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Abstract

Let G be a split, semisimple p-adic group. We construct a derived
localization functor Loc : DbSmfg → DbŜh from the compactified cate-
gory of [BK2] associated to G to the category of equivariant sheaves on
the building whose stalks have finite-multiplicity isotypic components as
representations of the stabilizer. Our construction is motivated by the
“coherent-constructible correspondence” functor in toric mirror symme-
try and a construction of [CCC]. We show that Loc has a number of useful
properties, including the fact that the sections RΓ Locc(V ) = V when V
is an object of Smfg compactifying the finitely-generated representation
V .We also construct a depth-≤ e “truncated” analogue Loc(e) which has
finite-dimensional stalks, and satisfies the property RΓc Loc(e)(V ) = V
for any V of depth ≤ e. We deduce that every finitely-generated repre-
sentation of G has a bounded resolution by representations induced from
finite-dimensional representations of compact open subgroups, and use
this to compute the K-theory of G in terms of K-theory of its parahoric
subgroups.
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0 Introduction

0.1 K theory of the representation category

Let G be a split, semisimple p-adic group, and let Smfg(G) be the cat-
egory of idempotented finitely-generated representations of the Hecke al-
gebra H(G) with values in C (equivalently, smooth finitely-generated rep-
resentations of G, see e.g. [Ber]). The category Smfg(G) is extremely
well-behaved: it is a direct sum of countably many Noetherian compo-
nents, has enough projectives, and has finite homological dimension equal
to the rank of the group. In particular, the category has a well-behaved
K-theory, with K0(Smfg(G)) the Grothendieck group of projectives in
Smfg(G). Write

K0(G) := K0(Smfg(G)).

The group K0(G) will be a central object of study in this paper. The
rational coefficient version K0(Smfg(G)) ⊗ Q was considered in the pa-
pers [BDK] and [D], and is related to the character theory of admissi-
ble representations of G. Indeed, given any admissible representation A
and finitely-generated representation V , the graded spaces Exti(A, V ) are
finite-dimensional and zero for i ≥ n+1 (for n the rank of G). The signed
sum 〈A, [V ]〉 :=

∑
(−1)i dim Exti(A, V ) then defines, for each admissible

A, an integral functional on K0(G). Rationally, the group K0(G) was
computed by Dat [D], who showed that the group K0(G) ⊗ Q naturally
pairs with the vector space of central distributions on compact elements.
Namely, we say that an element γ ∈ G is compact if it is contained in some
compact subgroup K ⊂ G. Write Gc ⊂ G for the (open and closed) sub-
set of compact elements. Let Hc ⊂ H be the vector space of (compactly
supported locally constant) functions supported on Hc. The group G acts
on Hc by conjugation, and we write HHc

0 for the space of coinvariants
(Hc)G.

Theorem 1 (Dat). There is an isomorphism ι : K0(G)⊗ C→ HHc
0 . In

terms of this isomorphism, the pairing 〈A, [V ]〉 = 〈χA, ι([V ])〉, where χA
is the Harish-Chandra character of A (here χA is viewed as a distribu-
tion on G, which acts on Hc and by conjugation-invariance descends to
conjugation coinvariants (Hc)G).
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One way to get projectives in Sm(G) is by (compact) induction from
compact subgroups. Suppose J ⊂ G is a compact open subgroup of G.
Given a smooth representation V of J , write IndGJ (V ) := V ⊗HJ HG for
the induced representation. Note that our functor IndGJ is left adjoint to
the forgetful functor, and is sometimes denoted Indc |GJ (V ) to distinguish
it from the right adjoint, which is a non-isomorphic functor (since [J : G]
is infinite).

A representation V of a compact group J is finitely-generated and
projective if and only if it is finite-dimensional (recall that smooth finite-
dimensional representations of a compact group form a semisimple cate-
gory). As both of these properties are obviously invariant with respect to
induction, this gives us a collection of projectives IndGJ (V ) ∈ Smfg(G) for
pairs (J, V ) with J ⊂ G compact and V finite-dimensional representations
of J .

Definition 1. We say that a representation is finitely induced if it is
of the form IndGJ (V ) for some finite-dimensional representation V of an
open compact J ⊂ G.

Note that it is sufficient to consider maximal compact subgroups J ,
as if J is compact open and M ⊂ J is a maximal compact subgroup
containing J , then IndGJ (V ) ∼= IndGM (IndMJ V ), and IndMJ V is a finite-
dimensional representation of M . Given a pair (J, V ) as above, the class
of the corresponding finitely induced representation in Dat’s K0 group is
the normalized character δJ · χV , where χV is the function (supported in
J) such that Tr(h, V ) = 〈h, χV 〉 for h ∈ H supported in J and δJ is the
uniform distribution on J of norm 1. Note that δJ · χV is supported on
J ⊂ Gc, hence projects to the space of G-coinvariants HHc

0 . Because the
characters χV form a basis for the vector space of central functions, one
sees that these projections of characters span all of HHc

0 over the com-
plex numbers: in particular, the finitely induced representations rationally
span the group K0(G).

In this paper we will consider the integral K group K0(G). Our main
result will be the following.

Theorem 2. The classes [IndGJ V ] of finitely induced representations in-
tegrally span the group K0(G).

An equivalent formulation of this result is as follows.

Theorem’. For any projective object P of Smfg(G), there are finitely
induced representations IndGJ V, IndGJ′ V

′ such that P ⊕ IndGJ′ V
′ ∼= IndGJ V.

Or, equivalently (as Smfg(G) has enough projectives),

Theorem”. Any object of Smfg(G) has a resolution by direct sums of
finitely induced representations.

The statement in this last form is a conjecture in Roman Bezrukavnikov’s
thesis, [BThes].

The functor IndGJ : Smfd(J) → Smfg(G) takes direct sums to direct
sums, hence induces a linear map on K0 groups [IndGJ ] : K0 Smfd(J) →
K0 Smfg(G). The maps [IndGJ ] and [IndGγJγ−1 ] are intertwined by the iso-

morphism V 7→ γV : K0(J) → K0(γJγ−1) — hence, in particular, they
have the same image in K0(G). Further, [IndGJ ] factors through Smfd(M)
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for M some maximal compact subgroup containing J . If we choose an Iwa-
hori subgroup I ⊂ G, the collection MaxI of maximal compact subgroups
containing I is a set of representatives of maximal compact subgroups up
to conjugation. With this in mind, we write down the following map.

[Indmax] :=
⊕

M∈MaxI

[IndGI ] :
⊕

M∈MaxI

K0(M)→ K0(G).

Theorem 2 then implies that the map [Indmax] is surjective. There are
some classes obviously in the kernel of this map: namely, given a sub-

group J ⊂Mi ∩Mj , the two inductions [IndMiJ (V )] and [Ind
Mj
J (V )] have

the same image under [Indmax] (viewed as elements of the corresponding
direct summands). Note that it is enough to take J = Mi ∩Mj above.
Write K0

cell for the quotient of
⊕

M∈MaxI
K0(M) by relations of the form

[IndMiMi∩Mj V ] ∼ [Ind
Mj
Mi∩Mj V ].

The map [Indmax] induces a map [Indcell] : K0
cell → K0(G). It can be

shown from the formula of [D] and basic properties of parahoric subgroups
that this map is an isomorphism rationally. Theorem 2 implies that it is
a surjection integrally. Hence the map [Indcell] : K0

cell → K0(G) is an
isomorphism on torsion-free quotients.

0.2 Compactified category

Our proof will proceed by constructing a resolution for an arbitrary object,
in a way that is functorial up to a certain choice of a “normalization” of
V . This choice of normalization is provided by the compactified category
Sm defined in [BK2] and its subcategory Smfg of locally finitely-generated
objects. This category is a powerful tool which in particular allows one
to systematically normalize computations with finitely-generated repre-
sentations of G. Namely, given two objects V,W of Smfg(G), the space
Hom(V,W ) is in general not finite-dimensional, but has action by the
Bernstein center Z := HH0(H), and is a finitely-generated representation
of Z. Equivalently, this Hom space can be considered a sheaf Hom(V,W )
over SpecZ which is coherent and supported over finitely many irreducible
components. Similarly the derived Hom space can be written as a finite
complex of coherent sheaves RHomSm(V,W ) over Spec(Z). Now com-
ponents of Spec(Z) are canonically scheme-theoretic quotients of tori (of
dimension between 0 and n) by subgroups of the Weyl group W . Choos-
ing W -equivariant toric compactifications of these tori (something that
can be done in a consistent way), we get a canonical compactification
Spec(Z)BK of the central spectrum. The idea of [BK2] is to endow the
objects V,W of Sm(G) with some additional data, giving objects V ,W
in some upgraded category Smfg, in order to be able to write an in-
ner Hom space Hom(V ,W ) as a coherent sheaf over Spec(Z)BK . One

can then reconstruct Hom(V ,W ) as Γ
(

Spec(Z)BK ,Hom(V ,W )
)
, and

Ext∗(V ,W ) in DbSmfg as the hypercohomology of the double complex

RΓ
(

Spec(Z)BK , RHom(V ,W )
)

. The wonderful advantage of this cat-

egory and its derived category is that these categories are proper (see
e.g. [O]), and two objects (under suitable finite generation conditions)
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have finitely many finite-dimensional Ext spaces. This allows us to define
Yoneda functors from DbSmfg to Db Vectfd given by taking RHom with
any (finitely-generated) object. We will show that any representation V
has a resolution by induced representations by choosing a compactifica-
tion V ∈ Smfg (something that is relatively easy to construct), and write
down a resolution

(∗, d)
∼- 

of the forgetful functor
 : Sm→ Sm(G)

by a finite collection of functors given by direct sum of functors of the form
Ji : V 7→ RHom(Xi, V ) ⊗ IndGJ Vi indexed by J running over corank-i
parahoric subgroups of G containing some fixed Iwahori subgroup.

0.3 Localization on the building

The resolution (i, d) (as well as a version of this functor depending on
depth) will be the focus of this paper, and is interesting independently
of its application to K theory. Our construction will be topological in
nature, and is motivated by a philosophy of p-adic localization introduced
in the paper [BThes]. Namely, recall that (for G split and semisimple) the
Bruhat-Tits building BG is a G-equivariant contractible cell complex with
vertices parametrized by maximal compact subgroups and k-dimensional
cells parametrized by the collection of all parahoric subgroups of corank
k. The space BG can be thought of as a p-adic analogue to the equivariant
space G/K, either for G a real group and K a compact subgroup, or for G
a complex group and K the Borel. The combinatorially constructed topol-
ogy on B then takes the place of the smooth or complex structure on the
equivariant spaces. In particular, the appropriate analogue to the category
of local systems on an equivariant space is the category of constructible
sheaves on the building with finite-dimensional fibers, constructible with
respect to the cellular stratification. This category can be thought of as
having action by something like the Lie algebra of G. To have action by all
ofG, we consider the category ShGfd ofG-equivariant constructible sheaves
on the building with finite-dimensional stalks. One then is interested in
the (compactly supported) global sections functor Γc : ShGfd → Smfg(G)
which is analogous to the inverse Beilinson-Bernstein localization func-
tor arising in the theory of category-O representations of semisimple Lie
groups. Unlike the (inverse) localization functor in geometry, the functor
Γc is far from being an equivalence, and is not a faithful functor; nev-
ertheless, Bezrukavnikov shows in [BThes] that it becomes faithful after
factoring out a certain Serre subcategory of ShGfg of objects with triv-
ial homology. In fact, the essential image of Bezrukavnikov’s functor is
precisely the full subcategory of representations in Smfg(G) consisting
of representations which admit a resolution by direct sums of finitely in-
duced representations. To motivate this, observe the functor Γc comes
endowed with a resolution (coming from the cellular structure) by func-
tors ΓJc : ShGfg → Smfg(G) with J running over the paraholics and
ΓJc ∼= IndGJ Stalkσ canonically expressed as the induced representation
from the stalk functor at a cell σ stabilized by J .
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Thus in order to show that any finitely-generated representation has
a resolution by finitely induced ones, it would be sufficient to construct
a right inverse LocSm of the functor Γ : ShGfg → Smfg(G): then the
cell complex computing Γ(LocSm(V )) ∼= V would give functorial such
resolutions. Unfortunately, it is relatively easy to see that such a right
inverse does not exist. Instead, what we do construct is (essentially) a
derived, compactified version of the localization functor: a complex of
sheaves LocSm(V ), which we will call

Loc∨gr : DbSmfg → ShGfg,

with the property that the following diagram of functors commutes:

DbSmfg

Loc∨gr- DbShGfd

Db Smfg(G).



?�
RΓc

This commutative diagram, along with the existence for any object V ∈
Sm of a (non-unique) compactified object V with V ∼= V , furnishes us
with a resolution of every object by finitely induced representations.

0.3.1 Truncation

The more canonical functor, and the one we will spend the most time
studying, is a functor Loc : DbSmfg → Db CoShG into the category of
cosheaves, not necessarily with finite-dimensional stalks. In order to get
a functor Loc∨ into sheaves we can use a standard Verdier-type equiva-
lence between derived categories of sheaves and cosheaves (see [Cu]). In
order to further project to the category of sheaves with finite-dimensional
stalks, we use a procedure of “truncation” and take stalkwise invariants
with respect to a coefficient system of congruence subgroups of conduc-
tor depending on the depth of V . It is in fact somewhat surprising that
“truncation” does not destroy commutativity of the global sections dia-
gram above, and our proof of this (in section 6) uses extensively ideas of
Meyer and Solleveld, [MS].

0.4 Toric mirror symmetry and corridors

The idea behind our construction of the localization functor comes from
adapting to the context of buildings and noncommutative geometry a
certain functor arising from mirror symmetry of toric varieties: namely,
the coherent-constructible correspondence of [FLTZ] (especially in the
interpretation of [T] and [CCC]). The basic idea underlying both the
point of view of [CCC] and our construction of the localization functor
is one of descent: we express (countable) colimit-compatible dg func-
tors DbSm → DbC (for arbitrary categories C) as collections of func-
tors from noncommutative affine charts, with certain algebra actions and
compatibilities between them. This converts the task of constructing
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the functor Loc : DbSm → DbShG to that of finding several compati-
ble objects of ShG with appropriate algebra actions. These objects are
constructed using (Verdier duals to) constant sheaves on a new class
of contractible geometric subsets of the building which we call corri-
dors (analogous to shifts of dual toric cones in the case of toric vari-
eties). Note that both the Beilinson-Bernstein localization functor and the

Figure 1: Example of a corridor for SL2(Q2)

coherent-constructible correspondence functor are in general fully faith-
ful: not so for the localization functor here. Instead, we have a functor
Col : Db CoShG → DbSm right adjoint to the localization functor with
the property that Col ◦Loc : Sm→ Sm is close to but not quite the iden-
tity functor (as would be the case if Loc were fully faithful). The question
of “fixing” Loc to be fully faithful (and thus give an embedding of the
compactified category Loc into the category of equivariant sheaves on B)
is an interesting one, and one that the author is agnostic about at the
moment.

0.5 The Yoneda philosophy and the Morita phi-
losophy

Before continuing, we point out a subtle point about the point of view we
adopt in defining functors, which is in a sense dual to the standard one. We
will indicate this difference somewhat vaguely in this section, in order to
motivate some of the definitional choices we make later in paper. Namely,
given two module categories (either Abelian or differential graded), A −
Mod and B−Mod there are a few common ways to “represent” dg functors
between them. One, which we can call the “Yoneda” philosophy, is to
define a functor FY : A −Mod → B −Mod by choosing some bimodule
Y ∈ A − B − bimod, and defining FY (X) := Hom(Y,X). Another,
which we call the “Morita” philosophy, is to choose a B − A-bimodule,
M , and define FM (X) := M ⊗AX. When one has not chosen a generator
and starts with two categories C,D determined by some sort of algebraic
data, it is still often possible to interpret the notion of a C − D-bimodule
as an object of another algebraic category, informally “Dop-type object
in C” (formally, this bimodule category is determined by some universal
property, and denoted C�Dop when it exists). In defining the functors in
this paper, we will identify the relevant bimodule categories, and almost
exclusively use the “Morita” language of tensor product with a “kernel”
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bimodule M rather than the Yoneda constuction of Hom(Y,−). Note
that our choice is aesthetic: as our categories are smooth, every “Morita-
type” object M can (in the dg world) be replaced by a suitably dual
“Yoneda-type” object Y := M∨. However, the relevant duality functors
are complicated, and using the Yoneda method of defining functors would
make our exposition more cumbersome than it should be.

1 Plan of paper

We begin by gathering together in section 2 some results about the cate-
gory of representations Smfg

G that at this point can be considered classical.
In section 3 we study homological algebra on the compactified category
Sm. We begin by recalling basic properties of the compactified cate-
gory from [BK2], the most important ones being its geometric enrich-
ment over the smooth compact variety X//W for X an n-dimensional
toric variety over C compactifying the spectrum of the spherical center,
Spec(Zsph) ∼= Ť //W . We move between three different points of view
of Sm introduced in [BK2]. One point of view is to consider Sm as a
collection of compatible representations of the topological algebras HPQ,
which can be thought of as noncommutative affine charts. A second is
a microlocal modification of the first, where we only consider punctured
completions ĤPQ of the HP with respect to certain closed strata. The
final one is a picture of Sm as sheaves of modules over sheaves of algebras
over X//W (which we get after choosing an appropriate generator). The
most important results of this section are lemmas 8, giving a formula for
higher Hom between compactified representations and 9, which character-
izes colimit-compatible (dg) functors DbSm → C in terms of the data of
compatible collections of objects XPQ with action by the topological alge-
bras HPQ. We call such data {XPQ} “kernels” for functors. In the next
section, 4, we recall some combinatorial models for the category of equiv-
ariant cosheaves on the building and its derived category in Section 4, with
the main sources being [BThes] and [Cu]. We also introduce a class of
sheaves we call constant sheaves on orbifolds, which are essentially orbifold
pushforwards of constant sheaves on étale covers of B. The remainder of
the paper defines and studies various functors DbSm→ Db CoShG using
appropriate kernels {XPQ}. In section 5, we define the “absolute local-
ization” functor Loc : DbSm→ Db CoShG which we glue as a homotopy
limit of the functors LocPQ indexed by pairs of parabolics. The functors
LocPQ are deduced from constant orbifold cosheaves on quotients of cer-
tain special contractible subsets of B which we call corridors. In order to
make the exposition more intuitive, we work in the setting of cosheaves on
orbifolds (where we use the notions of pushforward and pullback for orb-
ifolds). We compute the (compactly supported) global sections Γc◦LocPQ
and deduce that their homotopy limit Loc satisfies commutativity of the
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diagram

DbSm
Loc- Db CoShG

Db SmG,



?�
R

Γc

We show that the stalks of this functor are profinite-dimensional, i.e.
the stalk over x becomes finite-dimensional upon taking invariants with
respect to any open subgroup of the stabilizer G(x).

Now replacing the functors LocPQ by invariants with respect to the
“Schneider-Stuhler coefficient system” G

(e)
x
∼= G(x, e) / G(x) over every

point x gives a new functor Loc(e) : Sm → Sh with finite-dimensional
fibers. We need to show that this functor has the same compatibility

DbSm
(≤e) Loc(e)

- Db CoShG

Db SmG,



?�
RΓc

when restricted to compactified representations of depth ≤ e. It turns
out that we in fact have a stronger statement: taking invariants does not
change the (compactly supported) sections of any component LocPQ(V )
(provided V has depth ≤ e). In order to prove this, we use the remarkably
versatile machinery of “compatible systems of idempotents” of Meyer and
Solleveld, [MS]. This is done in section 6. This finally gives us a resolution
of the underlying representation V of any object V of the compactified
category. It remains to observe that any object V of Sm admits compact-
ification to an object V of Sm to conclude our proof.

2 Reminders about the representation cat-
egory and the Bruhat-Tits building

Here we will gather together several known results about the category
Smfg

G of smooth finitely-generated representations. Choosing an integral
model for G (easy since G is split), we have a subgroup G(O) ⊂ G(K),
which is a maximal compact subgroup. A subgroup conjugate to the
preimage of a Borel subgroup of G(k) under the residue map G(O) →
G(k) is called an Iwahori subgroup. A compact open subgroup containing
an Iwahori subgroup is called a parahoric. Parabolic subgroups have a
geometric incarnation as stabilizers of cells of a contractible G-equivariant
cell complex, BG, called the Bruhat-Tits building. As parahorics are self-
normalizing, we can index parahorics by cells of the building, and we have
a bijection between cells and parahorics σ ↔ G(σ) taking a cell of B to
its stabilizer, or equivalently the stabilizer of any point x ∈ σ. Now to
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every point x ∈ B and number r ∈ R≥0, Moy and Prasad [MP] associate
a subgroup G(x, r) ⊂ G, normal in the stabilizer G(x). We say that
(for some integer e), a representation V ∈ SmG has depth ≤ e if it is
generated by the subspaces V G(x,e). It follows from work of Bernstein
that the category of all finitely-generated representations of depth ≤ e is
Noetherian and a direct summand in the category Smfg(G). When e is
an integer, the groups G(x, e) can be taken to be the Schneider-Stuhler

coefficient system G
(e)
σ of [SS], which is constant on cells of B.

Given a parabolic subgroup P ⊂ G, it has a normal unitary radical
UP ⊂ P ⊂ G, and the quotient P/UP is a Levi subgroup, which we will
denote LP . We have a pair of exact adjoint functors

rP : SmG � SmLP : iP ,

called the Levi restriction and induction, such that rP (V ) := VU with
evident LP -action. We say that a representation V is cuspidal if iP (V ) = 0
for any parabolic P ( G, and admissible if it has finite depth. Jacquet
induction and restriction preserve both the properties of admissibility and
of having depth ≤ e.

We define the Bernstein center Z := HH0(SmG) to be the center of
the category SmG . Given any representation V ∈ SmG, it has a central
support subvariety Supp(V ) ⊂ Spec(Z). The category of representations
with central support at a given point x ∈ Spec(Z) is not necessarily
semisimple, but is always Artinian, with at most |W | irreducibles (for
|W | the size of the Weyl group). The depth of a representation depends
only on its singular support, and the variety Spec(Z) is decomposed into a
disjoint union by depth. The component Spec(Z≤e) of bounded depth is a
variety of finite type, and it has smooth connected components isomorphic
to quotients of tori (of dimension between 0 and n) by subgroups of the
Weyl group.

Up to some choices, we can choose a “spherical” central subring Zsph ⊂
Z such that the Spec(Zsph) ∼= ŤC//W is the scheme-theoretic quotient
of the Langlands dual torus to the maximal torus T ⊂ G, taken with
coefficients in C and quotiented by the Weyl group. The resulting map
Spec(Z)→ ŤC//W can be shown to be finite on every central component.

3 Geometry in the compactified category

In order to construct and study our functor Loc, we need a good under-
standing of the derived category of the Bezrukavnikov-Kazhdan category
Sm, and more generally, a characterization of dg functors DbSm→ C for
all “sufficiently nice” dg categories C, in terms of algebraic data on ob-
jects of C. The description we will give will have algebro-geometric flavor.
The techniques in this section come directly from ideas of toric mirror
symmetry, and in particular from constructions in [CCC] (although the
exposition will be self-contained).
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3.1 Polarization of G

Here we will introduce some notation and collect some standard results
having to do with the combinatorics of roots and polarization of coweight
lattices. In particular, to every conjugacy class of parabolic P ⊂ G we
associate a sublattice ΛP of the coweight lattice of G, and a positive cone
Λ+
P ⊂ ΛP .

Notation. When making a point to distinguish between a geometric group
or space and its set of points, we will use math boldface G,X for the
geometric object and ordinary symbols G := G(K), X := X(K) to denote
sets of points. When there is no ambiguity, we reserve the right to abuse
notation and use G to denote the geometric group G, etc.

Recall that a polarized semisimple algebraic group G is a pair B ⊂ G
with B a fixed Borel subgroup. Recall that a parabolic subgroup of G
is an algebraic group P containing a Borel subgroup. Having chosen a
polarization, every parabolic subgroup is conjugate to a unique standard
parabolic subgroup P ⊃ B.

Notation. We will use calligraphic B,P to denote standard Borels or
parabolics, and roman B,P to denote their conjugates.

As any parabolic is its own normalizer, the set of all parabolics conju-
gate to P can be canonically identified with points of the space G/P.

Notation. Abusing notation, we will identify the set of (K-rational)
parabolics conjugate to P with the set G/P, and write P ∈ G/P to denote
a choice of such a parabolic.

Definition 2. For P a standard parabolic, write ΛP for the unramified
quotient of LP by the minimal open normal subgroup, ΛP := LP/L

0
P .

For B the Borel, the lattice ΛB is identified with X∗(T), i.e. the dual
lattice to the weight lattice. The lattice ΛP is the sublattice in ΛT of
vectors satisfying 〈λ, xi〉 = 0 for any principal roots xi ∈ Xprinc \XPprinc ⊂
X∗(T) not in the Lie algebra of P. The choice of polarization endows
that lattice ΛT with a distinguished positive cone, Λ+

T ⊂ ΛT consisting
of {λ | 〈λ, xi〉 ≥ 0 ∀ xi ∈ Xprinc}. Write Λ+

P = Λ+
T ∩ ΛP . There is some

ambiguity (depending on convention) on the relationship of polarization
on the root lattice (i.e. choice of positive cone) to the polarization data
B ⊂ G. We choose the convention that guarantees that for any rank-
one parabolic Pi ⊃ B, the action of L+

B on the p-adic affine line UB/UPi
(viewed as a totally disconnected space with a Haar measure) is expanding.

3.2 Definition of Sm

Here we will recall the definition and some properties of the compactified
category Sm from [BK2]. First, a bit more notation. To a pair of embed-
ded standard parabolics P ⊂ Q we will associate an intermediate cone
Λ+
P ⊂ ΛQ+

P ⊂ ΛP as follows.

Definition 3. Write ΛQ+
P := {λ ∈ ΛP | 〈λ, xi〉 ≥ 0 ∀ xi ∈ XQprinc}.

Evidently, ΛP+
P
∼= Λ+

P .
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Definition 4. For P ⊂ Q parabolics in G, define L+
P , resp. LQ+

P to be
the preimage in LP of the semigroups Λ+

P , resp. ΛQ+
P , in the unramified

quotient LP/L
0
P .

The category Sm will be “glued” out of smooth representation cate-
gories of the semigroups LQ+

P above.

Definition 5. Define HPQ to be algebra of locally constant, compactly
supported functions on the topological semigroup LQ+

P .

Remark 1. Often we will be sloppy and write HPQ for a pair of (not
necessarily canonical) parabolics P ⊂ Q to mean HPQ for their canonical
conjugates.

Definition 6. Define SmPQ to be the category of representations of the
algebra HPQ.

One should think of the SmPQ as a system of “étale” (or more specif-
ically, flat) opens of Sm, and the open corresponding to the pair (P,Q)
can be considered to “contain” (P ′,Q′) if P ′ ⊂ P ⊂ Q ⊂ Q′.
Definition 7. Write N for the poset of pairs (P,Q) of standard parabolics
in G satisfying P ⊂ Q, with order (P ′,Q′) � (P,Q) when P ′ ⊂ P ⊂ Q ⊂
Q′.

Now for any pair (P ′,Q′) � (P,Q) we have a functor jP
′Q′
PQ : SmPQ →

SmP′Q′ defined as a composition of the following two functors.

Definition 8. For any triple P ′ ⊂ P ⊂ Q, we define the functor jP
′Q
PQ :

SmPQ → SmP′Q taking VPQ to the coinvariants (VPQ)UP′ , where we

view VPQ as a representation of PQ+, the subsemigroup of P which is the
preimage of LQ+

P , restrict it to the preimage (P ′)Q+ of P ′ in LQ+
P′ , then

quotient out by U ′P to obtain a representation of LQ+
P′ .

Definition 9. For any triple P ⊂ Q ⊂ Q′, we define the functor jPQ
′

PQ :
SmPQ → SmPQ′ taking a representation VPQ of HPQ to its extension of
scalars VPQ ⊗HPQ HPQ′ .
Definition 10. Now for a quadruple P ′ ⊂ P ⊂ Q ⊂ Q′ of parabolics, we
write

jP
′Q′
PQ := jP

′Q′
PQ′ ◦ j

PQ′
PQ : SmPQ → SmP′Q′ .

Note that this functor is canonically equivalent to the composition in
the opposite order, jP

′Q′
P′Q ◦j

P′Q
PQ . More generally, any chain of compositions

of functors of this sort with the same range and domain will be canonically
equivalent. This is encoded in the following lemma.

Lemma 3 (Bezrukavnikov, Kazhdan). The categories SmPQ and the

functors jP
′Q′
PQ extend to a strict representation of the poset N in cate-

gories. I.e. there are canonical isomorphisms of functors jP
′′Q′′
P′Q′ j

P′Q′
PQ

∼=
jP
′′Q′′
PQ : SmPQ → SmP′′Q′′ , and these isomorphisms are compatible in an

evident sense.

We define Sm to be the limit of this diagram of functors parametrized
by N in the category of categories. Namely,
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Definition 11 (Bezrukavnikov, Kazhdan). An object V of Sm is a collec-

tion of objects VPQ of SmPQ along with compatible isomorphisms jP
′Q′
PQ VPQ ∼=

VP′Q′ . A morphism f : V → V
′

is a collection of morphisms fPQ : VPQ →
V ′PQ such that jP

′Q′
PQ fPQ = fP′Q′ .

3.3 Root toric variety and the geometric center
of Sm

Let ŤC be the algebraic torus over C with character lattice Λ (which is
dual to the character lattice of the maximal torus T ⊂ G). The collection
of dual hyperplanes in ΛR to the roots in Λ form a toric fan. Write
X̃ = X̃C for the corresponding toric variety over C, with open orbit
ŤC ⊂ X̃C. Then X̃ is smooth W -equivariant (with action induced from
W -action on the fan). The W -action preserves the toric stratification,

and induced a stratification on the orbifold X̃/W . This stratification on

X̃/W then has components parametrized by faces of the Weyl chamber
(as it is a fundamental domain for the W -action on the fan), which are
indexed by standard parabolics P ⊂ G. For P a parabolic, let WP be
the intersection W ∩ P for W ⊂ G an embedding of the Weyl group that
normalizes some T ⊂ B. Then WP acts on the lattice ΛP , as well as on
the semigroup Λ+

P . Write X̃P for the spectrum Spec(Λ+
P), which is an

affine toric subvariety X̃P ⊂ X̃, with closed toric stratum isomorphic to
the torus ŤP := Spec(ΛP). The X̃P are then an affine cover of X̃, and

the ŤP are an affine stratification of X̃.

Definition 12. Write XPQ for the quotient XQ//WP and SPQ for the
closed stratum ŤQ//WP in XPQ.

Then the XPQ give a finite flat cover of X. (This cover has the flat
analogue of the Nisnevich property, which we will see in the next section).
Now it follows from work of Bernstein that the identity functor in the cate-
gory Sm(G) has action by the ring of functions C[Λ]W ∼= O(Ť //W ) on the
scheme-theoretic quotient by this action. Equivalently, the Hom functor in
Sm(G) is enriched to a functor Hom : SmG× SmG → Qcoh(LTPC //WP)
with composition ◦ : Hom(V,W ) ⊗ Hom(U, V ) → Hom(U,W ) fibered
over the base LTPC //WP , and with canonical isomorphism Hom(V,W ) ∼=
Γ
(
LTPC //WP ,Hom(V,W )

)
. An extension of Bernstein’s arguments im-

plies that the category of smooth representations of the semigroup HPQ
is enriched over the commutative ring O(XPQ). In the same sense, the
paper [BK2] shows that Sm is fibered over the smooth projective scheme
X. Namely,

Lemma 4 ([BK2]). 1. The category Sm is enriched over XC//W , i.e.
there is a functor Hom : Sm ⊗ Sm → Qcoh(XC//W ) with a com-
position natural transformation ◦ : Hom(V,W ) ⊗ Hom(U, V ) →
Hom(U,W ) fibered over the base.

2. Ordinary Hom in Sm is the composition of Hom with global sections,
i.e. HomSm(V ,W ) ∼= Γ(XC//W,Hom(V ,W )).

3. Given an object V of Sm and F of Qcoh(XC//W ), there is an object
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V ⊗F ∈ Sm with a natural adjunction equivalence

HomSm(V ⊗F ,W ) ∼= HomQcoh(XC//W )(F ,Hom(V ,W )).

4. In an étale neighborhood of the boundary stratum SP , the pullback of
the inner Hom Hom(V ,W ) to any XPQ agrees with HomXPQ

(VPQ,WPQ)

(and in particular, the fiber of Hom(V ,W ) over the open stratum
Ť //W is Hom(V,W )).

3.3.1 Local projectivity and extension

In order to rightfully call Smfg a “compactified” category, it would be
nice to know that any object V ∈ Smfg(G) can be extended to an object
V ∈ Smfg, at least in a dg sense. This is in fact true on the level of
abelian categories, but in order to simplify our life a little, we prove it in
a simpler setting of locally projective objects, which we show to dg span
all of DbSm.

Definition 13. We say that an object V ∈ Sm is locally projective if
every VPQ is projective as an object of SmPQ.

Lemma 5. Every object in Sm has a finite locally projective resolution.

Proof. Every SmPQ has projective resolution of length ≤ n. Now given
any object V such that each VPQ has projective resolution of length k ≥ 0
and a map F → V from a locally projective object F which is surjective
on every PQ-component, the kernel ker(P → V ) locally has projective
resolutions of length ≤ k − 1. Thus by induction, it is enough to show
that any object V ∈ Sm admits a surjective map from a locally projective
P . This is shown in [BK2].

Now we prove the following lemma.

Lemma 6. For any locally projective V ∈ Smfg(G), there is a (not nec-
essarily canonical) object V with the underlying representation V GG = V .

Proof. We proceed by induction. Suppose we have constructed a col-
lection of compatible (in the sense of Definition 11) objects VPQ for all
P0 ( P ⊂ Q, with VGG = V . Then we can automatically extend it
to a compatible collection of objects VP′Q for all Q ) P0, by taking
VP′Q := (VP0Q)UP′ . Now it suffices to extend this collection of compatible
representations by an object of type VP0P0 compatible whose localizations
produce VP0Q for Q ) P0. Now note that as (by assumption) the VP0Q are
finitely-generated and projective, hence torsion-free, we can choose collec-
tions of generators xP0Q

i ∈ VP0Q. Now we define VP0P0 to be subspace of
the L+

P0
-span of xP0Q ∈ VP0G which are contained in all VP0Q ⊂ VP0G.

By Noetherianness of the finitely-generated representation categories, this
module is finitely-generated. (In fact, the module is independent of choice
of generators when the codimension of P0 ≥ 2 by the S2 property).

Corollary 7. These two lemmas imply that the K-theory map K0(Smfg)→
K0(Smfg(G)) is surjective.
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3.3.2 Internal and external tensor product

Define the category Sm
R

for the category of collections of collections of
right representations VPQ of HPQ with opposite compatibility conditions.

Then given a pair of objects V ∈ Sm, V
′ ∈ Sm

R
, we can define the complex

V⊗W ∈ Q coh(X) and V ⊗W := Γ(X,V⊗W ). The functor ⊗ is left exact,

and we can define its derived functor V
L
⊗W ∈ Db coh(X). We can then

define the functor V
L
⊗W := RΓ(V

L
⊗W ) on the derived category which is a

dg functor in each component. When V ,W are locally finitely generated,

V⊗W ∈ Db coh(X) is a perfect complex of coherent sheaves, hence V
L
⊗W

is a finite complex of finite vector spaces.

3.4 Formal charts and higher Hom

Lemma 8. 1. For a pair of objects V ,W ∈ Sm, the derived Hom space
is computed by the limit in the derived category

rHom(V ,W ) ∼= holim(P,Q)∈N (rHomHPQ(VPQ,WPQ)) .

Further, this quasiisomorphism is compatible with the fibered struc-
ture of Sm over XC//W . Namely,

RHom(V ,W ) ∼= lim
N
jPQ∗

(
RHomHPQ(VPQ,WPQ)

)
,

where we take j : XPQ → X the finite flat map of the previous
section.

2. For a pair of objects V ∈ Sm and W ∈ Sm
L

, we have

W
L
⊗ V ∼= holimWPQ ⊗HPQ VPQ,

and, similarly, the inner derived Hom

V
L
⊗W ∼= holimN WPQ

L
⊗VPQ,

where WPQ
L
⊗VPQ are viewed as derived pushforwards from coh(XPQ)

to coh(X).

In order to prove this lemma we will give an alternative glueing of the
compactified category Sm out of formal representation categories ŜmPQ
fibered over punctured formal neighborhoods of closed strata in X. Now
write X̂PQ := ŜPP ∩ XPQ for the formal neighborhood of SPP in XPP
intersected with XPQ. This is an n-dimensional formal scheme which is a
product of one-dimensional tori, disks, and formal disks. Now we observe
that the rings HPQ are canonically fibered along the XPQ, and we can
base change to get rings ĤPQ, with representation categories ŜmPQ. It is
then straightforward to see that an object V of Sm is equivalent to a com-
patible system of representations V̂PQ of ĤPQ. Now the spaces XPQ form
a Čech cover of X, so that for two sheaves F ,F ′ on X, we can compute
rHom(F ,F ′) ∼= holimN

(
HomXPQ(F|XPQ ,F

′|XPQ)
)
, and similarly for
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F
L
⊗F ′. This implies from our fibered property that also given two objects

V ,W in Sm, we have rHom(V ,W ) ∼= holimN
(

HomĤPQ(V̂PQ, ŴPQ)
)
,

and (for V an object of Sm
L

) we have V
L
⊗W ∼= holimN

(
V̂PQ

L
⊗hHPQ ŴPQ

)
.

Now we observe that, fixing P, both the colimits

holimQ⊃P
(

HomĤPQ(V̂PQ, ŴPQ)
)

and

holimQ⊃P (HomHPQ)(VPQ,WPQ))

compute the same complex which is the complexH∗rel ((XP , XP \ SP),Hom(VPP ,WPP)),
computing the relative coherent cohomology of the sheaf HomXP

(VPP ,WPP)
relative to the complement to the closed stratum. This means that we
can introduce filtrations on the complexes

holimN rHomHPQ(VPQ,WPQ) and

RHom(V ,W ) ∼= holimN rHomĤPQ(V̂PQ, ŴPQ)

compatible relative to the obvious mapRHom(V ,W )→ holimN HomHPQ(VPQ,WPQ),
which induce isomorphisms on associated graded components. The argu-

ments for V
L
⊗ V ′ are analogous. This proves the lemma.

3.5 Noncommutative pushforwards

We’ve defined the forgetful functors ∗PQ : Sm → SmPQ; these are exact,
hence have obvious derived analogues ∗PQ : DbSm→ SmPQ . These func-
tors are noncommutative analogues of affine pull-back and so it makes
sense to look for a right adjoint functor RPQ∗ . It is proved in [BK2] that
it is possible to define a sheaf of algebras A over XC//W such that Sm
is equivalent to the category of sheaves of modules Sm(A). Now HPQ
induces a sheaf of algebras APQ over XPQ such that the category of
sheaves of representations of APQ is equivalent to SmPQ . Write jPQ∗ APQ
for the algebra H considered as an algebra over X via the map of algebraic
varieties jPQ : XPQ → X. Then it follows from formal arguments that
the functor ∗PQ interpreted as a functor A−Mod → jPQ∗ APQ −Mod is
given by tensor product with some bimodule MPQ flat over both A and
jPQ∗ APQ. From this it follows formally that we have a well-defined right
adjoint functor PQ∗ to ∗PQ, whose derived functor will give a left adjoint
in the derived category, RPQ∗ . We will not write down a formula for the
affine components of (RPQ∗ (VPQ))P′Q′ here (as it is rather involved), but
rather just use the existence of this adjoint functor.

3.6 Dg functors out of Sm

Now we are ready to characterize DG functors from Sm to an arbitrary
dg category C.
Lemma 9. Suppose that C is a dg category with all colimits. Then a
colimit-preserving functor DbSm → C is equivalent to a collection of ob-
jects APQ of C with right actions by HPQ, together with compatible iden-
tifications P

′Q′
PQ APQ ∼= AP′Q′ , where the functor P

′Q′
PQ (A) := (A ⊗HPQ

HPQ′)UP′ is defined as a colimit in the category C.
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Proof. Define Funlocal for the category of collections APQ as above and
Fun(DbSm, C) for the category of (dg) colimit-compatible functors. Then
we have a functor α : Funlocal → Fun(DbSm, C) given by α({XPQ}) : V 7→
holimXPQ⊗HPQV and β : Fun(DbSm, C)→ Funlocal given by β(F )PQ :=
F ((HPQ)) (which have obvious right HPQ-action as HPQ-modules). It
follows from the previous two subsections that α, β are inverse to each
other.

Notation. We call the data XPQ like in Lemma 9 the kernel of the
functor F := α({XPQ}). The notation comes from the theory of Fourier-
Mukai kernels, since in fact, the data of {XPQ} above is most naturally
an object of the tensor product category Sm� C.

In Section 5, we will write down a kernel {LocPQ} which we will use
to define the localization functor Loc .

4 Algebra on the building

In this section we write down some standard results about the derived
category of G-equivariant cosheaves on the Bruhat-Tits building. Our
main sources are [BThes] and [Cu].

4.1 Models for sheaves and cosheaves

Definition 14. Write CoShG for the category of cosheaves on the build-
ing B which are constructible with respect to the cellular stratification and
equivariant with respect to the G-action on B. Equivalently, this is the
opposite category of the category of sheaves with values in Vectop.

Given any point x ∈ σ ⊂ B and cosheaf V ∈ CoShG, the costalk
Vx has action by the parahoric subgroup Gσ. Because the strata of the
cellular stratification are contractible, the data of these stalks together
with the specialization morphisms on costalks is sufficient to reconstruct
V. More precisely, choose a top-dimensional cell Σ ⊂ B. Note that as we
are studying sheaves which are constant on cells and the stabilizer G(σ)
coincides with the stabilizer G(x) for any x ∈ σ, we can unambiguously
write Vσ for the costalk of V at an arbitrary x ∈ σ.
Definition 15. Write PΣ for the (non-additive) category with objects
cells σ ⊂ Σ and morphisms

HomPΣ(σ, σ′) :=

{
G(σ), σ′ ⊂ σ
∅, σ′ * σ

with compositions given by embeddings of subgroups and the group struc-
ture.

This category is generated by the automorphisms G(σ) = AutPΣ(σ)
together with “specialization” morphisms ισσ′ : σ → σ′ for σ′ ⊂ σ (in
fact, it’s enough to take the two cells to be of consecutive dimension).
Then we have
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Lemma 10. There is an equivalence of categories between CoShG and the
category of left modules PΣ−Mod taking a cosheaf V to the representation
RV(σ) := Vσ, with AutPΣ(σ) action induced by equivariance and action
of ισσ′ given by cospecialization morphisms of stalks of cosheaves.

We will abuse notation and go between these two interpretations freely.
The most important category for us will be the category CoShG of equiv-
ariant cosheaves above. However, it will also be useful for us to have
similar “representation-theoretic” models for the categories CoSh (non-
equivariant cosheaves) as well as the categories ShG,Sh of equivariant
and non-equivariant sheaves on B. We define another poset category.

Definition 16. Define the category PB to be the poset of closed cells of
B, ordered by reverse containment.

Now the same arguments as above give us the following equivalences.

Lemma 11. With this definition, we have

1. The category of nonequivariant cosheaves CoShB is equivalent to the
category of representations of the category PB

2. The category of equivariant sheaves ShGB is equivalent to the category
of representations of the opposite category PΣop.

3. The category of nonequivariant sheaves ShB is equivalent to the cat-
egory of representations of PBop.

In particular, as the pairs of categories Sh,CoSh and ShG,CoShG

can be interpreted as representation categories of opposite rings, we obtain
tensor product functors⊗ : Sh×CoSh→ Vect and⊗ : ShG×CoShG →
Vect, as well as left derived versions

L
⊗.

4.2 Projective and injective objects

We will be interested in the derived category Db CoShG. It will be con-
venient for us to have a notion of derived tensor product between sheaves
and cosheaves. Namely, for a sheaf V ∈ ShB and a cosheaf V ′ ∈ CoShB,
write V⊗PBV ′ for the tensor product of V,V ′ as right and left PB-modules.
We define tensor product V⊗PΣ similarly for V ∈ ShG,V ′ ∈ CoShG, and

write V
L
⊗ V ′ for the derived functor. By standard homological-algebraic

arguments, this derived tensor product can be computed in terms of a
projective resolution of either side. We will be especially interested in the

case V = C the constant sheaf, in which case as we will see C
L
⊗PB V ′

returns the homology of the cosheaf V ′. First, we recall from [BThes] a
classification of projective objects in ShG .

Definition 17. Given a cell σ ⊂ B and a vector space V , write Fσ(V )
for the constant sheaf on the stellar neighborhood of σ.

This definition has an equivariant analogue,

Definition 18. Given a cell σ and a representation Vσ of G(σ), write
Fσ(Vσ) ∈ PΣ − Mod for the sheaf with Fσ(Vσ)σ′ = V |G(σ′) if σ′ ⊃ σ
and 0 otherwise, where for any pair of cells σ′ ⊃ σ the cospecialization

morphism Fσ(Vσ)σ
∼- Fσ(Vσ)σ′ is the identity map.
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Lemma 12 ([BThes]). The sheaves Fσ(V ) for V irreducible are a com-
plete collection of indecomposable projectives in ShG. Their dual cosheaves,
Fσ(V ) for V irreducible form a complete collection of indecomposable in-
jectives in CoShG.

Lemma 13 ([BThes]). Any sheaf V ∈ Sh has a projective resolution⊕
σ⊂Σ

FσVσ

��

←
⊕

σ⊃τ, |σ|−|τ |=1

FσVτ ← . . .←
⊕

σ⊃τ, |σ|−|τ |=n

FσVτ → 0

V

and, analogously, every sheaf V ∈ ShG has a projective resolution⊕
σ⊂Σ

FσVσ

��

←
⊕

σ⊃τ, |σ|−|τ |=1

FσVτ ← . . .←
⊕

σ⊃τ, |σ|−|τ |=n

FσVτ → 0

V

This in particular tells us that Sh and ShG have projective dimension

n. Additionally, it gives us a formula for a complex V
L
⊗ W as follows

indexed by pairs σ ⊃ τ :⊕
σ⊂Σ

Vσ ⊗Gσ Wσ

quasi-iso

��

←
⊕

|σ|−|τ |=1

Vτ ⊗G(σ)Wσ ← . . .←
⊕

|σ|−|τ |=n

HomG(σ) Vσ ⊗G(σ)Wσ

V
L
⊗W,

both in the equivariant and the non-equivariant settings. Putting in
V = CB the constant sheaf, we recover the standard complex RΓc(V) com-
puting the homology of B with coefficients inW, with respect to the bari-
centric subdivision of our cellular decomposition. Putting in V = CB/G,

the constant sheaf viewed as an object of ShG, we recover a complex
computing RΓ(V)hG, the derived G-coinvariants in the homology of W.

4.3 Constant sheaves on orbifold subsets

Here we will introduce a class of sheaves corresponding to “étale sub-
orbifolds” S/H of B/G. We will use the notations B, G for the building
and the group G, although the same analysis will apply to an arbitrary
polyhedrally stratified locally finite CW complex B with smooth action by
a totally disconnected topological group G with compact open stabilizers.
Suppose that S ⊂ B is a (closed, cellular) subset and H ⊂ G a closed
subgroup fixing S. Then we define the G-equivariant topological space
G ×H S = G×S

H
, where H acts diagonally. We define the “action map”

β : G×U S→ B via (g, x) 7→ gx, and define

CS/H := β!(CG×U S),
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the “constant cosheaf on the orbifold S/H”, to be the !-pushforward of
the constant cosheaf on G ×U S via β. This is the sheaf whose stalk
over a point x ⊂ B is the vector space of compactly supported functions
on G/G(x) ∩ U. (Here G(x) is the stabilizer of x in G, equivalently the
stabilizer of a small symmetric open neighborhood of x). We have the
following important observation.

Proposition 14. RΓc(CS/U ) ∼= HG ×HH RΓc(S).

This follows from the fact that RΓc(V) := Rpt!(V), for pt : B→ ∗ the
map to a point, hence

RΓ!(Rβ!(CS×HG)) ∼= Rpt!(C(S×H G)) ∼= C∗(S×H G).

(Here we write C∗ to denote the complex of chains.) The terminology of
constant cosheaf is motivated by the fact that CS/H ∈ CoShG corepre-
sents the functor of invariants in cochains,

rHom(CS/H ,V) ∼= C∗(S,V)hH

for arbitrary V ∈ CoSh . In particular, if we have S1 ⊂ S2 and H1 ⊂
H2, then we have a canonical map ι : C!

S1/H1
→ C!

S2/H2
corresponding

to the constant section on S1 of the constant sheaf on S2. In fact, this
construction can be extended. Let G(S1,S2) ⊂ G be the collection of all
γ ∈ G with γ(S1) ⊂ S2.

Definition 19. Given two subsets S1, S2 ⊂ B invariant with respect to
H1, H2 ⊂ G, respectively, define the “geometric Hom”

Homgeom(S1/H1, S2/H2) := (H2\G(S1,S2))
H1

to be the set of right H1-invariant points in the quotient H2\GS1/H1,S2/H2

(with evident right H1-action).

Then the space C∞cpt Homgeom(S1/H1, S2/H2) of compactly supported lo-
cally constant functions on Homgeom(S1/H1, S2/H2) (viewed as a com-
plex concentrated in degree 0) maps to HomCoShG(CS1/H1

,CS2/H2
) ∼=

H0 rHomDbCoShG(CS1/H1
,CS2/H2

).Note that Homgeom(S1/H1, S2/H2) de-
fines a category structure on pairs S/H (with H ⊂ G acting on S ⊂ B),
and the map

C∞cpt Homgeom(S1/H1, S2/H2)→ HomCoShG(CS1/H1
,CS1/H2

)

is compatible with this category structure.

5 Definition of the localization functor

5.1 Corridors

There is a tradition of making papers on Bruhat-Tits theory read like
manuals on real estate. Buildings contain apartments that consist of al-
coves. There is however a problem with buildings that until now has not
been resolved: there is no a priori way of getting from one apartment to
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another. Here we will finally propose a solution for the long-suffering ten-
ants. We will introduce a notion of corridors, parametrized by standard
parabolic subgroups Q, each of which connects together all apartments
along a Weyl chamber corresponding to Q.

Fix a basepoint of the building, x0 ∈ B, fixed by a maximal compact
K ⊂ G. Write πB : B → A for the projection to the quotient A ∼=
B/UB. For a standard parabolic Q ⊇ B, write Λ⊥Q for the kernel of the
composition Λ ⊂ T → Q → L → X∗(L/[L,L]). Then Λ⊥Q ⊗ R acts on
A. Write AQ := A/Λ⊥Q ⊗ R and πQ : B → AQ for the evident composed
projection. Write A−Q ⊂ AQ for the cone of all points strictly smaller than
πQ(x0) in the usual poset structure on the coweight lattice of G.

Definition 20. The standard corridor of type Q is the preimage DQ :=
π−1
Q (A−Q) ⊂ B.

Example. Let G = SL2(Q2). Then

• DG is the whole building B.
• DB is the contractible graph that looks like this.

Figure 2: DB for SL2

From the “hyperbolic” point of view, corridors should be thought of
as cylinders in the parabolic geometry, tangent to the boundary (in the
polyhedral compactification, see [La] or section 6.1) at a parabolic sub-
space (which will always be a building for a Levi subgroup). For example,
DB in the example above is a disk that meets the boundary at a point:

Figure 3: Hyperbolic corridor

In particular, we have the following theorem about the geometry of
corridors.

Theorem 15.

1. DP is convex and contractible.

2. The normalizer of the standard corridor DP is L0UP .
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3. For two corridors DP ,DQ and γ ∈ G we have γDP ⊂ DQ if and only
if P ⊂ Q and γ ∈ Q+.

4. Suppose γ ∈ LP+
Q such that it is not in any LP

′+
Q for P ′ ( P . Then

the union ∪n≥0γ
−nDQ ∼= DP .

We will not give a proof of these relatively straightforward results here.

5.2 The localization kernel

Note that each DQ (being a preimage of a subset of B/UB) is invariant
with respect to the unitary group UB, hence also invariant with respect
to all UP (which are contained in UB). Now our localization kernel Loc
will be constructed out of the equivariant cosheaves

LocPQ := CDQ/UP

in the terminology of section 4.3.
Namely, observe that for two arbitrary parabolics Q,Q′, Theorem 15

implies that the set of elements sending DQ to DQ′ is

G(DQ,DQ′ ) =

{
L+
Q′UQ′ , Q ⊆ Q

′

∅ , Q * Q′.

This means that

Homgeom(DQ/UP ,DQ′/UP′) = (UP′\L+
Q′UQ′)

UP =
(

(UP′ ∩ LQ′)\L
UQ
Q′

)L′Q∩UP
,

so long as P ′ ⊂ P ⊂ Q ⊂ Q′. If P = Q = P ′ = Q′, then we
have LQ+

P UP ⊂ L+
QUQ, which is bi-invariant with respect to UP , and so

LQ+
P ⊂ Homgeom(DQ/UP ,DQ′/UP′). This gives us the desired LP -action.

Further, we have tautologically for P ⊂ Q that LocP′Q ∼= (LocPQ)UP′
.

The identity class 1·UP′ ⊂ L+
Q′UQ′ is right UP -invariant (since UP′ ⊃ UP),

hence gives a class ιP
′Q′
PQ ∈ Homgeom(DP/Q,DP′/Q′), inducing a map

ιP
′Q′
PQ : (LocPQ)UP′

→ LocPQ, which is visibly LQ+
P -equivariant. In order

to check that the LocPQ indeed define a kernel, we need to check that
the map LocPQ⊗LQ+

P
LQ
′+
P → LocPQ′ adjoint to ιPQ

′

PQ is an isomorphism.

This follows from part 4 of Theorem 15. Having checked conditions of
Lemma 9, we get a functor Loc : Sm→ CoShG defined as follows.

Definition 21. Define

Loc(V ) := holimPQ LocPQ⊗HPQVPQ = holimPQ CDP/UQ⊗HPQVPQ ∈ D
b CoShG .

We introduce also some notation for the “affine components” of Loc,
namely

Definition 22. We define the functor LocPQ : SmPQ → CoShG by

LocPQ : VPQ 7→ VPQ ⊗HPQ CDQ/UP

for VPQ a reprsentation of HPQ.
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Recall here that CDQ/UP is defined as the !-pushforward of the constant
sheaf on DQ×UP G under the action map β : G×UP DQ → B. This means
that we can describe the stalks of DQ/UP alternatively via the following
definition.

Definition 23. Define

Hσ
PQ :=

{γ ∈ G | γ · DQ ⊃ σ}
UP

⊂ UP�G.

This is an open subset of G/UP left invariant with respect to G(σ) and
right invariant with respect to L+Q

P ⊂ Homgeom(DQ/UP ,DQ/UP).

Proposition 16. We can then have

LocσPQ := C∞c (Hσ
PQ).

Definition 24. Define (abusing notation somewhat) Locσ for the G(σ)-

equivariant object of the right compactified category (Sm
R

)G(σ) to be the
object with affine components LocσPQ, and evident componentwise G(σ)-
action.

From our definition of kernels, we now have:

Proposition 17. With this notation, have stalks Loc(V )σ ∼= Locσ
L
⊗ V .

Having defined the functor, we begin verifying its properties.

Lemma 18. For any sheaf V ∈ Sm, we have canonically RΓc Loc(V ) ∼=
V .

Proof.

Proposition 19. RΓc LocPQ VPQ ∼= VPQ ⊗LQ+
P
HLP ⊗LP C

∞
c (UP\G).

Proof. It suffices to check this in the universal case, with VPQ = HPQ, in
which case it follows from Proposition 14 and the contractibility of DQ,
(Theorem 15, part 1).

Note that this proposition in particular implies that, given an object
V of the compactified category, RΓc(LocPQ(V )) ∼= RΓc(LocPQ′(V )) for
any Q′ ⊃ Q (as VPQ ⊗LQ+

P
HLP is independent of Q). Now since all our

functors are dg functors and commute with finite homotopy limits, we can
compute RΓc(Loc(V )) as the limit of RΓc(LocPQ(VPQ)), giving

RΓc
(
Loc(V )

) ∼= holimP,Q VPQ ⊗LQ+
P

C∞c (G/UP).

Thus decomposing the partially ordered set N of pairs (P,Q) into sub-
categories (P,−) ⊂ N , we are taking the homotopy limit along a diagram
which is constant along each (P,−). Since each of these categories has a
terminal object: namely, (P, G), the nerve of the corresponding subcate-
gories is contractible, and the limit computation can be simplified to

holimP V(P,G) ⊗LP C
∞
c (G/UP).

But the subcategory (P, G) ⊂ N , in turn, has a terminal object, namely,
(G,G) leaving us with RΓc(Loc(V )) ∼= V(G,G) ⊗H H ∼= V .

25



Remark 2. For SL2, the category N has three objects, and looks like
this:

(B,B) � (B, G) � (G,G),

and the colimit computation above then identifies the homotopy limit of
the fibered product diagram

V

VB ⊗T C∞c (G/UB)
∼- VB ⊗T C∞c (G/UB)

?

with V (note that the colimit of any diagram of the form A
∼→ A ← B is

B).

This concludes the proof.

The next lemma establishes that Loc(V ) almost has finite-dimensional
stalks when V ∈ Smfg. In the next chapter, we will see how to get rid of
the “almost”.

Lemma 20. So long as V is locally finitely generated, Loc(V ) has stalks
that have finite-dimensional invariants with respect to open compact sub-
groups.

Proof. Since G(σ) is compact, taking invariants with respect to an open
subgroup is an exact functor, and hence for J ⊂ G(σ), we have J Loc(V ) ∼=
V ⊗J(Locσ). Now it is sufficient to show (see Section 3.3.2) that J(Locσ) is
locally finitely-generated. In order to see this, we observe that JLocσPQ ∼=
C∞c (J\HPQ) is the space of compactly supported functions on the sub-
set J\HPQ of the discrete double quotient J\G/UP . Now in the special
case J = G(σ), the double quotient J\HPQ ⊂ G(σ)\G/U can be iden-
tified with the collection of cells of σ′ ⊂ A of the apartment which are
W̃ -conjugate to σ and satisfy σ � x0 (in the partial order induced by po-
larization on A = B/UB). Hence it is generated over Λ+

Q by finitely many
classes (corresponding to the minimal cells in each Λ-conjugacy class of

W̃ · σ). Let these generators be {xi} ∈ G(σ)\G/U . Then their finitely
many preimages in J\G/U will give a generating set for J(Locσ). This
gives us finite generation of (LocσPQ)J , and completes our proof.

6 The truncated localization functor

Fix an integer e ≥ 1, which we will assume to be chosen larger than the
depth of our compactified representation V . The paper [SS] defines a

conjugation invariant system of open normal subgroups G
(e)
σ /Gσ indexed

by cells σ ⊂ B, with the property that G
(e)
τ ⊂ G(e)

σ for τ ⊂ σ. This allows
us to define a “truncation” functor I(e) : CoSh(e) → CoSh(e) defined as
follows:
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Definition 25. For V ∈ CoShG define I(e)V ∈ CoSh(e) to be the cosheaf
whose stalks are invariants,

(I(e)V)σ := (Vσ)G
(e)
σ

with respect to the (“Schneider-Stuhler”) system of subgroups above.

Definition 26. Define Loc(e) to be the composition I(e) ◦Loc : Sm→ Sh.

By Lemma 20, the functors Loc(e) have finite-dimensional cohomology
of stalks. This section will be devoted to proving the following theorem.

Theorem 21. Suppose that V ∈ Sm has depth ≤ e. Then the compactly
supported global sections, RΓc(Loc(V)(e))

In fact, we will prove a stronger result.

Definition 27. Define Loc
(e)
PQ := I(e) LocPQ : Sm→ CoSh .

Then we have

Theorem 22. Suppose VPQ ∈ SmPQ has depth ≤ e. Then the compactly
supported global sections,

RΓc
(

Loc
(e)
PQ(VPQ)

)
∼= RΓc (LocPQ(VPQ)) .

6.1 Building combinatorics

We will give here some reminders about the theory of buildings and the
polyhedral compactification of [La]. This subsection and the next will
be inspired by constructions and notation in the paper [MS]. We will
take a combinatorial point of view based on the Weyl partial order on
the coweight lattice. Namely, for an algebraic group G, write T for its
torus, with lattice of characters (the weight lattice) X∗(T) and lattice
of coweights X∗(T). We will choose a uniformizer $ ∈ Gm(K), and
write Λ ⊂ T for the lattice Λ ∼= X∗(T) of coweights embedded in the
K-point group T := T(K) via multipowers of the uniformizer. Write
ΛR := Λ⊗ R and choose a polarization on G. Let x1, . . . , xn ∈ Λ∨ be the
collection of simple roots. Let Λ+ ⊂ Λ be the sublattice of all element
which pair positively with the xi. This is naturally identified (via the
metric) with a Weyl chamber. We define a partial order on Λ with α � β
if β − α ∈ Λ+

R . Now to any torus T ⊂ G there corresponds an apartment
AT ⊂ G. If we choose a containment T ⊂ B in a Borel (equivalently,
a polarization), then we get a partial order on A with a � b when we
have a containment of stabilizers U(a) ⊃ U(b) in the unipotent radical
U ⊂ B. This partial order satisfies $λa ≥ a if and only if λ ∈ Λ+ (where
the parametrized embedding Λ ⊂ T is determined by the polarization as
above). In particular, if we choose in addition a x ∈ A, we get a canonical
identification A ∼= ΛR compatible with partial order.

We will use the shorthand notation polarized apartment to denote an
apartment with choice of partial order corresponding to a pair T ⊂ B as
above.
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Definition 28 (Meyer and Solleveld). The convex hull of two cells σ, τ ⊂
B, denoted σ, τ , is the intersection of all apartments containing both σ and
τ. More generally, the convex hull of a subset Γ ⊂ B is the union of all
convex hulls of pairs of points of Γ. This notion generalizes in an obvious
way to a subset Γ ⊂ B
Remark 3. The idea behind this terminology is to replace the notion of
a geodesic line segment, which is the collection of points on a shortest
path between a, b, by a “partially ordered geodesic line segment”, which is
the collection of points x in a parametrized apartment between a, b ∈ B
which satisfy a � x � b in the Weyl partial order corresponding to the
parametrization.

Definition 29. Given a point x ∈ A in a polarized apartment, we say
that a subset R ⊂ A with the data of a partial order is a geodesic ray out
of x in the given polarization if R is cofinal with minimal point x in the
partial order, i.e. if any y ∈ R satisfies y � x and for any pair y, y′ ∈ R,
there is z ∈ R with z � y, z � y′.
Remark 4. We are not using the usual notion of metric on the Bruhat-
Tits building, and a geodesic ray is in general not one-dimensional.

For an arbitrary pair of points x, y, there is then a unique geodesic
ray −→x, y with minimal point x and maximal point y. If σ, σ′ are a pair of
closed simplices, then there is a unique vertex x ∈ σ, y ∈ σ′ such that −→x, y
contains both σ and σ′. We define

−−→
σ, σ′ to be this subset (with induced

partial order).

Remark 5. The notion of a geodesic ray allows us to define the polyhedral
compactification of B (see [La]) as follows. Define B to be the quotient of
the collection of closed geodesic rays R ⊂ B by the equivalence relation that
R ∼ R′ if R∩R′ is cofinal in both R and R′. In particular, the convex hulls
x, y and x′, y (with partial order such that y is maximal) are equivalent as
their intersection contains y. This gives the embedding B ⊂ B.

6.2 Consistent systems of idempotents

Definition 30 (Meyer and Solleveld). Let V be a vector space with action
of G. We say that a system of idempotents Eσ ∈ EndC V indexed by cells
of the building is consistent if it satisfies the following three properties.

(a) (local commutativity) Eσ, Eτ commute if σ, τ are in the closure of
the same face

(b) (local multiplicativity) The idempotent corresponding to a cell is the
product of those corresponding to its vertices, i.e. Eσ =

∏
x∈σ0 Ex.

(c) (convexity) For any triple of cells τ, σ, σ′ with τ ⊂ σ and σ in the
convex hull of τ, σ′, we have the identity EσEσ′ = EτEσ′ .

Lemma 23 (Meyer and Solleveld). For any depth e ≥ 1, the idempotents

E
(e)
σ := δG

(e)
σ form a consistent system of idempotents.

We mention that in the proof of [MS], property b above is reduced to
the following group identity, which will be useful to us as well:

Proposition 24 (Meyer and Solleveld). G
(e)
τ ·G(e)

τ ′ ⊃ G
(e)
σ .
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Given a system E = {Eσ} of consistent idempotents, write VE for the
coefficient system with the vector space V Eσ over cell σ. Note that this is
admits a map to the constant coefficient system V .

Lemma 25 (Meyer and Solleveld). For any consistent system of idempo-
tents {Eσ} and any closed convex subset Γ ⊂ B, the derived global sections
RΓ(V E) are quasiisomorphic to the vector space

∑
V Eσ ⊂ V concentrated

in degree 0. This identification is consistent with the embedding of coeffi-
cient systems RΓ(V E) ⊂ RΓ(V ) = V [0].

Choose a parabolic P ⊃ B. Now let VP = iP rPHLP = C∞c (G/UP ).
We have two algebras acting on VP . First, HG acts via the usual repre-
sentation structure. Secondly, the commutative algebra

R := C∞(G/U)

of all locally constant functions acts on compactly supported functions
by multiplication. The two actions combine into an action of the crossed
product algebra

AP := R#G.

Now choose another parabolic Q ⊃ P . Observe that the subsets H+σ
PQ

giving local action of the localization functor correspond to idempotent
functions δPQ+

σ on R, and that these are preserved by the subgroups Gσ,
hence commute with the idempotents E

(e)
σ = δ(G

(e)
σ ) (hence their products

are idempotent). To unburden notation, write

δσ := δPQ+
σ ,

Eσ := E(e)
σ and

Φσ := δσEσ.
The idempotents Φσ act on the space VP ∼= iPHLP of compactly sup-

ported functions, and have image Loc
σ(e)
PQ (HPQ) (compactly supported,

G
(e)
σ -equivariant functions on HPQ

σ ⊂ G/UP ). Up to a universality argu-
ment, it suffices for us to prove the following.

Proposition 26. The idempotents E
σ(e)
PQ form a consistent system of

idempotents.

Proof. It will be convenient for us to give a formula for products of
functions of the form δσ. Namely, given an element γ ∈ G/UP , write
DQγ := γ · DQ0 for the corresponding corridor (of type Q). Recall that the
space HPQ

σ is the collection of all γ ∈ G/U such that σ ⊂ DQγ . Because
corridors are convex and closed, we can multiply idempotents of the form
δσ in the following way. Suppose that σ1, . . . , σk are a collection of cells
(of arbitrary dimension). Write Σ for the convex hull of the closed cells
σi. Write H+

Σ = {γ ∈ G/U | DQγ ⊃ Σ}. By convexity of corridors, we have

HPQ
Σ in this case is the intersection of all HPQ

σi ⊂ G/UP . Write δΣ for
the corresponding characteristic function. We deduce that we have the
following formula.
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Lemma 27. We have
k∏
i=1

δσi = δΣ

with Σ the convex hull of the closed cells σi as above.

In order to prove proposition 26, we need to check the three properties
of Definition 30 for the Φσ. By Meyer and Solleveld’s Lemma 23, we
have consistency of the Eσ and the lemma 27 applied to the vertices of a
single cell cell gives us the local multiplicativity property for the system of
idempotents δσ. The other two properties are obvious from commutativity
of the δσ, giving us consistency of the system {δσ} as well. Note that
this is not yet good enough to give us the desired consistency of the
{Φσ} = {Eσδσ} as Eσ may not commute with δσ′ for σ, σ′ far apart.

First, we observe that local commutativity and multiplicativity follows
from the corresponding properties of the systems {Eσ}, {δσ} by checking
that idempotents of the two systems mutually commute at nearby vertices.

Claim. the idempotents Eτ , Eτ ′ , δτ and δτ ′ pairwise commute for τ, τ ′ both
in the closure of a cell σ.

The only pairs for which we still need to check this are (Eτ ′ , δτ ) and

(Eτ , δτ ′). Now we have by construction that G
(e)

τ ′ ⊂ G
(e)
σ ⊂ Gτ (see [SS],

I.2, where these groups are called U
(e)
F ). Since Gτ normalizes HPQ

τ , the
idempotents Eτ ′ and δτ commute and we are done WLOG.

It remains for us to check convexity. Note that, fixing a Haar measure,
the twisted product A = R#G can be identified with locally constant
functions on G/U ×G which are supported over a bounded subset of G.
Product is computed via the multiplication kernel

x#γd(G/U)dG · x′#γ′d(G/U)dG := δx,γx′ · x#γγ′d(G/U)dG.

Suppose we have a triple τ ⊂ σ, and τ ′ such that σ ⊂ ττ ′ is in the
convex hull (of the open cells). Write Σ := τ , τ ′ for the convex hull of the
closures of the cells, which coincides with στ ′. We compute

ΦτΦτ ′ =

∫
γ∈G(e)

τ ,η∈G/U|Dη3τ

dγdη

|G(e)
τ |

η#γ ·
∫
γ′∈G(e)

τ′ ,η
′∈G/U|Dη′3τ ′

dγ′dη′

|G(e)

τ ′ |
η′#γ′

(1)

=

∫
γ∈G(e)

τ ,Dη3τ,γ′∈G
(e)

τ′ ,Dη3τ
′

dγdηdγ′dη′

|G(e)
τ | · |G(e)

τ ′ |
δ(η, (η′)γ)#γγ′ (2)

Where we are using the notation δ(η, η′) for the delta measure on the
diagonal η = (η′)γ . Now note that for γ ∈ Gτ , the conditions Dη 3
τ,Dη′ 3 τ ′ and η = (η′)γ together are equivalent to Dη 3 τ,Dη 3 γτ ′ and

η′ = ηγ
−1

, which can further be reduced to Dη ⊃ γΣ (as τ = γτ). This
lets us rewrite

ΦτΦτ ′ =

∫
γ∈G(e)

τ ,γ′∈G(e)

τ′ ,η∈G/U,Dη⊃γΣ

dγdγ′dη

|G(e)
τ | · |G(e)

τ ′ |
η#γγ′ (3)
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Now note that multiplying γ in the above expression on the right by any
element γ0 ∈ G that fixes Σ and is contained in the product G

(e)
τ G

(e)

τ ′ will

not change the result. In particular, this is true for any γ0 ∈ G(e)
σ ∩ GΣ.

Write G0 := G
(e)
σ ∩GΣ and averaging over γ0 ∈ G0 as above, we can safely

introduce a new variable γ0 in the integral above:

ΦτΦτ ′ =

∫
γ∈G(e)

τ ,γ0∈G0,γ′∈G
(e)

τ′ ,η∈G/U,Dη⊃(γ)Σ

dγdγ0dγ
′dη

|G(e)
τ | · |G0| · |G(e)

τ ′ |
η#γγ0γ

′.

(4)

Now we observe that G
(e)
τ · G0 = G

(e)
σ , as we know from Proposition 24

that G
(e)
τ · G(e)

τ ′ ⊃ G
(e)
σ , so it follows that G

(e)
τ ·

(
G

(e)

τ ′ ∩G
(e)
σ

)
= G

(e)
σ .

Using this identity (and some obvious homogeneity considerations), the
expression above can be rewritten as

ΦτΦτ ′ =

∫
γ∈G(e)

σ ,γ′∈Gτ′ ,η∈G/U,Dη

dγdγ′dη

|Gσ| · |Gτ ′ |
η#γγ′ (5)

which, by the arguments above, =ΦσΦτ ′ . (6)

This concludes the proof that the Φσ are coherent.

From this we deduce by Lemma 25 that the derived global sections
of the cosheaf σ 7→ Φσ · C∞c (G/U) = Loc

(e)
PQ(HPQ) have no higher coho-

mology, and in degree zero give the subspace of C∞c (G/U) spanned by
all ΦσC

∞
c (G/U), which evidently are equivalent to the depth-e compo-

nent of C∞c (G/U) (see this by moving σ towards the boundary in the
direction of the polarization on A). Thus the natural transformation

Loc
(e)
PQ(HPQ) → (LocPQ(HPQ))(e) is an equivalence on global sections.

As both functors, as well as RΓc are derived exact and commute with all
colimits, and since HPQ has right action by HPQ that commutes with the
left module structure, this implies that for any module VPQ over HPQ of
depth ≤ e, we have

Γc Loc
(e)
PQ VPQ

∼= Γc Loc
(e)
PQ(HPQ ⊗HPQ (VPQ))

∼= (Γc LocPQ(HPQ))(e) ⊗HPQ (VPQ) ∼= Γc LocPQ(V ),

where for a representation V ∈ Sm(G), we define V (e) to be its depth-≤ e
component. From this we deduce that RΓc

(
Loc(e)(V )

)
∼= RΓc Loc(V),

which by Lemma 18 is just V .
With Theorem 21 in hand, our main result, Theorem 2 easily fol-

lows. Namely, given an arbitrary V ∈ Sm of depth ≤ e, write [V ] ∈
K0(Smfg) a preimage of the class [V ] ∈ Smfg(G), which exists by Corol-

lary 7. Write Loc
(e)
σ for the fiber over σ of Loc(e) . As these are dg

functors, they define maps on K-theory [Loc
(e)
σ ]. Now from the iden-

tity V ∼= RΓc Loc(V ) ∼= RΓc Loc(V ) (and using Lemma 20) we deduce
[V ] = [Ind]

∑
σ∈Σ(−1)|σ|[Locσ]([V ]).
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