Higgs Bundles and Global Springer Theory

Minh-Tâm Quang Trinh

Massachusetts Institute of Technology
§1 Ngô (2008)

Let $G = \mathrm{SL}_n(\mathbb{C})$ and $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$.

Centralizer group scheme:

$$I = \{ (\gamma, g) \in \mathfrak{g} \times G \mid \text{Ad}(g)\gamma = \gamma \}$$

For any field F and $\gamma \in \mathfrak{g}(F)$, we say that:

- γ is \textit{regular} iff $\dim I_\gamma$ is minimal. In this case, I_γ is commutative.
- γ is \textit{regular semisimple} iff I_γ is a torus.

Let $\mathfrak{g}^{rs} \subseteq \mathfrak{g}^{\text{reg}} \subseteq \mathfrak{g}$ be the corresponding loci.
Let \(c = \mathbb{A}^{n-1} \parallel S_n \simeq \text{Spec } \mathbb{C}[e_2, \ldots, e_n] \).

The Chevalley map

\[\chi : \mathfrak{g} \to c \]

sends a matrix \(\gamma \) to the tuple \(a = (a_i)_{i=2}^n \) given by

\[\det(t - \gamma) = t^n + a_2 t^{n-2} + \cdots + a_{n-1} t + a_n. \]

Let \(c^o \) be the locus where this polynomial is separable.

Lem \(\chi|_{\mathfrak{g}^{\mathfrak{reg}}} : \mathfrak{g}^{\mathfrak{reg}} \to c \) is surjective.

Lem \(\mathfrak{g}^{rs} = \chi^{-1}(c^o) \).

Lem \(I|_{\mathfrak{g}^{\mathfrak{reg}}} \) descends to \(c \): There’s a smooth group scheme \(J \) over \(c \) and

\[\chi^* J|_{\mathfrak{g}^{\mathfrak{reg}}} \sim I|_{\mathfrak{g}^{\mathfrak{reg}}}. \]

It extends to a morphism \(\chi^* J \to I \).

Explicitly, if \(\gamma \in \mathfrak{g}(F) \) and \(\chi(\gamma) = a \), then:

\[J_a = \left\{ f \in (F[t]/a(t))^{\times} \left| \prod_{\lambda \in \mathbb{C}} f(\lambda) = 1 \right. \right\} \]

and \(J_a \to I_\gamma \) sends \(f \mapsto f(\gamma) \).

Ex If \(\mathfrak{g} = \mathfrak{sl}_2 \), then \(\chi \simeq \det : \mathfrak{sl}_2 \to \mathbb{A}^1 \).

\(J(C) \) is a family of \(\mathbb{C}^\times \)'s degenerating to \(\mathbb{C}^+ \times \{ \pm 1 \} \).
Since J is a commutative group scheme, BJ forms a commutative group stack over c.

The fiberwise action

$$\chi^*BJ = B(\chi^*J) \rightrightarrows BI$$

over g descends to a fiberwise action

$$BJ \rightrightarrows \chi^*BI = [g/G]$$

over c.

It is simply transitive on the regular loci of the fibers.

The geometry of this action underlies the geometry of both affine Springer fibers and Hitchin fibers.

Interlude Suppose $H \rightrightarrows X$ and $H \rightrightarrows V$. Recall:

- An H-bundle $E \to X$ is *principal* iff it trivializes over an fpqc cover of X.
- The *associated bundle* $V_E \to X$ is defined by

$$V_E = (E \times V)/H$$

as an fpqc quotient.

Principal H-bundles are classified by maps $X \to BH$.

Ex Suppose $L \to X$ is a line bundle.

Its frame bundle $L^x \to X$ is a principal G_m-bundle such that $L = (\mathbb{A}^1)_L^x$.
Suppose X is integral, separated, noetherian, and $\hat{\mathcal{O}}_{X,v} \simeq \mathbb{C}[x]$ for all $v \in X(\mathbb{C})$.

An *L-twisted G-Higgs bundle* on X is a section of $\left[g/G \right]_{L^\times} \to X$,

where $G_m \acts \left[g/G \right]$ by scaling g. Equivalent to (E, θ) with:

- $E \to X$ a principal G-bundle.
- θ a global section of $g_E \otimes L \to X$.

Since $G = \text{SL}_n$, this is equivalent via $V = (\mathbb{A}^n)_E$ to:

- $V \to X$ a rank-n vector bundle with $\text{det}(V)$ trivial.
- θ a traceless global section of $\text{End}(V) \otimes L$.

The map $\chi : g \to c$ sends:

scaling action $G_m \acts g$
\[\downarrow \]
weighted action $G_m \acts c = \text{Spec} \mathbb{C}[e_i]_{i=2}^n$

The weights are $c \cdot e_i = c^i e_i$.

So χ induces a *Hitchin morphism* $h : \mathcal{M} \to \mathcal{A}$, where

\[\mathcal{M} = \mathcal{M}_{X,L} = H^0(X, \left[g/G \right]_{L^\times}), \]
\[\mathcal{A} = \mathcal{A}_{X,L} = H^0(X, c_{L^\times}) \]
\[= \bigoplus_{i=2}^n H^0(X, L^\otimes i). \]

Intuitively, $h(V, \theta)$ lists coefficients of $\text{det}_L(t - \theta)$.
The fiberwise action $BJ \curvearrowright [g/G]$ over \mathfrak{c} is equivariant with respect to the G_m-actions.

Therefore, $\mathcal{P} \curvearrowright \mathcal{M}$ over \mathcal{A}, where

$$\mathcal{P} = \mathcal{P}_X := H^0(X, (BJ)_{L\times})$$

is called the (relative) Picard stack.

Motivation If X is a nice curve and $a \in \mathcal{A}$ is also nice, then:

- \mathcal{P}_a parametrizes line bundles of a fixed degree on a certain branched cover $X_a \to X$.
- \mathcal{M}_a is a certain compactification of \mathcal{P}_a.

We say that X_a is the spectral curve of a.

Global Picture Let X be a smooth proper curve. Fix $a = (a_i)_{i=2}^n \in \mathcal{A} = \bigoplus_{i=2}^n H^0(L^i)$.

Let y be a vertical coordinate on L, and let

$$X_a = \{y^n + a_2y^{n-2} + \cdots + a_{n-1}y + a_n = 0\} \subseteq L.$$

Let \mathcal{A}^{\bullet}, resp. \mathcal{A}°, be the locus in \mathcal{A} where X_a is integral, resp. reduced.

Lem If $a \in \mathcal{A}^{\bullet}$, then \mathcal{M}_a is proper.

Lem If X has genus zero and $a \in \mathcal{A}^{\circ}$, then

$$\mathcal{P}_a \simeq Pic^d(X_a) \quad \text{and} \quad \mathcal{M}_a \simeq \overline{Pic}^d(X_a),$$

where $d = \binom{n}{2} \deg L$.

Local Picture For all $v \in X(C)$, let
\[\hat{X}_v = \text{Spec } \hat{O}_v \quad \text{and} \quad \hat{X}_v^o = \text{Spec } \hat{F}_v. \]
Abbreviate $a_v = a|_{\hat{X}_v}$ and $L_v = L|_{\hat{X}_v}$.

Prop If $a \in A^\otimes(C)$ and $\gamma \in \chi^{-1}(a_v)$, then
\[[\mathcal{P}_{\hat{X}_v,a_v} \backslash \mathcal{M}_{\hat{X}_v,\hat{O}_v,a_v}] \simeq [\mathcal{P}_\gamma \backslash \mathcal{M}_\gamma] \]
where
\[\mathcal{M}_\gamma = \{ g \in G(\hat{F}_v)/G(\hat{O}_v) \mid \text{Ad}(g^{-1})\gamma \in g_L \times (\hat{O}_v) \}, \]
\[\mathcal{P}_\gamma = I_\gamma(\hat{F}_v)/J_{a_v}(\hat{O}_v), \]
given the structure of C-ind-schemes.

Note: \mathcal{M}_γ is a (spherical) affine Springer fiber.

Proof sketch

The fpqc quotient $G(\hat{F}_v)/G(\hat{O}_v)$ classifies (E, ι) with:
- $E \to \hat{X}_v$ a principal G-bundle.
- $\iota : E|_{\hat{X}_v^o} \sim \to G \times \hat{X}_v^o$.

\mathcal{M}_γ classifies (E, θ, ι) with:
- $(E, \theta) \in \mathcal{M}_{\hat{X}_v,\hat{O}_v,a_v}$.
- $\iota : E|_{\hat{X}_v^o} \sim \to G \times \hat{X}_v^o$ such that $\iota(\theta) = \gamma$.

\mathcal{P}_γ classifies (E', ι') with:
- $E' \to \hat{X}_v$ a principal J_{a_v}-bundle.
- $\iota' : E'|_{\hat{X}_v^o} \sim \to I_\gamma \times \hat{X}_v^o$.
Local to Global Suppose L admits a square root. It defines a *Kostant section*

$$c_{L×} → [g^{\text{reg}}/G]_{L×},$$

which in turn induces a gluing map

$$\prod_{a(v)\notin c_{L×}^o} \mathcal{M}_{\gamma_v} → \mathcal{M}_{X,L,a}$$

for any $a ∈ A^\diamondsuit(C)$ and $\gamma_v ∈ \chi^{-1}(a_v)$.

Thm (Ngô) If $a ∈ A^\star(C)$, then any square root of L induces an algebraic homeomorphism

$$\mathcal{P}_{X,a} × \prod_{a(v)\notin c_{L×}^o} \mathcal{M}_{\gamma_v} \simeq \mathcal{M}_{X,L,a}.$$

Ex Let $G = SL_2$ and $X = \mathbb{P}^1$ and $L = \mathcal{O}(2)$. Then

$$\mathcal{A} = H^0(X,L^\otimes 2) = H^0(\mathbb{P}^1,\mathcal{O}(4)).$$

Fix a coordinate $[x : 1]$ on X. Spectral curves look like

$$X_a = \{y^2 + a(x) = 0\} ⊆ L,$$

where $\deg a(x) = 4$.

If $a(x) = x^3$, then

$$\mathcal{M}_a = \overline{\text{Pic}^1(X_a)} ≃ X_a × \mathbb{P} \mu_2,$$

$$\mathcal{P}_a = \text{Pic}^1(X_a) ≃ G_a,$$

$$\mathcal{M}_{\gamma_0} × \mathcal{M}_{\gamma_\infty} = \mathbb{P}^1 × pt,$$

$$\mathcal{P}_{\gamma_0} × \mathcal{P}_{\gamma_\infty} = G_a × 1.$$

Note: $\overline{\text{Pic}^1(X_a)} ≃ X_a × \mathbb{P} \mu_2$ for general $a ∈ A^\star(C)$.
§2 Yun (2011)

Z. Yun’s global Springer action fits into a table:

<table>
<thead>
<tr>
<th>point</th>
<th>Springer fibers</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk \hat{X}_v</td>
<td>affine Springer fibers \mathcal{M}_{γ_v}</td>
</tr>
<tr>
<td>compact surface X</td>
<td>parabolic Hitchin fibers $\tilde{\mathcal{M}}_a$</td>
</tr>
</tbody>
</table>

Full statement involves a graded \mathbb{C}-algebra

$$D^{\text{trig}} = \text{Sym} (V_{KM} \oplus \mathbb{C}) \otimes \mathbb{C} [W^{\text{aff}}].$$

By a Springer action, we really mean a morphism

$$D^{\text{trig}} \rightarrow \bigoplus_i \text{End}^2 (\tilde{h}_\bullet \mathbb{C}),$$

where \tilde{h}_\bullet is a parabolic version of h_\bullet.

Here, $V_{KM} = X^* (T_{KM}) \otimes \mathbb{C}$, where

$$T_{KM} = G^{cen}_m \times T \times G^{rot}_m$$

is the maximal torus of a certain Kac–Moody group

$$G_{KM} = \hat{L}G \rtimes G^{rot}_m.$$

Explicitly:

- $T \subseteq G$ is a maximal torus.
- LG is the loop group given by $LG(\mathbb{C}) = G(\mathbb{C}(x))$ on points, and

$$1 \to G^{cen}_m \to \hat{L}G \to LG \to 1$$

is the central extension formed by the frame bundle of its determinant line bundle.

- G^{rot}_m acts on LG and $\hat{L}G$ by scaling x.

\mathbb{V}
Fix a Borel $B \supseteq T$. Gives simple roots

$$\Delta = \{\alpha_1, \ldots, \alpha_r\} \subseteq \Phi^* \subseteq X^*(T)$$

and affine simple roots

$$\Delta^{\text{aff}} = \{\alpha_0\} \cup \Delta \subseteq X^*(T \times G^\text{rot})$$.

We have Weyl groups

$$W = \langle s_\alpha \rangle_{\alpha \in \Delta},$$
$$W^{\text{aff}} = \langle s_\alpha \rangle_{\alpha \in \Delta^{\text{aff}}} \cong \mathbb{Z}\Phi_* \rtimes W.$$

Note: Since $G = \text{SL}_n$, we have $\mathbb{Z}\Phi_* = X_*(T)$.

We will use $W^{\text{aff}} \acts on V_{\text{KM}}$ to define D^{trig}.

Let u be an indeterminate.

The *trigonometric DAHA in the sense of Yun* is

$$D^{\text{trig}} = \text{Sym}(V_{\text{KM}} \oplus \mathbb{C}\langle u \rangle) \otimes \mathbb{C}[W^{\text{aff}}]$$

under this ring structure:

- $\mathbb{C}[W^{\text{aff}}]$ and $\text{Sym}(\cdots)$ are subalgebras.
- u commutes with everything.
- For all $\xi \in V_{\text{KM}}$ and $\alpha \in \Delta^{\text{aff}}$, we have
 $$s_\alpha \xi - s_\alpha \xi s_\alpha = \langle \xi, \alpha^\vee \rangle u.$$

The grading is:

- $\deg w = 0$ for $w \in W^{\text{aff}},$
- $\deg \xi = 2i$ for $\xi \in \text{Sym}^i(\cdots)$.
Write $X^*(G_m^{rot}) = Z\delta_{rot}$. For any $c \in \mathbb{C}$, we set

$$D_c^{trig} = D^{trig}/(u + c\delta_{rot}).$$

Still graded!

Rem The usual trig DAHA is $D^{trig}/(\delta_{rot} - 1)$ (up to sign??). Filtered, not graded!

Rem The subalgebra of D^{trig} or D_c^{trig} generated by

$$\text{Sym}(V \oplus \mathbb{C}\langle u \rangle) \otimes \mathbb{C}[W],$$

where $V = X^*(T) \otimes \mathbb{C}$, is Lusztig’s graded AHA.

To get the W-part of the global Springer action, we must extend the Hitchin morphism h.

Let $f : \tilde{\mathfrak{g}} \to \mathfrak{g}$ be the Springer morphism, and let the top square below be cartesian:

$$
\begin{array}{ccc}
\tilde{M} & \longrightarrow & [\tilde{\mathfrak{g}}/G]_{L \times} \\
\downarrow & & \downarrow f \\
\mathcal{M} \times X & \xrightarrow{\text{eval}} & [\mathfrak{g}/G]_{L \times} \\
\downarrow \text{h x id} & & \downarrow \chi \\
\mathcal{A} \times X & \xrightarrow{\text{eval}} & \mathfrak{c}_{L \times}
\end{array}
$$

Note that $[\tilde{\mathfrak{g}}/G] \simeq [\mathfrak{b}/B]$, where $\mathfrak{b} = \text{Lie}(B)$.

Let $\tilde{h} : \tilde{M} \to \mathcal{A} \times X$ be the composition.
To construct

\(\text{D}^{\text{trig}} \rightarrow \bigoplus_i \text{End}^{2i}(\tilde{h}^\bullet \mathbb{C}) \),

we need to describe the actions of

- \(w \in \text{W}^{\text{aff}} \).
- \(\xi \in \text{X}^*(\text{G}_m^{\text{cen}} \times T \times \text{G}_m^{\text{rot}}) \oplus \mathbb{Z}u \).

The \(\text{W}^{\text{aff}} \)-action is built up via induction on \(s_\alpha \)'s, just like in affine Springer theory.

As for the lattice, we’ll construct a map

\(\tilde{L} : \text{X}^*(T_{\text{KM}}) \oplus \mathbb{Z}u \rightarrow \text{Pic}(\tilde{M}) \),

then let \(\xi \rightsquigarrow \tilde{h}^\bullet \mathbb{C} \) via cupping with \(\tilde{h}^\bullet c_1(\tilde{L}(\xi)) \).

Let \(\text{Bun}^B_G = (\text{Bun}_G \times X) \times_{B_G} B \). In each case,

\[\tilde{L}(\xi) = K|_{\tilde{M}} \]

for some map \(\tilde{M} \rightarrow \text{Bun}^B_G \rightarrow Z \) and \(K \in \text{Pic}(Z) \).

Write \(\text{X}^*(\text{G}_m^{\text{rot}}) = \mathbb{Z}\delta_{\text{rot}} \) and \(\text{X}^*(\text{G}_m^{\text{cen}}) = \mathbb{Z}\delta_{\text{cen}} \).

<table>
<thead>
<tr>
<th>(\xi)</th>
<th>(Z)</th>
<th>(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\xi \in \text{X}^*(T))</td>
<td>(B)</td>
<td>(K(\xi))</td>
</tr>
<tr>
<td>(\delta_{\text{rot}})</td>
<td>(X)</td>
<td>(\omega_X)</td>
</tr>
<tr>
<td>(\delta_{\text{cen}})</td>
<td>(\text{Bun}_G)</td>
<td>(\omega_{\text{Bun}_G})</td>
</tr>
<tr>
<td>(u)</td>
<td>(X)</td>
<td>(L)</td>
</tr>
</tbody>
</table>

Above, \(\xi \mapsto K(\xi) \) under \(\text{X}^*(T) \sim \rightarrow \text{Pic}(B) \).

\textbf{Thm (Yun)} (\(\ast \)) is well-defined for \(\text{deg}(L) \geq 2g_X \).

(This condition ensures Ngô’s “support theorem”.)
Rem (**) descends to $D^{\text{trig}}_c = D^{\text{trig}}/(u + c\delta_{\text{rot}})$ iff

$$L \otimes \omega_X^c = \mathcal{O}_X.$$

This forces $c = -\deg(L)/(2g_X - 2)$.

Rem For all $(a, v) \in A \times X$, we get

$$D^{\text{trig}} \rhd H^*(\tilde{M}_{a, v}, \mathbb{C})$$

by pullback and base-change.

But since ω_X and L trivialize upon pullback to v, the action factors through $D^{\text{trig}}/(\delta_{\text{rot}}, u)$.

To get interesting actions on fibers, need orbifold X and equivariant cohomology.

§3 Oblomkov–Yun (2014)

Let $G^{(m)}_m \rhd \mathbb{A}^2$ with weights $(m, 1)$. Then

$$X_m := [(\mathbb{A}^2 - (0, 0))/G^{(m)}_m]$$

is a weighted projective line in which ∞ has stabilizer μ_m and no other points are stacky.

Simultaneously,

- $G^{\text{rot}}_m \rhd X_m$ via $t \cdot [x : z] = [tx : z]$.
- $G^{\text{dil}}_m \rhd g, \epsilon$ and χ is G^{dil}_m-equivariant.

So for any $L \in \text{Pic}(X_m) \simeq \frac{1}{m}\mathbb{Z}$, we have

$$G^{\text{rot}}_m \times G^{\text{dil}}_m \rhd \mathcal{M}_{X_m, L}, \tilde{\mathcal{M}}_{X_m, L}, \mathcal{A}_{X_m, L}$$

and $\tilde{h} : \tilde{\mathcal{M}} \to \mathcal{A}$ is equivariant.
Fix $c = d/m$ in lowest terms. Define $\mathbb{G}_m(c)$ as the subtorus acting on $a = (a_i)_i \in A$ by
\[t^d \cdot a_i(x : z) = a_i(t^m x : z) \]
The points of
\[A_c := A^{\mathbb{G}_m(c)} = \mathbb{C}\langle x^{ic} z^i(\deg(L)-c)m \rangle_{i=2}^n \]
are said to be homogeneous of slope c.

Thm (OY) There are graded actions
\[D^{\text{trig}} \to \text{End}^2_{\mathbb{G}_m} \times \text{G}_{\text{dil}} (\tilde{h}^\heartsuit C), \]
\[D^{\text{trig}}_c \to \text{End}^2_{\mathbb{G}_m(c)} (\tilde{h}^\heartsuit C), \]
where $\tilde{h}^\heartsuit C$, $\tilde{h}^\heartsuit C$ are viewed as ind-complexes.

Cor $D^{\text{trig}}_c \sim H^*_{\mathbb{G}_m(c)}(\tilde{\mathcal{M}}_{a,0})$ for $a \in A_c(C)$.

There’s also a rational degeneration of this story. The **rational DAHA in the sense of Yun** is
\[D^{\text{rat}} = \text{Sym}(V \oplus V^\vee \oplus C\langle u, \delta_{\text{rot}} \rangle) \otimes \mathbb{C}[W] \]
under a graded ring structure we won’t state. Let $D^{\text{rat}}_c = D^{\text{rat}} / (u + c\delta_{\text{rot}})$.

Thm (OY) If $m = n$, the Coxeter number, then:
- $A^\heartsuit_c = A^\clubsuit_c$.
- There’s a graded action
 \[D^{\text{rat}}_c \to \text{End}^2_{\mathbb{G}_m(c)} (\text{gr}^P \tilde{h}^\heartsuit C), \]
 where $P_{\leq *}$ is the perverse filtration on $\tilde{h}^\heartsuit C$.

Cor In this case, $D^{\text{rat}}_c \sim \text{gr}^P H^*_{\mathbb{G}_m(c)}(\tilde{\mathcal{M}}_{a,0})$.
Ex Take $a = (0, \ldots, 0, x^d) \in A_c(\mathbb{C})$, where d is coprime to n.

Here, $\mathcal{M}_{a,0} \simeq \overline{Pic}^{d(n-1)/2} \left\{ y^n + x^d = 0 \right\}$ and $\widetilde{\mathcal{M}}_{a,0}$ is a “flagged” version.

Oblomokov–Yun:

\[
\begin{align*}
D_{c}^{\text{trig}} & \simeq H_{G_m(c)}^{*}(\widetilde{\mathcal{M}}_{a,0}), \\
D_{c}^{\text{rat}} & \simeq \text{gr}^P H_{G_m(c)}^{*}(\widetilde{\mathcal{M}}_{a,0}).
\end{align*}
\]

If we specialize $\delta_{\text{rot}} \to 1$ in the latter, then we get the *spherical simple module* of the usual rDAHA!

Garner–Kivinen have an alternate construction that does not rely on the perverse filtration.

Thank you for listening.