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Competitive Erosion Definition

1 Competitive Erosion is a Markov chain.

2 The state space is the set of two-colorings (red and blue) of sites of a
cylindrical lattice Z/NZ× {−N/2,−N/2 + 1, . . . ,N/2}. We will
define a Markov chain on this state space.
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Competitive Erosion Markov Chain

1 Start with a coloring σ. One step is as follows:
1 Choose a random point on the bottom base, then run a simple random

walk until it hits a red square. This square turns blue.
2 Choose a random point on the top base, then run a simple random

walk until it hits a blue square. This square turns red.

3 / 30



Competitive Erosion

1 We are interested in studying the stationary measure πN of the
erosion Markov chain.

2 A generic, near equilibrium configuration looks something like this:
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Competitive Erosion
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Competitive Erosion
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Competitive Erosion

7 / 30



Competitive Erosion
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Competitive Erosion
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Competitive Erosion
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“Limit shape” Phenomenon

The probability, under the stationary distribution πN , of seeing a blue
square below height −εN converges to 0 (exponentially fast) as N →∞
([5]).

Natural next step is to study fluctuations.
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Discussion of Fluctuations

1 The remainder is dedicated to a heuristic derivation of a stochastic
PDE satisfied by the interface, which we present now.

2 Let ∆ = ∂2x + ∂2y .

3 Take N large, and let γ be a smooth interface approximating the
lattice interface I . Define the blue Green’s function GB on the blue
region B ⊂ R/Z× [−1

2 ,
1
2 ] by

∆GB = 0 subject to

GB |γ ≡ 0

∂yGB |y=− 1
2
≡ 1 .

Define the red Green’s function GR similarly.
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Discussion of Fluctuations

Conjecture

We argue that at a point (x , y) on the interface, over the course of a time
step ∆T (which must be chosen at the right scale relative to N), the
change δγ of the interface in the normal direction ν is equal to

(∂νGB(x , y)− ∂−νGR(x , y))∆T + F (γ)Wt

where W is a Gaussian white noise.
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Recovering the Limit Shape

1 The limiting interface should be the ”equilibrium” point, so at the
interface the drift term in the SPDE above should be 0. So
∂νGB(x , y)− ∂−νGR(x , y) = 0 for (x , y) ∈ I .

2 So the function G = GB − GR is harmonic on the whole cylinder,
satisfying the boundary conditions ∂νG |bottom / top base = ±1,
G |I = 0, and away from I , ∆G = 0. In fact, G must be harmonic and
smooth on the interior of the cylinder.

3 We have found that the interface is a level set of G . See the main
theorem in [4].
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Fluctuations

1 Now we assume the interface I is near equilibrium, and we expand the
drift term

∂νGB − ∂−νGR

around the equilibrium point.

2 Suppose we have an interface I given by some height function h at
time t. Then we know by the above that h = h0 + δh, where h0 is
some limiting height function and δh is small.
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Fluctuations

1 A calculation shows that to first order in δh, the net drift is −2R[δh],
where R is a Dirichlet to Neumann operator:

R : δh 7→ ∂νGB

2 R is the operator which takes in a potential at the boundary y = 0
and gives the electric field at the boundary.
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A Stochastic PDE

Revisiting our equation for the interface increment we get near equilibrium

∆h = −2R[δh]∆T +W

Conjecture

The interface fluctuations converge to the solution of

dh = −2R[δh]dt +W

where W(x , t) is a spacetime white noise.

17 / 30



Ornstein Uhlenbeck Process

1 We have
dh = −2R[δh]dt +W

which is an infinite dimensional analog of the 1d mean reverting
process dxt = −αxtdt + dBt .

2 This is a well known SPDE. The random height function h that is
stationary under this is the Gaussian process with covariance kernel
R−1.
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Ornstein Uhlenbeck Process

1 So roughly speaking, the stationary h should be a Gaussian process on
R/Z with E [h(x)h(x ′)] = R−1(x − x ′).

2 On the cylinder R−1 is easy to compute via Fourier transform (Fourier
modes e2πikx are eigenfunctions).

3 We ultimately get (up to some constant)

log(2− 2 cos(x − x ′))

for the kernel R−1.
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Height Correlation

1 Numerics:

20 / 30



Height Correlation

1 Numerics:
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Further Questions...

1 More pictures:
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Further Questions...
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Further Questions...

1
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Further Questions...
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Recovering the Limit Shape: Simply connected domain

Figure: Picture from [4]
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Recovering the Limit Shape

1 On the cylinder, the relevant Green’s function is G (x , y) = y . So we
know from the heuristic that the interface is at y = 0 (if, say, we
started with half of the squares blue).

2 But this argument works in any domain. As harmonic functions are
conformally invariant, the interface is conformally invariant.
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End!
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