systems of Knotted Curves. Proc. Nat. Acad. Sci. USA, 9 (1923), 93-95.
[2] J. W. Alexander. Topological Invariants of Knots and Links. Trans. AMS, 30(2) (1928), 275-306.
[3] E. Artin. Theory of Braids. Ann. Math., Second Series, 48(1) (1947), 101-126.
[4] S. Chmutov, S. Duzhin, J. Mostovoy. Introduction to Vassiliev Knot Invariants. Cambridge University Press (2012). arXiv:1103.5628
[5] D. DeTurck, H. Gluck, R. Komendarczyk, P. Melvin, H. Nuchi, C. Shonkwiler, D. S. Vela-Vick. Generalized Gauss Maps and Integrals for Three-Component Links: Toward Higher Helicities for Magnetic Fields and Fluid Flows, Part II. Alg. Geom. Top., 13 (2013), 2897-2923.
[6] M. Epple. Orbits of Asteroids, a Braid, and the First Link Invariant. The Mathematical Intelligencer, 20(1) (1998), 45-52.
[7] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, A. Ocneanu. A New Polynomial Invariant of Knots and Links. Bull. AMS, 12(2) (1985), 239-246.
[8] V. F. R. Jones. Hecke Algebra Representations of Braid Groups and Link Polynomials. Ann. Math., 126(2) (Sep. 1987), 335-388.
[9] N. Yu. Reshetikhin \& V. G. Turaev. Ribbon Graphs and Their Invariants Derived from Quantum Groups. Commun. Math. Phys., 127 (1990), 1-26.
[10] E. Witten. Quantum Field Theory and the Jones Polynomial. Commun. Math. Phys., 121 (1989), 351-399.

