GENERALIZED K-THEORETIC INVARIANTS AND WALL-CROSSING

VIA NON-ABELIAN LOCALIZATION

IVAN KARPOV AND MIGUEL MOREIRA

ABSTRACT. Given an abelian category and a stability condition satisfying appropriate
conditions, we define generalized K-theoretic invariants and prove that they satisty wall-
crossing formulas. For this, we introduce a new associative algebra structure on the K-
homology of the stack of objects of an abelian category, which we call the K-Hall algebra.
We first define d-invariants directly coming from the stack of semistable objects and use
the K-Hall algebra to take a formal logarithm and construct e-invariants. We prove
that these satisfy appropriate wall-crossing formulas using the non-abelian localization
theorem. Based on work of Joyce in the cohomological setting, Liu had previously defined
similar invariants assuming the existence of a framing functor; we show that when their
definition of invariants makes sense it agrees with ours. Our results extend Joyce—Liu
wall-crossing to non-standard hearts of D®(X), for which framing functors are not known

to exist.
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A sizable portion of enumerative geometry concerns understanding invariants arising

from moduli spaces of objects in certain abelian categories A, such as the abelian category
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2 I. KARPOV AND M. MOREIRA

of sheaves on a smooth projective variety X, of representations of a quiver @, or of
objects in non-standard hearts of D°(X). To form good moduli spaces we require a
stability condition p and look at the moduli space (or moduli stack) MH# of p-semistable
objects on A of topological type o € C'(A) — topological type can mean, for example,
the Chern character of a sheaf, or the dimension vector of a representation of a quiver.
The prototypical example of a stability condition is the slope u(E) = deg(E)/rk(E) of a
vector bundle E on a curve. There are many different invariants we may attach to the

moduli space MF, such as:

(1) Motivic invariants, for example the Euler characteristic e(M¥#) or the virtual
Poincaré polynomial.

(2) Cohomological invariants, i.e. (virtual) intersection numbers of tautological classes

D:
J DeQ.
[Mg]vir

(3) K-theoretic invariants, i.e. (virtual) Euler characteristic of tautological K-theory

classes V:

X(My, 0" ®@V)eQ.

In either case, a fundamental problem is to understand how the invariants depend on
the choice of stability condition p. A closely related question is to define such invariants

in cases where there are strictly semistable objects.

In the motivic setting, a very successful theory of wall-crossing has been around for
20 years, developed by Joyce [Joy2, Joy3, Joy4, Joy6|, Joyce—Song [JS]| and Kontsevich—
Soibelman [KS]. It plays a key role, for example, in the proof of the DT/PT correspon-
dence [Tod2, Bril], the PT rationality conjecture [Tod3], and in many other applications.

A more recent development is a proposal of a wall-crossing theory for cohomological
invariants [Joyl, Joy7, GJT]. Liu adapted the ideas from the cohomological setting to
the K-theory setting in [Liu]. The cohomological and K-theoretic settings share some
similarities with the motivic one, most notably the existence of a Lie algebra that is
used to write down the wall-crossing formulas; indeed, the wall-crossing formulas in all 3
contexts look exactly the same, but in 3 different Lie algebras.

However, there are also many differences. In the motivic wall-crossing setting, the in-
variants in the presence of strictly semistable objects can be defined from the stacks of
semistable objects, which have well-defined virtual Poincaré polynomials, for example.
On the other hand, there is no reasonable way to take intersection numbers on a stack,
so Joyce’s approach in the cohomological case is quite different. He instead uses the addi-
tional data of a framing functor to construct auxiliary moduli spaces of pairs — which do
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not have strictly semistable objects —, and uses those to define “generalized cohomological

invariants”.

There are natural framing functors for sheaves or for representations of quivers. How-
ever, if we are interested in counting (weak) Bridgeland stable objects — which is necessary
in some applications, such as the PT rationality [Tod3, Bril] or the rank r from rank 0/1
theorem [FT2, FT1] — it is unclear how to construct framing functors, and even if one
should expect them to exist. For this reason, wall-crossing formulas in such contexts were
so far only conjectural.

In this paper, we develop a completely new approach to Joyce-Liu style generalized K-
theoretic invariants and wall-crossing formulas. Our approach does not require a framing
functor, and therefore we are able to prove wall-crossing formulas in greater generality,
including for example (weak) Bridgeland stability conditions. What we do is much closer
in spirit to the motivic approach, where invariants are extracted directly from Artin stacks
of semistable objects.

We expect that this increase in scope will have interesting applications soon. Our proof
is also shorter and, arguably, conceptually cleaner — although it requires some machinery,
most notably the virtual non-abelian localization theorem of Halpern-Leistner [HL1] — so
we hope this will make the theory more accessible and easier to extend to new contexts.

1.1. Summary of results. Throughout, A will be an abelian category, p a stability
condition and « a topological type of objects in .A. We will consider the (derived) stack
M = M4 of all objects in A and the (open) substack M? < M of u-semistable objects
in class a. We dedicate Section 2 to explaining the technical assumptions we make on
this data. In particular, we will require that 90t% is finite type, quasi-smooth, and has
a proper good moduli space in the sense of [Alp]. Often, we will rigidify these stacks
to 90" ME which means removing the copy of G,, from the automorphisms of each
object. When p-semistable objects in class o are automatically p-stable, the rigidification

IMATE s a proper good moduli space.

1.1.1. d-invariants. A feature of K-theory which plays an essential role in this paper is
that we can take Euler characteristics of perfect complexes on stacks with appropriate
assumptions. In particular,
X(OMETE V) 1= " (—1)" dim H" (ML, V) € Z
neZL

is well-defined for any perfect complex V', meaning that the cohomology groups are finite
dimensional and only finitely many are non-trivial. Note that the stacks considered have
derived structures, so this is really a virtual Euler characteristic. Thus, the stack 9%
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defines a functional

Ok K*(OM'8) — K*(MLre) 5 Z,
where K*(—) denotes K-theory of perfect complexes and the first map is restriction
along the open inclusion 9%"e < OMe. For technical reasons, it is important that this
functional can be upgraded to an element of K-homology 6" € K, (9M"8), see Definition
3.9 and Theorem 3.12. The necessary material on K-theory and K-homology is covered

in Section 3.

1.1.2. K-Hall algebra and e-invariants. While the d-invariants carry information concern-
ing K-theoretic invariants of the stack of semistables, they are not the “correct” ones. For
example, they do not agree with the ones defined in [Liu]. Indeed, it turns out that our
d-invariants do not even live in the version of K-homology that Liu uses (cf. Definition
7.8, Example 4.14). A similar phenomena happens in the motivic setting, and we use the
same solution: define e-invariants from J-invariants by taking a “logarithm”. We survey
the motivic setting, and the no-pole theorem, in Section 1.2, which served as inspiration

for our approach.

It turns out that we can define a product on K, (99"), which should be regarded as
the analog of the multiplication in the motivic Hall algebra.

Theorem A (=Theorem 4.6). Definition 4.2 makes
K(A) = K*(fmig)@

an associative algebra.

We use this product structure to take a formal logarithm and define

gg:=2$ DI [T I

k=1 al+..fag=a
ploi)=p(c)

This sum is finite by our assumptions on the stability condition. The relation can be
inverted to express d-invariants in terms of e-invariants:

55:2% Moo ek

k=1 ai+..tap=«a
plos)=p(a)

1.1.3. Wall-crossing formula. The ¢ and ¢ invariants satisfy wall-crossing formulas that
can be expressed in terms of the associative algebra structure on K(A). These wall-
crossing formulas are obtained as a consequence of a general theorem by Halpern-Leistner,
which expresses Euler characteristics of perfect complexes in terms of the centers of a ©-
stratification — a notion that generalizes Harder-Narasimhan (HN) stratifications.
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Every object E of A admits a canonical p-HN filtration
O=Fkc ki <c...oFE,=F

such that the slopes of the successive quotients are increasing. When the stack 91, without
any stability, is itself finite type and quasi-smooth, the wall-crossing formula can be
expressed as the statement that the element

Z w0l

a=a1+...+an
plar)>...>pu(an)

in K(A) does not depend on the stability condition u, and indeed it is equal to the d-
invariant defined with the trivial stability condition. This is the case only in very simple
examples, such as representations of quivers.

In general, we use the pu-HN stratification of the stack 91#° to prove a wall-crossing
formula between p and g, where g is a stability condition on a wall and p is in a
chamber adjacent to pu.

Example 1.1. Let o be a topological type and o be on a simple wall determined by a
partition o = ay + aw, and p_, uy be stability conditions on the two adjacent chambers,
so that

polar) = po(az),  p—(on) > p(az), py(ar) < pifoz).
A pg-semistable object E has two possible types of u_-HN filtrations: either E is p_-

semistable itself, or it is an extension of the form
0—>FE - FE—FE,—0

where E), B, are semistable! and have topological types aq, as, respectively. Thus, the
stack 9L admits a O-stratification of the form

MG =M™ 1 Gaya
where &, 4, is the stack of extensions as above. Non-abelian localization then says that

XML F) = x (ML=, ) + x(Mh. x ML~ F @ Egy o)

)

for any perfect complex F' on 9, where for ease of notation we omit all the restrictions of
F. The complex E,, o, is, roughly speaking, the inverse Euler class of the normal bundle
to the direct sum map M,, x M,, — M,.

t is part of the “simple wall” assumption that 1, fh—, 4 stabilities are equivalent for objects in class
a1, a2, and moreover there are no strictly semistables in those classes. Hence

Ho — ~H— — M+ — SHO — SH— — SH+
eht =¢eh- =ehr =00 = 0L =Lt
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The product on K(.A) is cooked up so that this formula can be expressed as
ORC = 0L~ + 0L % 0% .

This is an instance of the dominant wall-crossing formula (Theorem 5.14). Similarly, we
have

Ho _ SH+ Bty SH+
GHO = §H* 4 G w O

If we convert from d-invariants to e-invariants using

1 1
Bt — Pt Mo — MO _ Mo Ho _ oMo 1o
b+t =eht and O =¢eh’ + 5% * €ay + 5%as * €a)

we obtain the identities

1 1
e TR TE [T R N VSR
€a +§[6a175a2] =&y T &y 2[€a17€a2] )

where [@, 1] = ¢ =10 — 1) * ¢ is the commutator in K(A). It is a general feature that wall-

crossing formulas between e-invariants can be written using exclusively commutators.

Theorem B (=Theorem 5.15). If u, 1/ can be connected by a continuous path crossing
finitely many walls then we have the wall-crossing formulas

i Z S(an, ... an;p, ') - Ok ..o Ok
aj+..to=a
Eg/ = Z U(alw"van;,u?ﬂ/)'[[“'[651’552]7""]76571]

aj+..to=a
in K(A), where S(—), U(—) € Q are explicit combinatorial coefficients (cf. [Joy6, Section

4)).

A particular setting where our theorem establishes a wall-crossing formula that was not

previously proven is that of tilt stability:

Corollary 1.2. If X is a surface with nef anticanonical or a Fano 3-fold satisfying the
BMT inequality then we have generalized K-theoretic invariants of the moduli of tilt
semistable objects and these satisfy the wall-crossing formulas in Theorem B.

We refer to Sections 2.3 and 5.6 for details on this application.

1.1.4. Comparison with Joyce—Liu invariants. Sections 6, 7 and 8 are dedicated to com-
paring our construction with the one by Liu [Liu] and Joyce [Joy7]. When the moduli
stack 94 contains strictly semistable objects, they define invariants using the auxiliary
data of a framing functor @ (cf. Definition 6.1). A framing functor can be used to con-
struct a moduli space of Joyce-Song pairs PJ¥, which no longer contains strictly semistable
objects. The main result of Section 6 expresses the relation between invariants defined
with Joyce-Song pairs and our e-invariants:
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Theorem C (=Theorem 6.6). Let ® be a framing functor and P*’5 the corresponding
moduli of Joyce—Song pairs. We have

) -1 n—1
L) A ) = S E [ et ]
al+...ftan=a :
m(ag)=p(a)

This identity is taken as the definition of K-theoretic invariants in [Liu], following
Joyce’s cohomological version, except for the fact that Liu uses a different Lie algebra,
denoted in this paper by Iv(ffg(i)ﬁ)Q — his Lie algebra is induced by the structure of a
multiplicative vertex algebra on K™ (9)g. To establish that the invariants are the same,

we compare these two Lie algebras in Section 7.

Theorem D (=Theorem 7.10, Proposition 7.13(3)). The natural map
K55(M)g — K(A)

is a homomorphism of Lie algebras. Moreover, when there is a framing functor this natural
map sends Liu’s classes to € classes.

An important point here is that the Lie algebra f(;:eg(int)Q is not obtained as the
commutator of some naturally defined product. Indeed, its image in K(A) is far from
being an associative subalgebra, despite being a Lie subalgebra. Moreover, lv(ieg(Dﬁ)@
does not typically contain d-classes. See the discussion in Section 1.2 for an analogous
situation with M. (A) and M(A).

Finally, in Section 8 we relate our invariants to Joyce’s cohomological invariants. To
state our comparison, we introduce the notion of homological lift, cf. Definition 8.2.
Roughly speaking, a class A € H,(X) is a homological lift of ¢ € K,(X) if they are related
by a Riemann-Roch type formula.

Theorem E (=Theorem 8.8). If there exists a framing functor, Joyce’s classes in H, (9011)

are homological lifts of € classes.

We expect canonical homological lifts of € classes to exist in general, without assuming
the existence of a framing functor, and we hope to address this question in the future.
In Section 8.4 we explain that our wall-crossing formulas for ¢ invariants implies Joyce’s
wall-crossing formulas for the homological lifts, at least if we consider only intersection

numbers of (algebraic) tautological classes.

1.2. Analogy with motivic wall-crossing. Part of the motivation for the present ar-
ticle is to make the cohomological or K-theoretic wall-crossing [Joy7, Liu] closer to the
approach to motivic invariants [Joy4, Joy2, JS, KS, Bri2]. We will now describe some
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aspects of the motivic story to make this comparison apparent. For simplicity, we re-
strict ourselves to hereditary categories A, such as representations of a quiver or moduli
of bundles on a curve, and to standard Euler characteristic (i.e. “naive DT invariants”),
rather than Behrend weighted Euler characteristics (“genuine DT invariants”). We also
work only in the quantum torus, and not in the motivic Hall algebra.

Let p be a stability condition on A and « a topological type. When p-stability and
p-semistablity coincide, we are interested in motivic invariants of the good moduli space
MF = 9nerie such as its Euler characteristic e(M*) or its virtual Poincaré polynomial
P,(M¥) e Q[q%], which is the unique motivic invariant which agrees with the usual
Poincaré polynomial

P,(X) = Y(~¢")' dim H'(x)
i
when X is smooth and proper. Being motivic means that it satisfies

By(X xY) = Py(X)Py(Y) and Fy(X) = Py(U) + Fy(X\U)

for any X,Y and U € X open. The virtual Poincaré polynomial can be constructed for a
general variety X using the weight filtration on its cohomology [DK]. The specialization
¢'/? = 1 recover the Euler characteristic.

To define invariants in the presence of strictly semistable objects, one might try to
use directly the stack 9 or its rigidification 9*r8. Indeed, it is explained in [Joy5,
Section 4.2] that there is a unique way to extend the virtual Poincaré polynomial to finite
type stacks with affine stabilizers by requiring that P,([X/G]) = P,(X)/P,(G) for special
groups G (in particular, G = GL,, is special); for such stacks X,

Py(X) e Z[g* 2, (1 — ¢)'].

Since P,(9M"8) has a pole at 1 when stable is not equal to semistable, we cannot set
¢*/?> = 1 and obtain the Euler characteristic. One way to obtain something like an Euler
characteristic is to first take a “logarithm” on the motivic Hall algebra, or on the quantum

torus.

The quantum torus of A is defined to be the associative Q[¢*?, (1 — ¢*)~!]-algebra
MA) = @ Q™21 —q) "] e

aeC(A)

with product given by?
q_X(ﬁ7O‘)

q—1

a ., B

e*xe e th

2Usually there is no factor of 1/(q — 1) and § invariants below are defined using the non rigidified stack,

but to make the analogy with the K-theory setting more clear we are making this small modification.
n
The usual 9§, ¢ invariants are %, qi“l in our convention.
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The virtual Poincaré polynomial of the (rigidified) stack defines an element
S == P, (OMHrie) . e

Then, we modify these classes by taking a logarithm in the quantum torus, i.e.

_1\n—1
el = Z ¢5“*...*5".
[e% n aq QAn
a=a1+...+an
n(ai)= ()

A remarkable theorem of Joyce [Joy4, Theorem 8.7] is that the e invariants no longer
have a pole at ¢ = 1 — see also [BNK] and [BR] for more recent approaches to the proof
of this result. More precisely, they are regular elements, i.e. lie in

Mieg(A) = P Qe 1+ g+ ... +¢ )] e = M(A).
aeC(A)

In particular, it now makes sense to specialize ¢'/2 = 1. This produces the definition of

generalized (naive) DT invariants:
Bl DTE . o
ey = DTV - ¢ .

Example 1.3. Consider A = Vect the abelian category of finite dimensional vector spaces
with the trivial stability condition. Then

6, = P(BPGL,) - e" = ¢ "' [[(¢" —¢') " - e".

Then we have, for example,

51 1 1 ) 1 )
E9g = — —&1 % €1 = — T = = €.
SR A (> —=1) 2¢(q—1) 2q(q +1)

More generally, DT,, = (= [JS, Example 6.2].

n2

In particular, DTy = —}l.

The regular elements M, (A) < M(.A) do not form a subalgebra of M(.A). However,
they form a Lie subalgebra of M(A) with the commutator [u,v] = u* v — v * u. This is
clear from the observation that

7X(ﬁ7a) — 7X(a718)
[, ef] = q q 0 +B
qg—1

is a polynomial in gq.

Wall-crossing formulas can be efficiently written in M[(A). Indeed, they take exactly the
form discussed in Section 1.1.3, and served as inspiration for our construction of K(.A).
For example when 2, itself is finite type

D ee 0l = P

a=a1+...+an
plea)>...>p(an)
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does not depend on p. Indeed, this is a consequence of the Harder—Narasimhan stratifi-
cation, as the product * is built so that the Harder—Narasimhan stratification gives this
formula. This provides a way to compare classes 8%, 6% for two stability conditions s, yi'.
Joyce shows [Joy6, Theorem 5.4] that when we replace § classes by ¢ classes, the resulting
formula can be written entirely using the commutator on M(.A); in other words, it can be
written entirely inside the Lie subalgebra Meq(A).

1.3. Conjectures and future directions. In certain aspects, we have opted to keep a
slightly simpler (and hence less general) setup than in [Joy7]. For example, we do not
consider here the possibility for reduced obstruction theories, necessary for wall-crossing
on surfaces with p, > 0. We have also opted to do everything non-equivariantly, unlike
[Liu]. It should be possible to incorporate both of these aspects in our approach without
too much trouble.

Recently, [BHLNK, BNK] established a generalization of the motivic DT theory to
stacks that do not come from linear moduli problems. This is done by replacing the motivic
Hall algebra by a structure they call “motivic Hall induction”, intrinsically associated
to any stack (under reasonable conditions). A similar extension of the content of this
paper using their formalism is possible, and will be pursued elsewhere. This should, in
particular, answer questions raised, e.g., by Bu in the setting of wall-crossing for self-dual
categories: [Bu2].

A more ambitious extension is to the setting of sheaves on Calabi—Yau 4-folds, or more
generally (—2)-shifted symplectic stacks. A mild modification of our K-Hall algebra allows
a definition of generalized K-theoretic invariants in that context. The missing piece is an
appropriate version of the non-abelian localization theorem for (—2)-shifted symplectic
stacks.

We make Conjectures 7.12 and 8.9, which are similar in spirit to the no-pole theorem in
the motivic setting. The first says that the classes € more or less comes from a scheme,
and the second says that €# admits a homological counterpart that lives in algebraic degree
equal to the virtual dimension. We show that both of these hold when there are framings,
but it would be desirable to have a more general argument. We hope these conjectures
might be addressed by relating € classes to the (derived) Kirwan desingularization of the

moduli stack, cf. [HRS].

The more straightforward applications are the ones to explicit wall-crossing problems
which still remain unsolved at the time of our writing the present paper. First of all,
it seems that with little extra care the PT-rationality for Fano threefolds (i.e., the Fano
analogue of [Tod3]) may be obtained. Second, in some cases, we are able to apply the
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present results to imitate Feyzbakhsh-Thomas programme (cf., e.g., [FT2]) for Fano 3-
folds, hence, answering (at least, some particular manifestation of) the corresponding
Joyce’s conjecture [Joy8, p.14]. Both questions will be answered in two upcoming works
of ours in the nearest future.

1.4. Notation and conventions. Every scheme, algebraic space, stack and derived
stack in this paper is considered over C. By (derived) stack we mean a (derived) 1-
Artin stack; all the (derived) stacks in this paper will be locally of finite type, have affine
diagonal, and a perfect cotangent complex. Higher (derived) stacks are in the sense of
higher Artin stacks of [Toé]. We will typically denote stacks with calligraphic font (e.g.
X, Z, M) and derived stacks with Fraktur font (e.g. X, 3,90).

By (co)homology of a derived stack X we mean the (co)homology with Q-coefficients
of the topological realization (cf. [Bla, Section 3]) of the classical truncation X’; this
agrees with a 6-functor formalism type definition by [Kha3, Proposition 2.8]. Homology
is considered a direct sum over its degrees and cohomology a direct product,

Ho(—) = @ H,(-) and H*(—) = [ [ H"(-).
n=0 n=0
Chern classes of perfect complexes are defined by pulling back universal Chern classes
along the topological realization of the induced map X — Mpes to the stack of perfect
complexes. Given an abelian group A we write Ag = A®z Q.

1.5. Acknowledgments. We would like to thank Younghan Bae, Chenjing Bu, Pavel
Etingof, Daniel Halpern-Leistner, Andrés Ibanes Nunéz, Dominic Joyce, Adeel Khan,
Vasily Krylov, Woonam Lim, Henry Liu, and Davesh Maulik for conversations related to
this project.

The first author wishes to especially thank Davesh Maulik: the present work owes its
existence to his suggestion of considering the wall-crossing applications of non-abelian

localization.

2. PRELIMINARIES: ABELIAN CATEGORIES AND STABILITY CONDITIONS

2.1. Abelian categories and moduli stacks. Let A be a C-linear abelian category.
Under appropriate conditions, it is possible to form a derived moduli stack 99t = 90t 4 over
C parametrizing objects of A. This stack will play a central role in this paper and we
need it to have certain structures and properties, so we will now explain the necessary
assumptions on the abelian category A.

The standard example to keep in mind of a good abelian category is A = Coh(X) for a
smooth projective scheme X. Other examples include the categories of finite dimensional



12 I. KARPOV AND M. MOREIRA

vector spaces and finite dimensional representations of an acyclic quiver. Other hearts
of t-structures on D°(X) are often good abelian categories (cf. [AHLH, Example 7.22,
7.26]). We summarize in the next definition/proposition the properties that we require
and discuss them in more detail below.

Definition /Proposition 2.1. We say that A is a good abelian category if Assumptions
2.2 and 2.3 hold. When that is the case, there is a derived moduli stack 90t 4 parametrizing
objects of A. The derived stack 94 is locally finite type, has affine diagonal and its
derived tangent complex is given by (1). The derived stack comes with a direct sum map
¥, a BG,, action and a complex Extjy on 9t x 9 with compatibilities detailed in [Joy7,
Assumption 4.4 (c), (f)].

As discussed in [AHLH, Section 7.1] following [AZ], to construct a classical stack M4
parametrizing objects in A we need A to be the subcategory of compact objects of some

locally Noetherian cocomplete category C (for example, Coh(X) are the compact objects
of QCoh(X) if X is smooth projective).

Assumption 2.2. The abelian category A is Noetherian and there is a cocomplete abelian
category C such that A = CP® is the subcategory of perfect objects, and moreover A
generates C.

In particular, C is locally Noetherian and there exists a classical moduli stack M =
M 4 as in [AHLH, Section 7.1]. Note that this stack actually depends on the choice of
embedding into the cocomplete category C, as remarked in [AHLH, Warning 7.11], but we
will suppress it from the notation since in our examples there is always a natural choice
of C.

We would like to have a natural derived enhancement of M, which we denote by
M = N4, whose derived tangent bundle is given by

This means that Hom4(F, F) controls the stackiness of 9t at F, Ext!(F, F) the defor-
mations and Ext7'(F, F) the (higher) obstructions.

Toén-Vaquié [TV] construct higher derived stacks parametrizing objects in saturated
dg categories. See Definition 2.4 in loc. cit. for the definition of saturated; when X is a
smooth proper scheme, the dg enhancement of D°(X) (which is unique by [CS, Corollary
7.2]) is saturated [TV, Lemma 3.27]. Hence, we require the following:

Assumption 2.3. There is a saturated dg category T such that A is a full subcategory
of the homotopy category Ho(T) and M 4 is an open substack of the classical truncation
of QﬁT.
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This open inclusion induces a derived enhancement 9t 4 of M 4, which is open inside
Mr; cf. [STV, Proposition 2.1]. When A = Coh(X), or some other heart of D?(Coh(X)),
for a projective smooth variety X, we let T be the dg enhancement of D?(Coh(X)). The
openness of Mcon(x) is shown for example in [HL4, Proposition 6.2.7]; other natural
hearts related to stability conditions are also shown to be open in® [PT, Section 4], [HL4,
Proposition 6.2.7] and [BCR, Proposition 4.6]. It is shown in [TV, Theorem 0.2] that 9
is locally of finite type, and hence the same is true for 9t4. By [AHLH, Lemma 7.20]
it follows that 914 has affine diagonal. The derived stack 94 comes with the following
structures:

(1) A direct sum morphism >: 9t x 9t — M that acts on points as (F,G) — F D G.
(2) A BG,, action ¥: BG,, x MM — M induced by the scaling action G,,, — Aut4(F).
(3) A perfect complex Extis on 9 x M whose value over a point (Fi, Fy) on 0t x M is
RHomy(Fy, F3). We also denote by Exty; the complex RHom 4(F5, F}), which is
obtained by pulling back Ext;s along the map 2 x 9t — N x I which permutes

the two factors.

These can all be defined on Mt (see, for example, [KPS, Proposition 8.29]) and restricted
to M 4. They satisfy a series of compatibilities which are described in detail in [Joy7,
Assumption 4.4 (c), (f)]. For example, the complex Extiy should be “bilinear” with
respect to Y, in the sense that

RHOIH_A(FI, F2 @Fé) = RHOI’IlA(Fl, FQ) @RHOmA(Fl, Fg) .

The complex Extis has weight —1 with respect to the BG,, action on the first coordinate
and weight 1 with respect to the action on the second coordinate. When A = Coh(X)
(or more generally A is the heart of a t-structure in D?(X)) the Ext complex is given by

Extio = Rp, (RHOm(fl& fQS))

where F is the universal bundle (complex) on 9t x X, Fi3, Fog are the pullbacks of F to
M x M x X indicated by the subscript, and p is the projection T x M x X — M x M.
See for example [GJT, (5.4)] for the explicit form in the case of quivers.

We denote by C'(A) the set of connected components of 9% 4, or equivalently M 4, and
we let M, < M4 be the connected component corresponding to o € C'(A), so that

Ma= || M.
aeC(A)

3In all of these, the results are stated as M _4 being open inside Lieblich’s [Lie] stack of complexes with
Ext<Y(F, F) = 0. This is an open substack of M pu(x), as pointed out in [TV, Corollary 3.21].
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The direct sum map on M 4 gives C(A) the structure of a monoid. Since the rank of
Extqs is locally constant, we define the Euler form

X(@, B) = tk((Extio) pm,on,) -

Given an object E of A, we denote by [E] € C(A) the connected component of the
corresponding C-point in the stack 91,.

Remark 2.4. If A is a good abelian category of homological dimension < 2, meaning
that Ext7*> = 0, then 9014 is a quasi-smooth derived stack, due to (1).

Also, using the BG,, action, one may define the rigidified (or the projective linear, to
use the terminology from [Joy7]) version 90" of M.

Definition 2.5. Suppose that X is a (derived) stack admitting a free BG,, action. Then,
there is a rigidified (derived) stack X" = X /G, (cf. [AOV, Appendix A]); it comes with
a canonical map 7: X — X" which is a G,, gerbe — in particular, its fibers are isomorphic
to BG,,. Roughly speaking, X"# is the stack with the same points as X and with isotropy
groups obtained by quotienting out the G,, coming from the action. The rigidification
sits in the following homotopy cartesian square:

BG,, x X —4— X
lPZ l?r
X ——— Xrie
Every complex in X pulled back from X™ has weight 0, by commutativity of the square
above.

2.2. Stability conditions, O-stratifications and good moduli spaces. To make
sense of taking integrals (i.e, Euler characteristics) of perfect complexes over some stack,
one usually requires the existence of a proper good moduli space. This statement is for-
malized as Theorem 3.12 below.

Definition 2.6 ([Alp]). Let X be an Artin stack. A good moduli space for X is an
algebraic space X together with a morphism ¢ : X — X such that

(1) ¢ is quasi-compact;

(2) the pushforward functor ¢,: QCoh(X) — QCoh(X) is exact on the categories of
the quasi-coherent sheaves;

(3) the natural morphism Ox — ¢,Oy is an isomorphism.

A good moduli space of a derived stack X is a good moduli space of its classical truncation
X = X4 (alternatively, see [AHPS]).
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Note that if X admits a proper good moduli space then X is quasi-compact. This is
rarely the case for the stacks parametrizing objects in abelian categories considered above:
it is not true for A = Coh(X) if dim(X) > 0, but it is true for representations of acyclic

quivers.

Proposition 2.7 (JAHLH, Theorem 7.23]). Let A be a good abelian category and a €
C(A). If the stack 9, is of finite type, then 9, admits a proper good moduli space.

Typically, to get proper good moduli spaces we need to impose some sort of stability.
In the rest of the present section, we will work with a good abelian category A as in
Section 2.1, and recall the criterion for the existence of proper good moduli spaces for the
moduli stacks of semistable objects on M 4 (following the exposition of [Joy7, Subsection
3.1]).

We start with the notion of a weak stability condition on A. The definition we use is
due to Joyce [Joy4]; its roots go back to Rudakov [Rud]

Let (T, <) be a totally ordered set, and let p be a map p : C(A) — T. Given an object
E of A, we will write u(F) = p([E]); in other words, u is a locally constant function
My — T. We call i the slope function.

Definition 2.8. We call (u, T, <) a weak stability condition on A if for any «, 8, € C(A)
with = a + 5 either p(a) < p(B) < p(v), or pla) = p(B) = pu(v).*

A weak stability condition defines the notion of p-stable and p-semistabile objects as
follows.

Definition 2.9. An object E € A is said to be p-semistable if u(E') < p(E/E’) for
all subobjects 0 # E' < E. We say that F is p-stable if we have a strict inequality
w(E') < u(E/E') in the same setting. If F is pu-semistable but not p-stable we say it is

strictly semistable.

If the category A is p-Artinian and A is Noetherian (which is part of our definition
of good abelian category) then any object E' € A has a canonical Harder-Narasimhan
filtration

(2) 0O=Fy<cFE ¢FE,..¢FE,=F,
so that all of the successive quotients F; = E;/E; | are p-semistable, and
p(F) > p(F2) > ..o > p(Fy).

4We recall that for i to be a stability condition (as opposed to a weak stabilty condition), the more
restrictive condition should hold: either p(a) < p(B8) < u(y), or p(a) > u(B) > w(y), or u(a) = u(B) =

().
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We call (2) the p-HN filtration of E and the objects Fi, ..., F, the u-HN factors of E.

Moreover, any p-semistable object has a Jordan—Holder filtration whose successive quo-
tients are p-stable objects with the same slope as the original object; the Jordan—Holder
filtration is not unique in general, but the successive quotients of any two Jordan—Holder
are the same up to a permutation. We refer the reader to [Joy4, Theorem 4.4, 4.5] for a

more precise formulation of these facts and proofs.

Definition 2.10. We denote by M~ < M,, the substack of p-semistable objects in M,,.

We will make a series of assumptions that guarantee that the stacks of semistables are
sufficiently nice to define enumerative invariants. In some natural cases, such assumptions
do not hold for arbitrary topological types a € C(A), so we will consider a smaller set
of C(A)pe < C(A) of permissible classes as in [Joy7, Assumption 5.1(e)]. We now state
these assumptions and briefly explain them and their implications.

Assumption 2.11. Let A be a good abelian category and p a weak stability condition
for which Harder—Narasimhan filtrations exist (e.g. A is p-Artinian). We assume that
there is a set of permissible classes C(A)pe & C(A) such that for every a € C(A)pe the
following holds:

(1) The stack M* is open in M,, quasi-compact, and its derived enhancement is
quasi-smooth.

(2) There is a (pseudo) O-stratification on M, adapted to p, as explained in Section
5.3, which satisfies the descendending chain condition. In particular, M*# is the
semistable loci for this O-stratification.

(3) s equivalent to an additive stability condition on «, as defined in [AHLH, Section
7.3].

(4) If E is p-semistable with [E] = a and £ < E then [E'] € C(A)pe.

(5) There are only finitely many partitions

a=0o01+...+q

with p(o;) = p(a) and ME # . By (4), we have a; € C(A)pe for any such
partition.

Since we required M < M, to be an open embedding, we obtain a derived enhance-
ment M* < M, which is still an open embedding. Since M 4 is locally of finite type by
Proposition 2.1, it follows that 9t is of finite type.

The concept of ©-stratifications has been introduced and studied by Halpern—Leistner,
see for example [HL4, Definition 2.1.2]. Joyce defines in [Joy7, Definition 3.3.4] a weaker
notion which he calls pseudo O-stratification [Joy7, Definition 3.3.4]; in some cases, pseudo
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O-stratifications are more natural. We will discuss both of these in Section 5.1. For now,
we just point out that there are techniques to construct (pseudo) ©-stratifications in most
cases of interest. There are two reasons for imposing the existence of these stratifications:
they guarantee the existence of proper good moduli spaces (cf. Theorem 2.13) and they
are necessary for the non-abelian localization theorem (cf. Theorem 5.6), which is the
heart of our wall-crossing formula.

Definition 2.12. We say that p is additive at « if there is a totally ordered abelian group
(V, <) and a monoid homomorphism p,, : C(A) — V such that an object E with [E] = «
is p-semistable if and only if, for all subobjects F' < E, p([F]) < 0.

This additive condition is very mild, and true for all the natural stability conditions
considered in enumerative geometry. If we can write pu(a) = d(«)/r(«) with d,r linear,
then we may take

pa(B) = d(B)r(e) — d(a)r(B).
We impose it since it is necessary in the theorem ensuring the existence of proper good
moduli spaces by Alper, Halpern—Leistner and Heinloth:

Theorem 2.13 ([AHLH, Theorem 7.27], [Joy7, Theorem 3.43]). Suppose that A is a
good abelian category, p is as in Assumption 2.11 and « € C'(A)pe. Then M admits a
proper good moduli space.

The good moduli space M# — M# factors through the rigidification M#18 — MH
and hence MH1& OMHTE also admit the same good moduli space, see [HL2, Subsection
1.0.4].

2.3. Hearts of D°(X) and tilt stability. The setup in this paper gives some new wall-
crossing formulas for certain hearts of D?(X). We collect here some references where the
technical assumptions made so far are verified.

Let X be a smooth projective variety and A is the heart of some t-structure on D°(A).
Assumption 2.2 is shown to hold in [HL4, Proposition 6.1.7] provided that 4 is Noetherian
and bounded with respect to the standard t-structure. Indeed, we may take C to be the
heart of the induced t-structure on D(QCoh(X)).

For Assumption 2.3 we take T to be the dg enhancement of D?(X), which is saturated by
[TV, Lemma 3.27]. Establishing that M 4 is an open substack of the classical truncation
of Mt is a non-trivial task, but there are techniques for doing so in many examples of
interest® see for example [PT, Section 4], [AB, Theorem A.3], [HL4, Proposition 6.2.7]
and [BCR, Proposition 4.6].

°In all of these, the results are stated as M 4 being open inside Lieblich’s [Lie] stack of complexes with
Ext<Y(F, F) = 0. This is an open substack of M pu(x), as pointed out in [TV, Corollary 3.21].
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One particular way to obtain non-standard ¢-structures of D?(X) is to tilt the standard
t-structure with respect to a torsion pair. Even more concretely, we may do this by tilting
with respect to a stability condition on Coh(X), as in [BMT, Section 3|, which we refer to
for further details. Given R-divisors w, B with w ample, there is a t-structure on D’(X)
with heart A, 5 and a stability condition v, g on A, 5. When X is a surface, (A, g, V0 5)
is a Bridgeland stability condition; if X is a 3-fold then Bridgeland stability conditions
can (conjecturally, but known in many cases) be obtained by tilting A, 5 once again. The
fact that A, p is a good abelian category follows from the results mentioned above, in
particular [BMT, Proposition 5.2.2], [HL4, Proposition 6.1.7] and [AB, Theorem A.3].

The existence of Harder—Narasimhan filtrations with respect to v, g is shown in [BMT,
Lemma 3.2.4]. For Assumption 2.11 we take the permissible classes C'(A, ) to be the
ones with v, g(a) < 00; these are thought of as torsion-free classes in A, . The stacks
Mo>? being finite type and open in M, is established in [Todl, PT]; see also [HL4,
Proposition 6.2.7].

The finiteness condition (5) in Assumption 2.11 is known to hold if X is a surface or a
3-fold satisfying the [BMT] inequality, see [BMS, Conjecture 4.1]. For the case of 3-folds
see [FT2, Proposition 4.1]. Finally, the existence of ©-stratifications is also known when
X is a surface or a 3-fold satisfying the BMT inequality by using [HL4, Theorem 6.5.3].
Regarding the assumptions in loc. cit.:

(1) Since the set of walls is locally finite [BMS, Proposition 12.5] we may assume that
w, B are Q-divisors.

(2) Generic flatness in this example follows from [PT, Proposition 4.11].

(3) Boundedness of quotients for surfaces follows from [Tod1, Proposition 3.15]. While
[Tod1, Proposition 3.15] is only for Bridgeland stability conditions, a modification
of its proof using [FT2, Theorem C.5] shows boundedness of quotients for 3-folds
satisfying the BMT inequality.

The last point that is necessary to address is quasi-smoothness. When X is a surface
with nef anticanonical this is shown in [LM, Lemma 7.8]. For Fano 3-folds this will be
proved in forthcoming work by the first author. We summarize the discussion above in
the following proposition:

Proposition 2.14. Let X be a surface with nef anticanonical or a Fano 3-fold satisfying
the BMT inequality. Then Assumptions 2.2, 2.3 and 2.11 hold for (A, 5, v, 5), with the
permissible classes being the ones satisfying v, p(a) < 0.
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3. PRELIMINARIES: K-THEORY AND K-HOMOLOGY

3.1. K-theory of stacks. Let X be a derived Artin stack. We briefly review the alge-
braic K-theory of X, following mostly [Kha2], and recall some results that we will need.
Denote by DQCoh(X) the (unbounded) category of quasi-coherent complexes on X and by
QCoh(X) its heart. Inside DQCoh(X) we have the subcategories of perfect and coherent
complexes which we denote as

Perf(X) and D’Coh(X).

A complex is perfect /coherent if it is perfect/coherent on smooth affine charts (see [Kha2,
Definition 1.5]). The t-structure on DQCoh(X) restricts to D’Coh(X) and its heart is the
abelian category of coherent sheaves Coh(X). A complex being in D°Coh(X) is equivalent
to having coherent cohomology groups, all but finitely many being 0.

When the structure sheaf Oy is bounded, in the sense that H'(Ox) = 0 for all but

finitely many i, there is an inclusion
Perf(%X) < D"Coh(X).

Proposition 3.1 ([Kha2, Corollary 6.1]). If X is quasi-smooth then Oy is bounded.

The algebraic K-groups of X are defined as follows:
Definition 3.2. Let X be a derived stack. We let
K*(X) = Ko(Perf(%X)),
G(X) = Ko(Coh(X)) = Ko(D"Coh(X))

where Ky denotes the Grothendieck group of a category.

The notation K* is not standard, but we will use it to indicate that we think of K*
as a cohomology theory. When Oy is bounded, there is a canonical morphism K(X) —
G(X) induced by the inclusion of the respective categories; if X is regular this map is
an isomorphism. It it shown in [Kha2, Corollary 3.4] that if X is Noetherian then G-
theory is insensitive to the derived structure, i.e. the inclusion of the classical truncation

t: X := X4 — X induces an isomorphism
te: G(X) > G(X).
The analogous statement is not true in general for K*(X) [Ann].

Remark 3.3. Instead of working with algebraic K-theory, another option is to use topo-
logical K-theory, in the sense of Blanc [Bla], and define

K*

top

(%) = K{°°(Perf(X)) @ K[°°(Perf(X)) .



20 I. KARPOV AND M. MOREIRA

We can do the same with G theory, and these have the same functoriality properties
as their algebraic counterparts. It seems to us that everything in this paper could be
rewritten in that language. Halpern-Leistner has kindly informed us that his non-abelian
localization theorem [HL5] also holds for Blanc’s K-theory. The advantage of doing so
is that it makes the comparison with cohomology easier (cf. Section 8, and in particular
Remark 8.14) since, for example, the Chern character induces an isomorphism between
Blanc’s K-theory and cohomology (with Q-coefficients) for separated finite type schemes.

3.1.1. Operations in K and G theory. Given a morphism of derived stacks f: X — 3 we
have a derived pullback and a derived pushforward

Lf*: DQCoh(3) — DQCoh(X) and Rf,: DQCoh(X) — DQCoh(3).

The pullback Lf* always preserves perfect complexes. If f is of finite Tor amplitude then

it also preserves coherent complexes. Hence we have pullback morphisms
f* K5 (3) — K¥(X)
f*:G(3) » G(X) (f has finite Tor amplitude)

If f is proper and representable, the pushforward also preserves coherent complexes and,

under some extra mild conditions, perfect complexes. Hence, we have pushforward maps
fer K*(X) — K*(3) (f proper, representable,
finite Tor amplitude, locally finite type)
fe: G(X) = G(3) (f proper, representable)

There are some situations where pushforwards exist even without the map being proper,

see [HLP]. A particularly important one is the following:

Proposition 3.4 ([Alp, Theorem 4.16 (x)]). Let X be the classical truncation of X. If
f: X - X is a good moduli space and X is Noetherian, then f, preserves coherent
complexes, and in particular there is a well-defined pushforward

fo: G(X) ~GX) > G(X).

The same is true if X is not necessarily an algebraic space but f still satisfies the two

conditions in the definition of good moduli space.

Another example is Proposition 3.8 below, concerning rigidification maps. Since the
tensor product restricts to Perf(X), there is a product

K*(X) ® K*(X) — K*(%).
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Tensoring by a perfect complex preserves coherent complexes, which endows G(X) with
a K*(X)-module structure

Nn: K*(X)®G(X) - G(X).
The map from K-theory to G-theory when Oy is bounded is precisely — n [Ox].

3.1.2. Euxterior powers. Exterior powers A"(—) endow K*(X) with the structure of a A-
ring. We let

(3) Au(V) = DL (—u)"A" (V) € K*(X)[u]
n=0
A common theme in the paper will be how to expand A_, (V) in different directions. We

regard (3) above as the “expansion of A_, (V') around u = 0”.

Lemma 3.5. If V' is a vector bundle, then
(4) A (V) = () A, (VY) @ det(V)
in K*(X)[ul.
Proof. Let r = rk(V'). This follows from the fact that
AN'(V)Y@A (V) - A"(V) = det(V)
defines a perfect pairing, and hence an isomorphism
A" (V) =~ A""(V)" @det(V) ~ A""(VY)®@det(V). O

Remark 3.6. When V is a vector bundle the class
rkV

A (VY) = D (=1 (VY)

n=0
plays the role of the inverse Euler class of V', for example in the context of torus localization

[Oko, Section 2.3]

When V is not a vector bundle, the right hand side of (4) — which is a Laurent series
in v~ — might be interpreted as the “expansion of A_,(V) around u = c0”. This might
be made precise when V' € K*(X) can be written as an alternating sum of line bundles
V =>3" 6L; with ¢; € {—1,1}. Then we have an equality

Ay (V) = HkuL f= (@ =Ly (—uLy)*)

=1

= (~u) VA (V) @ det(V)

as rational functions in u with coefficients in K*(X), but the left hand side is the expansion
in K*(X)((u)) while the right hand side is the expansion in K*(X)((u ™).
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The expansion around u = 1,
A, (V) e K*(X) (((1 — u)*l)) ,

is also used in [Liu, Definition 2.1.8]. Unlike the previous two, its definition requires that
we assume that V' can be represented as the difference between the classes of two vector
bundles; this is always the case when X has the resolution property, for example if X is a
smooth classical scheme. It is defined by using the splitting principle and expanding the

rational function above around v = 1. In particular, if L is a line bundle,

A—u(_L) = Z

n=0

u?’L

Ao gL

When X = X is a scheme, (L — 1) = 0 for sufficiently large n and the expression above
is a Laurent polynomial in 1 — u. Indeed, we have the following:

Lemma 3.7 ([Liu, 2.1.8, 2.1.11]). Let X be a finite type scheme and V € Ky(Vect(X)).
Then there is an element of Ky(Vect(X))[(1 —u)*!'] whose expansion in u is
A, (V) e Ko(Vect(X))[u]

and whose expansion in ! is

(—u)™ A, (V) ®det(V) € Ko(Vect(X))(u™) .

3.1.3. K-theory of BG,, and rigidifications. A quasi-coherent sheaf on BG,, corresponds
to a representation of BG,, on a (possibly infinite dimensional) vector space V. Such
representation is coherent if and only if it is perfect if and only if V is finite. The K-
theory of BG,, is isomorphic to

K*(BG,,) ~ R(G,,) ~ Z[u""]

as a ring, where R(G) denotes the representation algebra of a group G and w is the class
of the standard representation corresponding to the weight 1 action of G,, on C. The
cohomology groups of a quasi-coherent sheaf ' are given by

A VG ifi=0
H'(BG,,,V) =
0 otherwise

In particular, if 7: BG,, — pt then the functor 7, = Rm, is exact and preserves perfect

complexes. The pushforward
Z[u™] ~ K*(BG,,) = K*(pt) ~ Z

is identified with the operator [u’] of extracting the constant term of a Laurent polynomial.
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Consider now a (derived) stack X equipped with a BG,, action ¥: BG,, x X — X.
Given a complex F' on X, the BG,, action induces a canonical weight decomposition
F = C—B F,
HEZ

where

V'F=@uQF,.
UEZ
A complex is said to be of weight p if F' = F),. The next proposition relates the K-theory

of a stack and its rigidification (cf. Definition 2.5).

Proposition 3.8. The pullback
™ K*(X"8) —» K*(X)

is injective and its image are the weight 0 classes. Moreover, the pushforward
Tt K*(X) — K*(X"#)

is well defined and we have
. F = Fy.

Proof. This follows essentially by [BS]. There, it is shown that the weight decomposition
induces an equivalence of categories

(5) DQCoh(X) ~ | [ DQCoh(X),,

UEZ
where DQCoh(X),, denotes the Serre subcategory of weight p complexes. Moreover, [BS,
Proposition 5.7] shows that 7* = Lz* gives an equivalence

DQCoh(X"8) =~ DQCoh(X),

with inverse given by m, = Rm,. It is clear that the decomposition (5) restricts to an

isomorphism
Perf(X) ~ (P Perf(X), .
HEZ
From here all the statements in the proposition are clear. 0

If T is a n-dimensional torus then these statements generalize in a straightforward way.
The K-theory of BT is
K*(BT) ~ R(T) ~ Z[A]
where A € t¥ is the weight lattice of the torus. A BT action on X induces a weight
decomposition F' ~ @ uen Fyoon any sheaf on X. A splitting T' ~ G,, x ... x G, induces
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a basis on A and a corresponding isomorphism
K*(T) ~ Z[uit, ... uil].

3.2. K-homology. Under appropriate conditions, a moduli space M with a virtual struc-
ture sheaf O}F determines an “integration” functional K*(M) — Z by taking the Euler
characteristic:
Vi x(M, 03 @V).

Liu defines in [Liu] a notion of K-homology, which roughly is the space where such func-
tionals live. The most naive thing would be to simply define K-homology as the dual
to K-theory. However, the lack of a Kunneth decomposition creates issues when trying
to define some algebraic structures on K-homology. This is solved by working with an

operational theory that forces the existence of a Kunneth morphism.

Definition 3.9. Let X be a derived stack. An element ¢ in the K-homology group K, (X)

is a collection of K*(S)-linear maps
{fs: K*(X x 5) — K*(5)}
for every derived stack S which satisfies the following compatibility condition: for any

morphism h: S — §’, the diagram

(% x §) " ke (% % 8)
l‘i’s' l(bs
K*(8") — M K*(9)

commutes.

Remark 3.10. There are two more conditions in the definition of K-homology in [Liu].
The “equivariant localization” is irrelevant for us since we are not working equivariantly.
The “finiteness condition”, on the other, is a fundamental difference and we really need
to exclude it. For example, for us

K.(BG,,) ~ Homz(K*(BG,,),Z) ~ Z*;

with the finiteness condition, the K-homology of BG,, is isomorphic to Z[¢] (cf. [Liu,
Proposition 2.3.5]). We will further discuss this finiteness condition in Section 7.3.

Note that, by taking S = pt, a class in K-homology determines a functional ¢p: K*(X) —
Z. If X has the property that the Kunneth map

K*(X) ® K*(S) — K*(X x S)
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is an isomorphism for every S, then K,(X) ~ K*(X)". For most purposes, it is enough
to think of a K-homology class as just a functional, so we will often — when no subtlety
arises — do so for the sake of clarity of exposition.

We have the following structures on K-homology:

Cap product. There is a cap product
Nt K (X) @ Ki(X) — K (X)
obtained from the tensor product on K*. At the level of functionals,
(V0 6 (W) = 6(V W)
for VW e K*(X).
Kunneth map. For any X, 3 there is a Kunneth map
X: Ki(X) ® Ki(3) = Ku(X x 3).
It is defined by setting (¢ [X]11)s to be the composition
K*(% x 3 x S) 225 K*(3x §) 2% K*(9).

Note how this definition uses the operational definition in a fundamental way.

Pushforward. Given an arbitrary map f: X — 3 there is a pushforward f,: K,(X) —
K.(3). At the level of functionals, this is the dual of the pullback on K*.

Proper pullback. 1f f: X — 3 is a proper, representable, finite Tor amplitude, locally
finite type morphism, then there is a pullback f*: K,(3) — K.(X). At the level of
functionals, this is the dual of the pushforward on K*. By Proposition 3.8 we also have

pullbacks in K, along rigidification morphisms.

G to K, and universal invariants. Suppose that X is Noetherian and admits a proper

good moduli space. Then there is a canonical map

(6) G(X) - K.(X).

At the level of functionals, it sends a coherent complex C' € G(X) to the functional
K (X)aV—x(X,Vn(C)eZ.

The operational description requires some work. The coherent complex C' is sent to ¢

where

¢s(V) = (Bp1)«(V @ p5C)
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and p1, pe are the projections of X x S onto X and S respectively. Using the fact that
pushforward along the good moduli morphism preserves coherent complexes (cf. Propo-
sition 3.4), it is not hard to see that the complex above is coherent, but being actually
perfect requires a proof.

Lemma 3.11. Let as above X be a Noetherian derived stack admitting a proper good
moduli space, V in Perf(X x S) and C in D*Coh(X). Then (Rp,)«(V ®piC) is in Perf(.S).

Proof. Let 11 X = Xq — X be the classical truncation. Since D’Coh(X) has a bounded
t-structure with heart Coh(X) and ¢, : Coh(X) = Coh(X) is an isomorphism (cf. [Kha2,
Proposition 3.3, Corollary 3.4]), we may assume that C'is obtained as a pushforward from

X. Hence, it is enough to prove the statement for the classical truncation X instead of

X.

The proof uses the notion of relatively perfect complexes as in [Lie] or [Sta, Section
0DHZ|; morally, we are introducing non-perfectness only along X, which is what this
notion captures. By [Sta, Example 0DI1, Lemma 0DI5] the complex p5C = Lp5C' is S-
perfect. By [Sta, Lemma 0DI4] it follows that E =V ® p3C is also S-perfect. Moreover,
it is coherent since V' is perfect and p5C' is coherent.

If X itself was proper then [Sta, Lemma 0DJT]| would give the desired conclusion.
Hence, it is enough to prove that the pushforward along the good moduli map (base
changed to S) f: X x S — X x S preserves S-perfect complexes. This follows from the
same argument with the push-pull formula in the proof of [Sta, Lemma 08EV] using the
fact that f, = Rf, is exact (which is preserved by base change, see [Alp, Proposition 3.9

(iv)]). O

It is not hard to see that the map G(X) — K,(X) is a homomorphism of K*(X)-
modules.

If furthermore Oy is bounded, then the image of [Ox] € G(X) via the map above de-
fines a K-theoretic fundamental class [X] on X. Note that if X is quasi-smooth then Ox
is bounded [Kha2, Corollary 6.1]. When this is the case, the structure sheaf [Ox] cor-
responds, under the isomorphism G(X) ~ G(X), to the well-known virtual fundamental
sheaf [OY'] on the classical truncation X = X, [BF, Lee]. Roughly speaking, the fun-
damental class [X] tells us how to “integrate against [O%"]”, which is what K-theoretic
invariants in enumerative geometry are. We summarize this discussion in the following

theorem:

Theorem 3.12. Let X be a Noetherian derived stack admitting a proper good moduli
space. Then there is a well-defined homomorphism

G(X) — Ku(X)
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of K*(X)-modules constructed as above. If furthermore Oy is bounded (e.g. X is quasi-
smooth), then there is a K-theoretic fundamental class

[X] = [X]k € K.(X)

defined as the image of [Ox] € G(X) under the previous map which, at the level of
functionals, sends

K*(X)aV = x(X,V) = x(X, 0" ®Vix) € L.

Let us emphasize that this fact is one of the places where we use K-theory, rather
than cohomology, in a fundamental way. Khan [Khal] defines a virtual fundamental
class in Borel-Moore homology of X, which is analogous to [Ox] € G(X) — they are even
comparable through a Grothendieck—Riemann—Roch type formula, cf. [Khal, Theorem
3.23]. However, as far as we know, unlike in G-theory, there is no pushforward along
good moduli maps for Borel-Moore homology. Hence there is no good way to integrate
cohomology classes against such fundamental class, and therefore no good way to define

a fundamental class in the singular homology of X.

We should also point out that, unless X is actually a scheme, the class [X] in general

does not satisfy Liu’s finiteness condition. See Example 4.14.

Remark 3.13. It is an easy exercise to verify that the K-theoretic fundamental class is
well behaved with respect to products and the Kunneth map, in the sense that

[X < 3] = [X][3].

4. THE K-HALL ALGEBRA AND GENERALIZED K-THEORETIC INVARIANTS

In this section we will introduce an associative algebra structure on K, (Dﬁjg), when A
is a good abelian category. This algebra is the analog of the motivic Hall algebra (or of
the quantum torus) in K-theory, and we call it the K-Hall algebra.

As in the motivic setting, we will use this product to define generalized K-theoretic
invariants — ¢ classes — by taking a formal logarithm of ¢ classes defined directly via the
stacks of semistable objects. The ¢ classes will be shown to agree with Joyce—Liu classes

in Sections 6 and 7.

Remark 4.1. Let us emphasize that, despite sharing some similarities, the algebra that
we introduce is not the K-theoretic Hall algebra from [Pa]. The K-theoretic Hall algebra
is also an associative algebra, but the underlying vector space is G(9) and the product
is defined by a push-pull construction on the stack of extensions. Another difference is
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that the K-theoretic Hall algebra requires some extra condition, such as 914 being quasi-
smooth or (—1)-shifted symplectic, while ours does not. We hope that the distinction “K-
Hall algebra” versus “K-theoretic Hall algebra” will be enough not to confuse the reader.
It would also be interesting to understand the relation between the two constructions
when A has homological dimension < 2.

4.1. The K-Hall algebra product. We will start by introducing some ingredients nec-
essary for the definition of the K-Hall product. On the stack 9t x9N there is a BG,,, x BG,,
action, where each BG,, acts on each factor. Let us consider the stack

(O x )8

obtained by rigidifying with respect to the diagonal BG,, < BG,, x BG,,. This stack
still admits a

(BG,, x BG,,)/BG,, ~ BG,, x 1.
action. If we further rigidify with respect to this action, we obtain 9178 x 91"8: we denote
by

T (90 x M)TE — Mrie x s

this second rigidification map. Since ¥: 9T x 9 — N intertwines the diagonal BG,,
action on 9 x M with the BG,, action on 2N, there is a rigidified map

YUE: (M x M)"E — ME

The last ingredient is the following quasi-coherent complex on 9t x 9N, which is central
in the non-abelian localization theorem [TW, HL5|:

(7) I'_ = A—l (EXt;l + Ethg) ® det(Ext12)v[rk12] s

where rkis is the locally constant function rk(Ext;s) on 9T x 9%, Since Exts, Exto; have
weights (—1,1) and (1,—1), respectively, with respect to the BG,, x BG,, action, they
are weight 0 for the diagonal BG,, and hence descend to (9 x 91)"€. Thus the same is
true for I'_.

Definition 4.2 (K-Hall algebra). Let A be a good abelian category. We define the
K-Hall algebra®
K(A) = K.(9)g
with product
w1 K, (M%) @ K, (M8) — K, (M"2)
defined by
¢+t =TE([T-] N 7™ (¢ Y)) .

6The algebra could be defined with Z coefficients, without tensoring by Q. However, rational coefficients
are necessary for the definition of generalized K-theoretic invariants.
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Remark 4.3. This definition and the proof of associativity below only depend on the
structures 3, ®, Exti5, and the compatibilities between them described in Section 2.1. In
particular, the same construction works if we take any substack of 91 4 closed under direct
sum and the BG,, action or if we take 9t for a dg category T.

Let us unpack the definition and justify that it makes sense. We first recall that [x] is
the Kunneth map defined in Section 3.2, so ¢ X9 € K, (9M"& x M*8). The pullback 7*
is well-defined in K, since pushforwards of rigidification maps are well-defined in K*, cf.
Proposition 3.4.

Since T'_ is only quasi-coherent, the operation [['_] n — in not well defined in K.
Nevertheless, the end expression still makes sense as an element of K. For simplicity, let
us argue that at the level of functionals. The important observation is that, despite I'_
not being perfect (or even coherent), its weight u part is perfect and vanishes for p > 0.
Here, we mean weight with respect to the BG,, action

Uy : BG,, x (M x M)™e — (M x M)"e

acting on the first 9. Note that Exts, Exte; have weights —1 and 1 with respect to this
action. Hence

I_(u) =0T = A_;(Exty; @u ' + Extio®u™") @ det (Extio @ u™") " [rky2]
(—U)rkIZA,u—l (EXtﬁ/l) ® A,u—l (Ethg) ® det(Ethg) v .

In other words, even though I'_ itself is not perfect, the class of I'_(u) is in the ring
K ((900 > M) (u™))
of Laurent series in ! with coefficients in K*, where u denotes the class of the tauto-
logical line bundle on BG,,.
Lemma 4.4. Let V be a perfect complex in 9t"8. Then
T (M- @ (37)*V)

is perfect in MF& x Mrie,

Proof. By the proof of Proposition 3.4 applied to X = (9 x 9)"&, the complex we are
considering is perfect if and only if the weight 0 part of I'_ ® (X"8)*V is perfect. But this
follows from the fact that

(1) (Xr8)*V is perfect, hence its weight p part is also perfect and it is zero except for
finitely many pu.
(2) T'_ has perfect weight p parts which are 0 for p > rk(Exts). O
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Omne upshot of the considerations above is that the K-Hall product (at the level of
functionals) is characterized by the fact that the dual “coproduct”” fits into the diagram

K*(O) ——— K*(M x 9M)

lp* l(p>< p)*

K* (mrig) * Y K* (mrig % mrig)

where p: 9 — 98 is the rigidification map and the top arrow is given by the morphism
(8) ) (T (w) @ w7 (=)

Above, [u®](...) denotes the constant coefficient of .... For a more symmetric version,
the same is also true if we replace the top arrow by

(] (T (w1, 12) ® W2 (=) ).
where Wi5: BG,, x BG,, x M x M — N x N is the product of the two actions and
I (ug,ug) ==V,
= (—up/u2)™ 2 Ay (Ext3)) @ Ay, (BExtiz) @ det(Extya) ™

Remark 4.5. The K-theory class of the derived normal bundle to the morphism ¥ is the
complex Ny = —Exty — Exto;. The inverse of its K-theoretic Euler class (cf. Remark
3.6) is
[i= A (Ng)™ = Ay (Bxty, + Exty;) .
Note that
[(u) = WT =A_,—1(Extyy) ® A, (Exty))

is precisely the complex appearing in the definition of the vertex algebra in [Liu], where
it is interpreted in terms of its 1 — u expansion, in the sense of Lemma 3.7. Unlike I'_,
the complex I' does not have the property that its weight p part is perfect for every u

1

since it is a product of a Laurent series in v~ with a Laurent series in u. The complex

1

I'_(u) can be regarded as the u~' expansion of I'(u), following the discussion in Section

3.1.2 and Lemma 3.7.

4.1.1. Associativity. We will now prove the associativity of . The argument is standard,
but requires somewhat cumbersome bookkeeping.

Theorem 4.6. The K-Hall algebra K(A) is an associative algebra.

"This is not really a coproduct, since there is no Kunneth map K* (9078 x 908) — K* (912) @ K * (901is).



K-THEORETIC WALL-CROSSING 31

Proof. We fix

P € KL (ME), 05 € K (M), 0y € K (ME).
We will use «, 3,7 as indices in the different objects involved in the definition of = to keep
track of which copy we refer to. For example, X, g refers to the restriction of the direct
sum map to M, x Mg — M, and I', g refers to the restriction of I'_ to M, x Mz or
(O, x Mg)"8; we ease the notation by writing only ¥, 5 instead of ngg. To calculate
o * (s * @) we consider the following diagram, where the square is cartesian:

Ta,B,y

T

(Mo x Mg x DT, )¢ “220 MTie (Mg x M, )18 225 O < ONTE x e

lzﬂw lzﬂv

. iy B+ . :
(DM x Mg, )8 — 22, onrie s gMTE
o, B,y
lzaﬁ+7

e

a+B+y

by

The map X, is the triple direct sum map M, x Mg x M, — M54+ (or its rigidifi-
cation), and by associativity of the direct sum it can be written as

YoBny = Yty © Loy = Vatpy © Las-

The map 7,4, is the rigidification with respect to the natural BT acting on (9, x
M5 x M, )8 — more precisely, T is the 2-dimensional torus obtained by modding out the
diagonal G,, from G3 . We have the associativity type relation

TaByy = My © Moty = Ta,8 © Moty -
Denote @ap, = 0o X 05X o, € K (IS x Sﬁgg x M), Then
) Pat (955 93) = Casin)e Tapir O sy (Saa)e (Ton O 5 (Pasn))
= (Zap9)s (Taprr ® (Bp)sTapay (T @75 (0asr)))
— (Pl (ThoCasir) O T s (Do) ® s (Pasa))
Note that, by the properties of the Ext complex, we have

Exto = Extop + Exto, + Extg, = X5 (Exts g14) + Extg,
Ext. = Extg o + Ext, o + Ext, g = 35 (Extgi,q) + Ext, g

on M, x Mg x M., and therefore
5 (Tapiy) T 5.0 (Ts,) = Ay (Exto + Ext?) ® det(Ext.) " [rkExt_],
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which we can plug in (9). An entirely analogous calculation arrives at the same expression
for (¢a * g) * ¢ 0

The proof of associativity provides a formula for the n-fold product. To state it, we

introduce the following notation:

(1) Xpp is the n-fold direct sum map 9™ — 9.
(2) Denote by (91*™)"¢ the diagonal rigidication of 9™, and consider the rigidifica-
tion
Tr[n]: (mxn)rig N (mrig)xn
with respect to the remaining (n — 1)-dimensional torus.
(3) Define the complex I'f,;— on (91™)"& by

L — = Ao (Exto + ExtY) @ det(Ext<) " [rk<],

where

Ext. = Z Ext;; and Ext. = Z Ext;;

1<i<j<n 1<j<i<n
and Ext;; is the pullback of the complex Extys along the projection O™ — M2
onto the ¢-th and j-th component.

Proposition 4.7. We have
$re o dn = (508), (T -] 0 7 (91 ... &K ) -

Proof. The n = 3 case is shown along the proof of associativity. The general case can be

shown by induction on n and the same calculation as in the proof of associativity. 0

4.2. Generalized K-theoretic invariants. In analogy with the generalized motivic
Donaldson—Thomas invariants, we use the K-Hall algebra product to define generalized
K-theoretic invariants as a formal logarithm of the K-theoretic invariants constructed

directly from the stacks of semistable objects.

Definition 4.8. Let A be a good abelian category, let u be a stability condition as in
Assumption 2.11 and let o € C'(A)pe. Then by Theorem 3.12 and Theorem 2.13, we have
classes

O = Ju[ M) € K(A)
where j: 9Hrs E)ﬁjg is the open inclusion, and j, the pushforward in K-homology.
We then define the generalized K-theoretic invariants e# € K(.A) by

(-t
(10) gg:ZZT DI I

k=1 aj+..toap=«
plag)=p(a)
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The relation expressing € classes as a “logarithm” of ¢ classes can be formally inverted
to express ¢ classes as an “exponential” of ¢ classes:

(11) 55—2% D e weh

k=1 a1t tag=a
m(ag)=p(a)

Note that parts (5) and (4) of Assumption 2.11 guarantee that the sums in the previous
formulas are finite, and that «; are also permissible, so that 0* is defined. If there is no
non-trivial decomposition ay + ... + o = « with pu(a;) = p(a), then every object in
MK is stable and hence M* = IMATe is the good moduli space of M. In this case,

el = = [M*] encode the usual K-theoretic invariants of the good moduli space.

Remark 4.9. When 9, is itself finite type and quasi-smooth for every « (i.e., A has
homological dimension < 2), then we might take the trivial stability condition in Definition
4.8 and obtain invariants d,, ., which are intrinsically associated to the abelian category
A. If p is a stability condition and for some s € T" all classes with fixed slope u(a) = s are
permissible, then we might think of the invariants 0#, % as being intrinsically attached to
the exact subcategory A < A of 1 semistable objects with fixed slope s.

We will show later that, in general, the classes €% are precisely the K-theoretic Joyce-
Liu classes, denoted by Z, (1) in [Liu], when the latter are defined. Note that the definition
of Joyce-Liu classes is only available when there is a framing functor, and it is a hard
theorem that they are actually independent of the choice of framing functor (cf. [Joy7,
Proposition 9.12] and [Liu, Theorem 4.2.5]). On the other hand, in our approach we
do not need a framing functor, which extends the definition to new cases — for example,
moduli spaces of (weak) Bridgeland stable objects on Fano surfaces or 3-folds — and makes
the independence of the framing functor obvious. We see this as one of the strengths of

our new approach. For example, with our definition the following fact is basically trivial:

Proposition 4.10. Let B: A —> A’ be an isomorphism of abelian categories and let
be a stability condition on A as in Assumption 2.11. Let B*u be the stability condition
on A’ defined by B*u(a’) = u(B~'(a’)). Then

B,ol = (552‘) and  Bell = 522‘) :
Proof. The equality for the § classes is trivial once we notice that B(E) is B*u semistable
if and only if E' is p semistable. Then the equality for € classes follows from the definition
and the observation that B,: K(A) — K(A’) is an algebra homomorphism. O

A typical scenario where these type of results might be useful is when B is an auto-
morphism of a derived category, A is the heart of a t-structure and A’ the image of A by
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B. In the Calabi-Yau setting, automorphisms of derived categories have often been used
to constrain enumerative invariants, see for example [Tod3, OS, BM, Tho].

In contrast with the trivial proof given above, in Joyce’s setting these results might be
quite subtle. Since the definition of invariants depends on a framing functor, equalities as
in Proposition 4.10 are only immediate if we choose compatible framing functors on both
sides. So a general statement requires the hard result that the choice of framing functor
is actually not important; that requires [Joy7, Assumptions 5.1(g), 5.2(h)], which could
potentially be difficult to verify in examples.

4.3. Example: Vect. We consider now the simplest possible abelian category, the cate-
gory of vector spaces A = Vect. The stack of vector spaces is
S):nVect = |_| BGLn

n=0
where n € C'(Vect) = Zxq corresponds to the dimension of the vector space. Its rigidifica-
tion is

mye, = | | BPGL,.
n=0

Note that K*(BPGL,) is the representation ring of PGL,,, and K,(BPGL,) is the dual
to the representation ring. Given a representation V' of PGL,,, the Euler characteristic of
the corresponding vector bundle on BPGL,, is

x(BPGL,, V) = dim (V")

This follows from the fact that representations of PGL,, are completely reducible and
Whitehead’s lemma, which states that H*(PGL,,V) = 0 for any ¢ and any non-trivial
irreducible representation V. So the functional ¢,, is the functional that sends a repre-
sentation to the dimension of its fixed part or, in other words, to the multiplicity of the
trivial representation in its decomposition into irreducible representations. For n = 1 the
group PGL; is trivial and €; = ¢; is the isomorphism K*(BPGL;) = Z sending V' to
dim (V).

In the following proposition we show that ¢, = 0 for n > 1. Note that in Joyce’s [Joy7]
approach to cohomological invariants the analogous statement is trivial since the class he
defines has negative homological degree 2(1 — n?). However, from our perspective this
is a non-trivial statement. One way to prove it is via the connection to the homological
invariants which we will show later in Theorem 8.8. We present here a direct proof using
the Weyl character formula.
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Proposition 4.11. If A = Vect then ¢, = 0 for n > 1. In other words, we have
) 1
dlm(VPGL”) = 5(81 ¥ L0k 81)<V)
n times

for every representation V' of PGL,,.

Proof. Let p*V be the induced representation of GL, for which the diagonal G,, acts
trivially. Let T' = (BG,,)*™ be the maximal torus of GL,, and let

Y M = BT — BGL,, =M,
be the induced map. By Proposition 4.7 and the discussion in Section 4.1 we have

(er#...xe)(V) =[] ... ud](Cpy- ® Zf‘n]p*V)

n

where

T =[] (1—ﬁ)e2[u1,... ut ~ K*(BT);

1<i#j<n Uj
note that Ext. is >, _;, u;/u; and similarly for Ext., and recall Remark 4.5. Note
also that

YtV = Z dim(V, )u* € Z[ui!, ... ui']

HEZL™
is the character of the representation V. Recall that the root system of sl, is A =
{e; — e;}1<izj<n, Where ey, ..., €, is the standard basis of t¥. Therefore, we can rewrite
I'[),— more conceptually as
aEA

Note that this is almost the Weyl denominator, except that we take the product over
all roots and not just the positive ones. The proof is now concluded using the following

lemma for general semisimple Lie algebras. 0

Lemma 4.12. Let g be a semisimple Lie algebra and L an irreducible representation of
g. Then we have

W if L is the trivial representation
[u°] 1_[(u°‘/2 —u"%?) . ch(L) | = Wi P
SeA 0 otherwise

where A € tV is the root system of g, W the Weyl group, and ch(L) € Z[tY] is the

character of L.

Proof. Choose a set of positive roots A, and let A_ = A\A, be the negative roots. Let
A be the highest weight vector of L, which is integral and dominant. We recall the Weyl
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character formula:
Y ey sg(0)u )

HQEA+ (ua/2 B u_a/Q)
where p = %Zae A, QIS the Weyl vector. Using this and the Weyl denominator formula

ch(L) =

for the negative roots, we have

n(uo‘/2 — u_o‘/Q) -ch(L) = H (u‘“/2 — u_a/Q) (Z sgn(a)u”(Hp))

aEA aEA_ oceW

- (Z SgH(OJ)UOI(p)> <Z Sgn(a)u"()”rp))

o’'eW oeW
= Z sgn(oo’yusW e =)
o,0'eW
If A = 0 then the terms with o = ¢’ are precisely the ones contributing to the constant
coefficient, which shows what we wanted. We now argue that the constant coefficient is
equal to 0 for A # 0 by showing that there are no 0,0’ such that o(\) = o'(p) — o(p);
without loss of generality we may assume that ¢’ = id, so suppose that o(\) = p — a(p).

Since A is dominant we have

0<{p,A) ={o(p),a(N)) = (o (p),p) — llo(p)I|* <O

where the last inequality follows from Cauchy-Schwarz, and we have used twice that o is
an isometry. Hence {p, \) = 0, which implies that (o, \) = 0 for every positive root o and
therefore A = 0. 0

Remark 4.13. Our K-Hall algebra admits a generalization to arbitrary stacks in the
spirit of “intrinsic Donaldson—Thomas theory” from [BHLNK, ?], which will be pursued
elsewhere. The fact that Lemma 4.12 holds for a general semisimple Lie algebra translates
to a vanishing statement of ¢ invariants for stacks BG.

Example 4.14. In [Liu], the author introduces a slightly different notion of K-homology
where he requires a finiteness condition, see Definition 7.8 and the discussion that follows
it. Let us check that 1 * 1, or equivalently d5, does not satisfy the finiteness condition.
Let V be the canonical representation of PGLy, which has weight (1, —1). Then

(€1 % 81)pt((v — 2)N) = [UO]((Q —u—u Yt ut - 2)]\/) _ (_1)N(2N + 2>

N +1
is non-zero for every N. Since rk(V') = 2, this shows that the finiteness condition (33)
does not hold. In particular, do is not in the image of the pushforward along a map
7 — BPGL, from a finite type scheme Z.
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5. NON-ABELIAN LOCALIZATION AND THE WALL-CROSSING FORMULA

In this section we state and prove the wall-crossing formula for § and ¢ invariants.
The fundamental tool is the virtual non-abelian localization theorem of Halpern—Leistner
[HL1, HL5].

5.1. ©-stratifications. The non-abelian localization is stated in the language of derived
O-stratifications, which we briefly introduce now following [HL3, Section 1]; the reader

can refer to loc. cit. for details on this topic.
Let X be a derived algebraic stack over C which is locally of finite type. We will mostly

be interested in the case of X being the moduli stack of objects in some abelian category,
and we specialize the discussion to that case in Section 5.3.

Now consider © := A!'/G,,, and the derived stacks:

i) Grad(X) := Maps(BG,,, X) which is called the stack of the graded points of X;
ii) Filt(X) := Maps(©, X), which is called the stack of the filtered points of X.

We have the following canonical maps of derived stacks:

Filt(¥) ——— X

(12) grg jg /

Grad(X)

The canonical morphism gr is the restriction via the inclusion 0/G,, — ©; the evaluation
map ev; is given by restricting the map to the open substack (A'\{0})/G,, inside ©. The
morphism o is a section of gr, i.e. gr oo = idgmq, and is induced by the projection

© — BG,,. Finally, ¥ is the composition ev; o 0.

Definition 5.1 (O-stratum). A derived O-stratum inside X is a union of connected com-
ponents & < Filt(X) so that the morphism evy : & — X is a closed immersion.

Definition 5.2 (O-stratification). Let (I', <) be a totally ordered set with a minimal
element 0. A derived ©-stratification of X indexed by I' consists of:

(1) a collection of open derived substacks X<, for ¢ € I', such that X<, € X< for
c<d;

(2) for each ceT', a derived O-stratum S, < Filt(X<.) such that
X< \evi(6,) = | %o

d<c

(3) for every point x in X, the set {ce I' | z € X<.} admits a minimal element.
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A consequence of (3) is that the open sets X<, exhaust X. The open set X is called
the semistable locus of the O-stratification, and denoted by X*; its complement is called
the unstable locus. We will use the notation

X_.=evi(6,), X=X \X_. @ U X<,

By the definition of ©-stratification, every point in X comes with a distinguished fil-
tration f € &, < Filt(X) such that ev(f) = x. This distinguished filtration is called
the Harder-Narasimhan filtration of x; in examples, they turn out to be the Harder-

Narasimhan filtrations in the usual sense.

Halpern-Leistner also introduces a notion of the tcenter of a stratum, which plays an

important role for us:

Definition 5.3 (Center). For a derived O-stratum & in X, one defines its center 3 as

3=0""(6) c Grad(X).

Note that the center 3 is itself a union of connected components of Grad(X) (connected
components of Grad(X) and Filt(X) are in bijection, c.f. [HL4, Lemma 1.3.8]) and & =
g (3)-

Joyce defined in [Joy7, Section 3.3.4] a slight weakening of the notion of ©-stratification,
which he calls pseudo ©-stratification.

Definition 5.4 (Pseudo O-stratification). Let (I', <) be a partially ordered set with a
minimal element 0 such that every ¢, ¢ € I' have a greatest lower bound, denoted by ¢ v ¢
A derived pseudo O-stratification of X indexed by I' consists of:

(1) a collection of open derived substacks X<, for c € I, such that X<.n X<y = X<(cve)-
In particular, X<. € X< for ¢ < ¢;
(2) for each c €I, there exists a O-stratum S, < Filt(X<.) such that

X< \evi(6,) = | %o
(3) for every point x in X, the set {ce ' | z € X<.} admits a minimal element.

The two main differences between a pseudo O-stratification and a ©-stratification are
that we no longer require the indexing set I' to be totally ordered, and a ©-stratum &, is
no longer part of the data, we just require that it exists. This is a fairly mild difference
and most of results concerning O-stratifications also apply to pseudo O-stratification. In
some cases, it is easier and more natural to construct a pseudo-0 stratification, so we will
formulate our results in that language.
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5.2. The non-abelian virtual localization theorem. Let X be a quasi-smooth derived
stack which admits a ©-stratification. For simplicity, and because it is enough for our
purposes, we will assume that the O-stratification is finite (i.e. I' is finite) and that X
admits a proper good moduli space, as well as all the centers 3,.5

Note that the stack of graded points comes with a canonical BG,, action. This action
preserves the center 3. € Grad(X<.) of &.. We regard the center 3. as a substack of X
via the locally closed immersion X: 3. — X<. € X. We consider now the decomposition

Txls. =T, ®T.® T}

of the restriction of the derived tangent bundle to 3. into its negative/zero/positive weight
parts, according to the canonical BG,, action.

Remark 5.5. The complexes T, /%% have natural interpretations in terms of the derived
normal bundles of the immersions in (12). By [HL3, Lemma 1.3.2, Lemma 1.5.5] we have
Te ~ Ts,
TC_ ~ U*TGC/%[]-]

For ¢ € I' we introduce the following complex on 3.:
(13) E.=Sym ((T{)" ®T.) ®det(T,)" [~ rk T].

Note that E. is not perfect or coherent in general, but it has the property that its weight
1 part is coherent for every p and vanishes for g » 0; see the discussion in Section 4.1
regarding I"_.

Theorem 5.6 ([HL5, Corollary 3.16], Virtual non-abelian localization). Let X be a finite
type quasi-smooth derived stack admitting a derived O-stratification indexed by a finite

set I'. Assume that X, 3. have proper good moduli spaces.

Then, for any V € K*(X), the following formula holds:
xss) + 2 X3 Vs ® E)

cel’\{0}

(14> X(%, V) = X(xSSJ/

Note that X% = 37 and Fy = Oxss, so on the right hand side we could have written
just a sum over all c € I'. All the terms are well defined by Theorem 3.12, since X being
quasi-smooth implies that the centers 3. are also quasi-smooth by Remark 5.5 (see [HL3,
Lemma 3.1.4] for further details). This holds even though E. is not coherent by the same
argument as in the proof of Lemma 4.4.
8As explained in [HL5], it is possible in some cases to allow X to be non finite-type (e.g. the moduli of all

bundles on a curve) and the stratification to be infinite. One of the remarkable aspects of the theorem,
which we do not explore at all here, is that sometimes x(%¥,V) can be defined even in that setting.
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Remark 5.7. For the wall-crossing formula formulated in operational K-homology we
will also use the following relative version of the non-abelian localization, as in [HLH,
Proposition 6.10]. If X satisfies the conditions of Theorem 5.6, S is some derived stack
and V € K*(X x S) then we have an equality

(X xS = 8).V =3 x S = 9)u(V]x,xs ® Ee)

cel’

in K*(9).

Remark 5.8. Theorem 5.6 still holds for pseudo ©-stratifications, as long as we pick
some strata and corresponding centers. The proof in [HL5] shows the result when there
is just one stratum and then inducts on the number of strata. To induct on the number
of strata when I' is just partially ordered we take a maximal element ¢ € I" so that there

o= 2o = 2w,

c'#c c#c
so in particular X_. is closed in X and X\X_. inherits a pseudo O-stratification indexed

isno ¢ > ¢. Then

by ¢ € T'\{c} with the same centers.

5.3. (Pseudo) ©-stratifications on M 4. Let us now consider the case of stacks which
come from a good abelian category; we start in the underived setting, and later consider
the derived enhancement. It is shown in [AHLH, Proposition 7.12, Corollary 7.13] that the
stacks of graded points and filtered points correspond, respectively, to Z-graded objects
of A and Z-filtered objects of A:

(15) Grad(My) = |_|Ma1 X M,

n

Filt (M) = |_|5xtcw .

In either case, the union is over all possible choices of n > 1, ¢ = (ay,...,q,) with
a; € C(A)\{0} and integer weights

wp > ...> Wy,
and the stack £xt., parametrizes Z-indexed (descending) filtrations
CcE cEycE cC...

such that E,, = 0 for w > w; and [Ew /Ewﬂ] = oy if w = w; and 0 otherwise; in particular,
E,, = E stabilizes for w < w, and [F] = a1 + ...+ a,. Note that, by setting E; = Ewi,
the data of such a filtration is the same as the data of

O=FkF <k ...k, =FE
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together with the choice of weights. In a similar way, a point in Grad(M 4) is canonically
Fw, with [Fw] = 4
for w = w; and 0 otherwise, but this is the same data as £ = F1 ®...® F,, and a choice

described as an object E together with a decomposition £ = @, _,
of weights. The stacks of graded and filtered points on M, are the union of components
such that ay + ... + a,, = a. The map evy described in the previous section sends a
filtration E, to its associated graded @, ., Ew/Ew,l and ev; sends the filtration to the
total object £. The map o sends a graded point P, F, to the filtered point defined by
By =@ ysy Fur-

We will assume the existence of a pseudo O-stratification adapted to p. Let
HN,(p) = {(oq,...,an): a1+ ...+ o, = a and p(oy) > ... > p(ay)}

be the set of possible u-HN types. Any object in A has an associated p-HN type ¢ =
(aq,...,a,) where o = [E;/E;_1] are the types of its u-HN factors in (2). Given ¢ €
HN, (1), we consider the substack M*_ < M, of objects whose p-HN type is c.

=c —

Definition 5.9. We say that there is a pseudo O-stratification of M, adapted to u if
there is a partial ordering of HN, (1) which satisfies’

(16) (01, @y ey ey 0) = (e 0+ Q)

and for which
[ H
<c ' U M:d
d<e

forms a pseudo ©-stratification.

Condition (16) should be interpreted as saying that if [F;] = a; then the p-HN type
of @, F; is = (ay,...,q,), which is the form in which we will use this condition in the
proof of Proposition 5.10. It implies in particular that ¢ = («) is the minimal element of
HN,(@). Since E is semistable if and only if its u-HN type is («), the definition implies
that p-semistability agrees with semistability in the sense of the O-stratification.

We believe that in all cases of interest there is a natural choice of partial ordering
making this hold. The main point is that the partial ordering should be chosen in a way
that MX,_ is open. In some cases, it is possible to upgrade the pseudo-© stratification
to a honest O-stratification; see [HL4, Theorem 2.2.2] for some technical conditions that
make this possible. Doing so amounts to choosing a total ordering, instead of a partial

ordering, and a choice of weights for each ¢ (i.e., a choice of ©-stratum).

9n the right hand side of (16), o; + ¢ is put in a position that makes it a p-HN type, i.e. it is put
between oy, and a1 such that p(oy) > p(a; + o) > plog41). In the case that p(ay) = p(a; + ;) for
some k, the right hand side should be interpreted as (..., + ag + @ ,...).
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5.3.1. Centers. Given c € HN, (1) and a choice of weights w, we have a O-stratum
Sew S Exteyy S Filt(M,)

which is the preimage of 9", along the map evy: Ext.,, — 9M,. The next proposition
identifies the centrum Z.,, of this stratum:

Proposition 5.10. For every ¢ = (ay,...,q®,) € HN,(u) and choice of weights w, the
center Z., is a product of stacks of p-semistable objects:

~ MM j
Zew =~ ME M

Proof. By definition, the center is a substack of the connected component of Grad(M,)
which is isomorphic to M,, X ... x M,,. Let E = @, F; be a point in such connected
component. By [HL4, Corollary 2.3.6], E = @ _, F; is in the center if and only if the
total object F is in ML, If F,..., F, are all semistable, then

OchchoRhc..c@F=E
i=1

is the p-HN filtration of F, so F is indeed in M¥X.. On the other hand, if not all the M,,
are semistable, then (16) implies that the u-HN type of E is > ¢, so E = @, F; is not

in the center. O

Since the strata S.,, and the centers Z.,, are identified for different w, we will drop it
from the notation and just write S, = S, and Z. = Z, .

5.3.2. Derived enhancement. We explain now how to upgrade the statements above to
the derived setting. The stacks of filtered and graded points of a derived stack inherit a
natural derived enhancement (cf. [HLP, Theorem 5.1.1] or [HL3, Theorem 1.2.1]).

Recall from Section 2.1 that the stack M 4 admits a derived enhancement 9t 4, which
is obtained from the open embedding of M 4 into the classical truncation of M, where
T is a saturated dg category. By [KPS, Proposition 8.26], the derived stacks of graded
and filtered points on Mt admit descriptions analogous to (15); hence, the same is true
for the derived stack 9 4.

The pseudo O-stratification on M 4 considered in Definition 5.9 induces a derived
pseudo O-stratification on M 4 by [HL3, Lemma 1.2.3]. In particular, this means that
for each ¢ € HN, () we have derived enhancements &, 3. of S., Z., and maps of derived
stacks as follows:

evy
60 — mic - ma

o )7

3e
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By the previous considerations, the description of the center in Proposition 5.10 can be
enhanced to

Be =ML x ..o x M .
Note that > = evy o o is precisely the direct sum map.

Let us now identify the complex E. appearing in the non-abelian localization formula
with the class I'_ in the definition of the K-Hall algebra.

Denote by Ext;; the pullback of Ext;» via the map 3. — 9k x zmg],. In particular,
when ¢ = j, the map above factors through the diagonal M}, — ML x ML and Ext;; is
the pullback of Ty [—1] to 3. by (1). By bilinearity of the Ext complex, we have

S*Tar, = Y, Exty[l].

1<i,5<n

Given a weight w, the canonical BG,, action on the center can be described as
BG,, x [ [, 5 [[(BG.. x ) 2% T M., .
i=1 i=1 i=1
Here, (—)*: BG,, — (BG,,)" denotes the map given by (—)“ in the i-th copy of BG,,.
Note that Ext,; has weight w; — w; with respect to this action. Therefore, we have

TV = Ext_[1] = T3, , T} = Ext-[1], T, = Ext_[1].

Observe that, although the BG,, action depends on the choice of weights, the splitting
of X*Tyy, above into zero/positive/negative weights does not. Hence the complex E, is
precisely

(17) E. = Sym(ExtY[—1] + Ext-[1]) ® det(Ext[1])[rk<]

= Ay (ExtY + Ext.) ® det(Ext.) " [rk(Ext<)] = Ty —
5.4. Dominant wall-crossing formula. We now prove the dominant wall-crossing for-
mula, which compares invariants defined with respect to two stability conditions g,
where po dominates pu. The typical scenario where a stability dominates another is when

1o is on some wall in the space of stability conditions and p is in an adjacent chamber.

For us, dominance means the following:

Definition 5.11 (Dominance). Let pug, be as in Assumption 2.11. We say that pg
dominates p at a € C'(A),e if the following condition holds for every E with [E] = a: E

is pp-semistable if and only if

po(F1) = ... = po(Fy) .

where Fi, ..., F, are the u-HN factors of E.
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The more standard definition of dominance (see [Joy4, Definition 4.10]) is that u, uo
should satisfy

u(B) = p(y) = po(B) = po(v)
for every (3, € C(A). This implies dominance as in Definition 5.11, but it is sometimes
too restrictive in applications, see for example [FT2; Section 4.1]. The following notion

of dominance is more flexible, and implicitly used in loc. cit.

Definition 5.12 (Numerical dominance). Let g, be as in Assumption 2.11. We say
that pio numerically dominates p at aw € C'(A),e if the following holds:

(1) If E is po-semistable of class a and 0 = Ey < F1 & ... € E, = E is the p-HN
filtration of E, then [E;/E;] € C(A)pe is permissible for any ¢ > j.
(2) We have
p(B) = n(v) = mo(B) = po(v)
for every /3,7 € C(A) such that § + v = [E;/E;|, where E; are steps in the p-HN
filtration of some pp-semistable object in class o as above, v € C(A)pe, and the
stack M0 are non-empty.

Proposition 5.13. If ;4 numerically dominates p then py dominates p.

Proof. Let I < C(A)pe be the set of types of the form [E;/E;] for some E which is
po-semistable of type «. In particular, o € I. We start by proving that if [E'] € I
then E’ being p-semistable implies that E’ is pg-semistable. Suppose that E’ is not -
semistable and let E” < E’ be its maximally destabilizing subobject with respect to pg; in
particular, E” is po-semistable. Using the condition with v = [E”] (note that v € C'(A)pe
by Assumption 2.11(4)) and § = o/ — v = [E’'/E"] it follows that E” also destabilizes F’
with respect to pu, a contradiction.

Since extensions of pp-semistable objects with the same p-slope are still pp-semistable,
if the p-HN factors F; = F;,1/F; — which are p-semistable by definition, and hence f-
semistable — of E have the same pp-slope then F is pg-semistable. On the other hand, we

have

u(Fy) > p(Fir) = po(Fi) = po(Fig)
for each i = 0,...,n — 1; note that [F;] + [Fis1] = [Eire/E;] € I. But if one of the
inequalities is strict then

po(Ei) = po(Fy + ... + Fi) = po(Fi) > po(Fisa) = po(Fir + ... + Fy) = po(E/Ey)

which would mean that E is not pg-semistable. 0

We now prove the dominant wall-crossing formula:
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Theorem 5.14 (Dominant wall-crossing). Let pg, 1 be stability conditions as in Assump-
tion 2.11 such that py dominates p. Then we have the equality

(18) oHo — > o w5
(a1,...,an)eHN (1/10)

in K(A) where

(19) HN, (p/10) = {(a1, ..., a,) € HNo (1) po(aw) = po(a), i =1,...,n}.

Proof. By the definition of dominance, the stack of pp-semistables is a union of strata
mee = || e,
c€HNa (1/po)

The p pseudo O-stratification on 9, restricts to a pseudo O-stratification of MH indexed
by HN,(1¢/p0). By Assumption 2.11, this is a finite set.

We now apply the virtual non-abelian localization theorem, cf. Theorem 5.6. For
simplicity, we argue at the level of functionals; see Remark 5.7 for the operational version.
Let V e K*(9m1e).

Then

060 (V) = X(D0"E, V) = X (50, 7V)

- > X(ME x.ox M SV Q E,)
(a1ye.eyan )EHNG (1t/110)
— > X(O % ..ox 9 e (Srie) Y @ )

(e1;...,0m )EHN G (1/ p10)
The first equality is just the definition of 0#°; second and fourth equalities are obtained
from Proposition 3.8; the third equality is the non-abelian localization theorem applied to
the p pseudo O-stratification of M 0 (see Remark 5.8). Finally, we have by Proposition
4.7 and Remark 3.13 the equality

XOME X x M SV @ EL) = (08, « ... 08 ) (V)

Qn

which finishes the proof of (18). O

5.5. General wall-crossing formula. It is explained in [Joy7, Section 11] how a gen-
eral wall-crossing formula for stability conditions connected by a continuous path can be
deduced from the dominant wall-crossing formula. The statement of the general wall-

crossing formula involves the combinatorial coefficients

S(a17"'7an;u7l’b/>€ {07_]-7]-}a U<a17"'7an;M7MI)EQ7
U(a17"'7an;u>ﬂ’/) GQ
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defined in [Joy6, Section 4] for oy, ..., a, € C(A) and u, ¢/ two stability conditions.

Theorem 5.15 (Continuous path wall-crossing). Let p, ' be two stability conditions
which can be connected by a continuous path crossing finitely many walls, in the precise
sense that it satisfies [Joy7, Assumption 5.3]*

formulas in K(A):

. Then we have the following wall-crossing

(20) o= Y Slan,.anip ) O s O
al+...toa=«o
(21) el = Z Ular,...,ap;pi, ') -l 5. oxeh

= Z U(Oél,---,Oén;H,l/u/)'[[---[521,552],---,],&55”]

al+...toa=o

In every case, the sum runs over o; € C'(A)pe with 9M* 0 and non-zero S, U coef-
ficients, and with those restrictions they are finite sums by assumption. In the last line,

the bracket [u,v] is the commutator u = v — v = u in the associative algebra K(A).

Proof. The argument of [Joy7, Section 11] reduces the statement to that of the dominant
wall-crossing formula. For the reader’s convenience, we quickly summarize how it goes.
Let p, t € [0,1] be a continuous path of stability conditions with py = p, g1 = p/. Then
[Joy7, Assumption 5.3] implies that we can find

O=to<ti<...<ty_1<ty=1
such that:

(1) The coefficients S(ayq, ..., an; i, i) are constant for ¢ € (t;,t;41);

(2) The moduli stacks 21#¢, and hence the classes §%¢, are constant for t € (¢;,¢;11);

(3) If s € (t;_1,t;41) then p;, numerically dominates ps. Moreover, the coefficient
S, ..., Qu; s, pit,) 18 equal to 1 if (aq, ..., a,) € HN,(us/1e,) and 0 otherwise.

Then the wall-crossing (20) for the pairs (u, ') = (s, ptt;) is the dominant wall-crossing
formula in Theorem 5.14. By [Joy7, Lemma 11.5], using the formal properties of the
coefficients in [Joy6, Theorem 4.5], the dominant wall-crossing formulas can be combined
to prove (20) for the pairs (p, ') = (po, piz) for every t € [0, 1], by induction on the i such
that ¢ € [t;,ti41).

The wall-crossing formula for the € invariants (21) formally follows from (20), see the
last step in the proof of [Joy6, Theorem 5.2]. The fact that (21) can be written entirely
in terms of commutators is shown in [Joy6, Theorem 5.4]. O

10Gince we are stating a formula for § invariants as well, we should replace the non-vanishing condition
on U coefficients in [Joy7, Assumption 5.3] by non-vanishing of S coefficients.
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5.6. Changing the heart. We shall now briefly discuss the alterations necessary for
when we consider stability conditions when the underlying abelian categories are different
hearts of the same triangulated category Ho('T), such as the case of tilt stability discussed
in Section 2.3. First of all, the natural place to write wall-crossing formulas is in the Hall
algebra
K(T) := K«(Mr)g,

see Remark 4.3. The inclusion of 9t 4 into My induces algebra homomorphisms K(A) —
K(T), and hence the classes ¢ may be regarded as being in K(T).

Definition 5.16. We say that oy = (Ao, po) dominates o = (A, u) if every o-semistable
object is in Ay and an object in Ag is op-semistable if and only if it lies in A n Ay and
its 0-HN factors have the same 1y slope.

With this notion of dominance, the exact same proof of the dominant wall-crossing
formula goes through, showing that (18) holds in K(T).

Consider now the case of tilt stability o, 5 = (A, B,V ) discussed in Section 2.3.
Given a fixed topological type «, the moduli stack 919 is empty unless chy(a) - w? >
cho(a)w? - B, by construction of A, p. When equality holds, « is not permissible, so we

define the space of stability conditions'
S, = {0up: wample and chy(a) - w® > chy(a)w? - B} .

Corollary 5.17. Suppose we are in the setting of Proposition 2.14 and either chg(a) > 0
or chp(a) = 0 and ch;(«) is effective. If 0,0’ € S, then we have wall-crossing formulas as
in Theorem 5.15 comparing 7 and €7 in K(D"(X)).

Proof. Given o = o, g, the abelian category Ay, p does not depend on ¢ > 0 by con-
struction. When ¢ » 0, all oy, p semistable objects are in Coh(X), and indeed stability
is equivalent to (w, B — K /2)-twisted Gieseker stability. Then, we can compare o, p and
o..p by comparing

Ow,B <> Otw,B <> O/ B/ <> Oy B -
Each of the 3 wall-crossing formulas is an application of the general wall-crossing formula
(21) for the abelian categories Ay, g, Coh(X), A, 5/, respectively. O

6. FRAMING FUNCTOR AND PAIR INVARIANTS

The original approach of [Liu] — following [Joy7] — to generalized K-theoretic invariants
does not use the stack of semistable objects, but instead a framing functor that “stabilizes”

Un [FT2, Figure 1] this is the region to the left (assuming cho(E) > 0) of the vertical line through
I(E) = («).
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the problem. In this section, we recover their definition of invariants, but now as a theorem
(cf. Theorem 6.6). Once we compare our algebraic setup to theirs (cf. Theorems 7.10
and 8.6), the main result of this section establishes that our € classes match their classes
(cf. Proposition 7.13(3), Theorem 8.8).

6.1. Framing functor and stack of pairs. Throughout this section, we fix a € C'(A)pe
and p a stability condition. We denote by C, < Cpe(A) the subset of all o for which
there exists o so that @ = o/ + o with p(o’) = p(a) = p(a”) and ME, MY, # &. We
allow o” = 0, so that a € C,. By Assumption 2.11, C,, is finite. In other words, C,, is the
set of topological types which appear as pu-Jordan-Holder factors of u-semistable objects

in class «.

Recall from our assumptions (cf. Definition 2.1) that .4 comes with an embedding into
the homotopy category of a dg category T (for example D?(X)). Let Perf be the dg
category of perfect C-complexes.

Definition 6.1. A framing functor for (A, o, i) is a functor of dg categories ®: T — Perf
with the following properties:

(1) If F € A then H(®(F)) = 0 for i < 0.
(2) If [F] € M~ then H(®(F)) = 0 for ¢ # 0, i.e. ®(F) is a vector space. Moreover,
O(F) +# 0.

Note that a framing functor for « is automatically also a framing functor for any o’ € C,,.

By functoriality of the construction in [TV], a framing functor induces a map of stacks
m.A - mT - SInPen‘

which preserves the monoidal structure and the BG,, action on the stacks. The stack
Mpers carries a universal perfect complex, and we denote by V the pullback of this perfect
complex to M 4. Note that V is connective (i.e. h<°()V) = 0) by (1) and its restriction to
MY, is a vector bundle by (2).

Let
A: C(A) — mo(Mp) 2 70(Mpere) ~ Z
be the homomorphism of monoids sending a to rk(Vjon, ). Note that A(a’) > 0 for o/ € C,,.
We will denote by ®° the left exact functor sending an object F of A to the vector space
H(®(F)).

We let B be the exact subcategory of A of objects F' such that H'(F) = 0 for i # 0,
which in particular contains all the u-semistable objects in class o’ € C,,. Let 9z < M4
be the stack which parametrizes objects in B; in other words, 915 is the locus where the
perfect complex )V is concentrated in degree 0, which is open in 91 4. Note that B is closed
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under direct sums and quotients, but not necessarily kernels, so it is not necessarily an

abelian category.

The following examples of framing functors have been considered in [Joy7, GJT, Bul,
Mor].

Example 6.2. Let Q be a quiver, A = Repg and fix some positive integers a, € Zx
for each vertex v € Qp. Then the functor that maps a representation {V,}.eq, of @ to
Docg, Vo2™ is a framing functor for every a, 1. In this case, H'(®(F)) = 0 for every i # 0

v

and F' € Repg.

Example 6.3. Suppose that X = Coh(X) and « € C(Coh(X)) and p satisfies Assump-
tion 2.11 (for example u is slope or Gieseker stability). Let Ox(1) be an ample line
bundle. By [HL6, Lemma 1.7.2], every object in B is N-regular for sufficiently large N,
and hence the functor

RI(—® Ox(N)): D*(X) — Perf

is a framing functor.

Example 6.4. Suppose that A = Coh(C') where C' is a curve and fix a point p € C,
denote by ¢: {p} — C the inclusion. Then

Li*(=)¥: D*(C) — D"({p}) ~ Perf

is a framing functor for slope stability.

We let Ag be the mapping cylinder of ®° (cf. [Moz]), i.e. the abelian category which
parametrizes triples (F, U, f) where U € Vect, F € A and f: U — ®°(F) is a morphism
in Vect; we call an element of Ag a ®-pair, and we sometimes denote it by [U — ®°(F)].
Similarly, define Bg to be the mapping cylinder of ®: B — Vect, which is the exact
subcategory of Ag where F' € B. The topological type of a ®-pair is ([F],dimU) €
C(A) x Zso.

We now define the derived stack 8 = P44 which parametrizes objects in Bg. Recall
that 9z has the vector bundle V whose fiber over F' is ®(F'), and let U be the universal
vector bundle on

SUtVect = |_| BGLTL .
n=0

Then ‘B is defined to be the total space of the vector bundle
SB = TOthmeect (Z/{v ® V) '
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We still denote by U,V the pullbacks to B; on P there is a universal linear map U — V.
The stack P admits a decomposition into connected components

sB = |_| ('B(a,d) )
(a,d)eC(A)xZ=0

some of which are possibly empty (for example if A(a)) < 0). Note that
513(%0) = mtlf,a = gﬁB M mta

and in general there is a projection map II: ‘B(q.q) — Mpq. The fibers of this map are
isomorphic to

Ad-)\(a)/GLd
and in particular this is a smooth map.

We define an Ext complex on P x P as
(22) Exty, = I*Extqo @ [U)’ ?ug — Uy ? Vsl .

Despite By not being an abelian category, the stack 98 and the complex Ext®, have all
the structure and properties discussed in Section 2.1; see [Joy7, Section 5.2] for a detailed
discussion. In particular, (1) holds and the relative derived tangent bundle of II is

T = (U’ QU U ®V].

This follows from the fact that Ton,., = (U¥ @ U)[1]. The restriction of Ty to the locus
of P which parametrizes ®-pairs with f: U — ®(V) injective is a vector bundle. The
K-Hall algebras K(B) = K.(Mg)®zQ and K(Bs) = K.(P) ®z Q are defined in the same
way as for an abelian category.

6.2. Stability conditions on 4. From the stability condition g on A, we define 2
stability conditions on the abelian category of pairs Ag. The first is the “naive” stability

condition
to: C(Aa)\{(0,0)} — T L {oo}

where oo > t for every t € T', and is defined by

w(p) ifBg#0

d) =

The second one is the Joyce-Song stability condition. To define it, we consider some rank
function'? rk: C'(A)\0 — Z-, which satisfies
p(B) = u(B) = rk(B) + k(') = rk(B + §').

2The choice of rank function not really play any role, as we will see in Proposition 6.5. In examples
there is often a natural choice, which is the denominator of u.
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Then we let
to: C(Aa)\{(0,0)} — (T"x Q) u {0},

where T' x Q is given the lexicographic order and co is the maximum, given by

(1(B), d/tk(8)) it B #0

d) =

Stability can be characterized as follows:

Proposition 6.5. Let o/ € C,,.

(a) A pair [F' — 0] of topological type (a/,0) is po-(semi)stable if and only if it is
p4-(semi)stable if and only if F is u-(semi)stable.

(b) A pair [U ER PO(F)] of topological type (’,1) (in particular with dimU = 1) is
po-(semi)stable if and only if F' is p-(semi)stable and f # 0.

(c) A pair [U ER ®(F)] of topological type (o/,1) is p.-semistable if and only if
it is pu, stable if and only if F' is semistable, f # 0, and f does not factor as
U — ®°(F') < ®(F) for some subobject F’ # 0 with u(F'") = u(F/F").

(d) The stability condition py dominates u at (o/,1), in the sense of Definition 5.11.

Proof. Part (a) is trivial. Part (b) is also easy, since clearly ug-stability implies u-stability
of F and, if F' is p-semistable, the only possible destabilizing subobject of U — V is
U — 0, which is a subobject if and only if f = 0. Part (c) is standard, see [Joy7, Example
5.6].

For part (d), obviously g -semistablity implies po-semistability. Suppose that [U ER
PO(F)] is pg-semistable but not p,-semistable. Then its u-HN filtration is

0c[UL ()] <UL a(F)

where F” is the maximal subobject of F' with u(F") = u(F/F") through which f factors.
Then the u,-HN factors both have

Ho([U & @°(F)] = pu(F') = w(F) = w(F/F') = po([F/F' = 0]).
The other implication is also easy to establish. O
Recall the definition (19) of HN, (14 /po). It follows from the proof of (d) above that
HNa (14 /o) = {(e, D} U {((¢, 1), (@,0)) s @' + 0" = a, p(a’) = p(a”)}.

Given o € C, we denote by

o) € Blay € Bl
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the stacks of p, and pg-semistable pairs. By Proposition 6.5(b), ‘,B’(‘(g, 1) Is a projective
bundle over 9,
I: B, ) = P(V) — 0,

By Proposition 6.5, there are no p,-strictly semistable pairs, and in particular 5’(‘;’71) =

s
5(&1)

inductively in terms of the classes coming from the moduli spaces of Joyce-Song pairs.

€ K(Bg) are defined without any trouble. The next result expresses the e classes

Indeed, in the theories of Joyce and Liu, this theorem is actually their definition of in-

variants.

Theorem 6.6. Let ® be a framing functor as above and let p, be Joyce-Song stability
on Ag. Then, we have the equality

(-1

(23)  TL(A_y(Ty) nefyy) = +§+]_ S Ae)[[-- [ en] e, ]
llt(a';):u?;)
in K(A).

6.3. Morphisms between K-Hall algebras. In the proof of Theorem 6.6, we will need
as an input the property that I1,(A_;(TY) n —) is (for practical purposes) a homomor-
phism. Indeed, this is a somewhat general phenomena that could be of interest in other
scenarios, so we formulate it in general. In what follows, the main example to keep in mind
is the forgetful functor C = A — A and the induced projection of stacks II: P — 9.

Consider a morphism of abelian categories C — A and assume that it lifts to a map
of derived stacks f: 9 — M4 which is compatible with the direct sum maps and the
BG,, actions. We also write f for the induced map Sﬁgg — imjg. Define the K-theory
class

(24) Fia = (f x f)*Extyy — Ext§, € K*(Me x Me).
Similarly, define Fy;. Note that Fjo descends to (9 x Me)" 8. The relative derived
tangent bundle of the morphism f is given by the restriction
T;="Te— f*Ta= A"Fi3 € K*(Me)
to the diagonal A: M — Me x M, and it descends to imgg.

The following proposition, constructing a homomorphism of associative algebras, is
analogous to the homomorphism of vertex algebras and Lie algebras in [GJT, Theorem

2.12).
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Proposition 6.7. Suppose that the K-theory class F' is represented by a vector bundle
on NMe x Me. Then the map

T: K(C) — K(A)
¢ = [o(A(T}) N )
is a homomorphism of associative algebras.

More generally, if Z;,Z, < 9 are such that the restriction of Fis to Z; x Z; is
represented by a vector bundle and ¢, are pushed forward from Z;, Z5, respectively,
then

T(p =) = T(¢) = T(¢).

Proof. Assume first that Fis is globally a vector bundle. Let us denote by F;; the pullback

of Fio via the map e x M Pirhs, Me x Me where p; is the projection in the i-th

component for ¢ = 1,2. In particular, F; = p;T;. Then, we have

(25) YTy = Fip + Foo + Fio + For .

Since by assumption Fiy is a vector bundle, Proposition 3.5 gives an equality
(26) A (FY) = A1 (Fi2) ® det(Fia) ' [tk Fi2] .

Combining (24), (25) and (26) we get the equality

(27) A(ZTF)® (f x f)* T2 = piA(Ty) @ p3A (Ty) ®IC

in K*(Me x M), where we denote by ', T'C the complexes (7) for the abelian categories
A and C. Together with the compatibilities

foXe=Y0(fx f)and (f x f)ome=ma0(f x [),
where ¥ 4, X¢, 74, Te are the maps in Definition 4.2 for C, A, we obtain Y (¢ * 1) = Y(¢) =
Y (1) by unraveling the definitions.
In the more general case, if j;: Z; < 9 then Y(¢) is, more precisely, defined by

T(¢) = (f Ojl)*(A—l(jfo) no).
Equality (27) still holds after restriction to Z; x Zy and the proof goes through by push-pull
to 2y X Zs. ]

The following is a straightforward corollary:

Corollary 6.8. Let C, A be good abelian categories such that C < A is a full and faithful
subcategory. Then pushforward along the inclusion 958 < M induces a homomor-
phism

K(C) - K(A).
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Proof. Proposition 6.7 applies with F' = 0. O

6.4. Proof of Theorem 6.6. The basic idea of the proof is to combine the projective
bundle é‘g?)g — OMHT8 with the wall-crossing formula relating o and ., stability. We
will use the morphism Y from the previous section given by

T(¢) = IL(A-1(Tyy) N ¢) € K(A)
for ¢ € K(Bg) for which it is defined. We also have homomorphisms K(B) — K(.A) and
K(B) — K(Bg) induced by the respective inclusions of categories, cf. Corollary 6.8.
We will abbreviate ¢, = €%, 5@71) = 5’(‘;1) and 5(()a71) = 5’(‘&071), and use similar notation

for § classes. By abuse of notation, the classes ¢, can be regarded either in K(5), K(A)
or K(Bg). Following this abuse, we have by Proposition 6.5(a)

€a = E(n0) = € a0) € K(Ba).

Step 1: Projective bundle formula. By Proposition 6.5(b) and the discussion that follows
it, ‘B‘(‘o‘jil)g is the projectivization of the restriction of V to 9*r€ which is a vector bundle
of rank A(«). By [Liu, Lemma 2.1.16] it follows that

(28) T ) = Aa)dt.

(a1

Note that [Liu, Lemma 2.1.16] is stated for schemes with an obstruction theory, but the
projective bundle formula in [Kha2, Propositions 3.1(iii), 3.2] can be used to extend it to

derived stacks. Equation (28) also holds if we replace o by any o' € C,.

Step 2: Wall-crossing. By the dominant wall-crossing formula (cf. Theorem 5.14)
and Proposition 6.5(d), we have the wall-crossing formula between naive and Joyce—Song

stabilities:
0 _ -+ +
(29) 6(&,1) = 5(&,1) —+ Z 5(6&’,1) * 50/1
o' +a"=a
(o) =p(al)
in K(B(})
Step 3: Applying T. We now apply T to (29) to obtain
(30) Ma)sa =T(ehy) + D, T(efh 1) *0as-
altaz=a

wlar)=p(az)

Here, we are using (28) on the left hand side and the general version of Proposition
6.7. To see that we can apply it, note that in this case the K-theory class Fis is given by
Uy @V, —Uy ®Us (cf. (22)) and we may take Z; = M7 |y and Z, = MY, ). Indeed, the

restriction of U} ®Us is trivial when we restrict to Z; x Z; except in the case (4, j) = (1, 1).
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When (i,7) = (1,1), Fi2 can be represented by the cokernel of U} @Us — U, ® Vs, which

is a vector bundle since i — V is injective over ! ao 1

Step 4: Combinatorics. Observe that (30) determines recursively the invariants d,, and
hence ¢,, from T( ,1)). The same is true for the formula (23), so it remains to show
that the two are equlvalent, which is a combinatorial statement. We define classes ./, for
o' € C,, to be the classes that satisfy (23) (for any o/ € C, in place of ), i.e.

Tty = Y E @ [ el ]G]

|
a1+...fan=a n:
wloi)=p(e)

= > Z Map)ea, * Eay # ... % Eay, -

al+...fan=ap=1
plog)=p(c)

The second equality is [Joy7, (9.54)]. Define invariants d, in terms of £,. We ought to
show that d, = d,, which amounts to show that 4, satisfies (30). For o + o” = « and
wu(a) = p(a”) we have

k —p
~ 1 B N
L D S Oy P e

alt...tap=a agi1+...tagp=a” p=0
wloi)=p(e) plag)=p(a)

Hence, the term &,, * ... * &,, appears in

(31) T(ef) + 2 T(ely) * O

with coefficient

n (~1)F? (k-1 1 &
2N 3 :;2 () :—. (@)
p=1 kkzpl,lzo p=1

+i=n

Note that the isolated term T(ea 1)) corresponds to allowing [ = 0. The identity used is

deduced from the observation that the coefficient of z™ in
D

(1+z)P
is 1. Then (31) is equal to A()d,, which concludes the proof.

(I+x)" =aP(1+x)" P

7. COMPARISON WITH LIU’S VERTEX ALGEBRA

In previous work by Joyce [Joy7] (in cohomology) and Liu [Liu] (in K-theory), the Lie
algebra where wall-crossing formulas are written is obtained from a (multiplicative) vertex
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algebra. In this section we compare our construction to theirs, matching the wall-crossing
formulas obtained from either method.

7.1. Vertex algebras and multiplicative vertex algebras. We start by recalling the
notion of (graded) vertex algebras (cf. [FBZ, Kac, Li, LL, Joy7]). To distinguish from
multiplicative vertex algebras, we will sometimes call regular vertex algebras “additive”.
Given a vector space V we write V((z)) = V[z][z7!] for the ring of Laurent series with
coefficients in V.

Definition 7.1. An (additive) super'® vertex algebra is the data of (V,1, D,Y’) where:

(i) V is a vector space over Q with a Z/2-grading;

(ii) 1 € V is the identity element, with parity O;
(iii) D :V — V is the translation operator, which preserves the parity.
(iv) Y is the state-field correspondence: Y : V®V — V((z)). We write

Y(a,z)b = Z(anb)z_l_”

nez

where a,b € V and it is 0 for n » 0.
These objects are required to satisfy the following properties for all a,b,c € V:

(i) Vacuum: Y'(1,2)a = q;

(ii) Associativity: Y(a,z — w)Y (b, z)c = Y (Y (a, z)b,w)c where = means that both
sides are obtained from expanding the same element in

Vz,wllz™ w™, (2 = w) 7]

(iii) Skew-symmetry: Y (a, 2)b = (—1)19PlezPY (b, —2)a where |a| € {0,1} denotes the

Z,/2-grading of a.

The vertex algebra is said to be Z-graded if there is a Z-grading on V upgrading the
Z,/2-grading such that 1 is degree 0, D is of degree 2, and Y is of degree 0 where the
variable z is regarded as having degree —2.

Remark 7.2. The equivalence = in the associativity axiom is equivalent to the existence
of some integer N > 0 such that

(z—w)NY(a,z —w)Y(b,2)c = (z — w) Y (Y (a, 2)b,w)c.
There are several different ways to formulate the vertex algebra axioms. For example,
the ones above imply the locality axiom
Y (a,2)Y (b,w)e = (=Y (b, w)Y (a, 2)c

BWe consider the “super” case for additive vertex algebras since the main example we have in mind
comes from the homology of a stack, that admits a natural Z/2-grading.
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which is sometimes included in the definition.

Note that the translation operator always appears through
D(2) =V - V]

which satisfies

D(z)D(w) = D(z +w) and D(0) =id .
The formal variable z in the definition of vertex algebra should be thought as being
“additive”. Indeed, there is a generalization of vertex algebras where this additivity
is replaced by any group law [Li]. The multiplicative case plays a central role in the
formulation of K-theoretic wall-crossing in [Liu].

Definition 7.3. A multiplicative vertex algebra is the data of (V, 1, D(u),Y") where:

(i) V is a vector space over Q;
(ii) 1 € V is the identity element, with parity 0;
(iii) D(u) : V- — V[1 — u] is the translation operator, satisfying D(u)D(v) = D(uv)
and D(1) = id.
(iv) Y is the state-field correspondence Y : VQV — V(1 — u)).

These objects are required to satisfy the following properties for all a,b,c € V:

(i) Vacuum: Y (1,u)v = v;
(ii) Associativity: Y (Y (a,u)b,v)c =Y (a,uv)Y (b,v)c, where = means that both sides
are the expansions of the same element in

VI —u, 1 —o][(1 =)' (1 —v)™ (1 —uw)™ .
(iii) Skew-symmetry: Y (a,u)b = D(u)Y (b,u™")a;

It turns out that vertex algebras associated to a group law can be effectively reduced to
the usual ones (over a field of characteristic 0) by a simple change of variable. We state

this only for the additive/multiplicative cases.

Proposition 7.4 ([Li, Proposition 3.6]). The change of variables u = e* determines an
equivalence of categories between the categories of multiplicative and additive vertex alge-
bras. More precisely, if (V, 1, D(u),Y") is a multiplicative vertex algebra then (V; 1, D’ Y”)
is an additive vertex algebra, where D'(u) = D(e*) and Y'(a, z) = Y (a, e*). Here, we are

implicitly using the isomorphism

Q1 —u] ~ Q[7]

which sends 1 —u — 1 —e* € 2Q[2].
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Given a (super) additive vertex algebra V', there is an associated (super) Lie algebra,
constructed by Borcherds [Bor|. Its underlying vector space is the quotient

V = V/im(D)

and the Lie bracket is defined by

[@,b] := Res.—o Y (a, 2)b.

When V' is a multiplicative vertex algebra, an analogous construction appears in [Liu,
3.2.13]. In the multiplicative case, one defines

V= V/im(D(u) — id)

where im(id —D(u)) is the subspace of V' generated by the coefficients of (D(u) —id)a for
all a € V, and

[@,b] == Res,—1 u='f(u).
Remark 7.5. Note that if u = ¢* then
Res,—1 u ' f(u) = Res.—o f(2),

so the Lie algebras obtained by regarding V' as either a multiplicative or additive vertex
algebra, through Proposition 7.4, are the same.

Remark 7.6. If f(u) € Q[(1 — u)*!] is a rational function with poles only at 1, then the
residue theorem implies that

Res,—1 u ' f(u) = — Resy—p ' f(u) — Resy—ou™ " f(u)
= Resy—o uf(1/u) — Resu—ou™ ' f(u) = [u°](f- — f1)

! and u, respectively, and [u’](...)

where f_, f, are the Taylor expansions of f in u~
denotes the u° coefficient. The latter expression is the definition that Liu uses in the
equivariant setting, where the equality above does not hold due to the presence of non-
trivial roots of unity as poles. See [Liu, Appendix A] for a more detailed discussion of

these residue maps.

7.2. Joyce’s vertex algebra. In what follows, A is a good abelian category as in Def-
inition 2.1 and 9 = 9 4 is the stack of objects of A or, more generally, any stack that
satisfies the conclusion of Proposition 2.1. Joyce defines the structure of an additive super
vertex algebra on H, (9 4) which we now recall.

The Z/2-grading on H, (M) is induced by the homological grading. The vacuum vector

1 is given as the image of 1 € Q under the natural map

Q = H.({0}) = H.(Mo) — H.(M).
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The translation operator is defined by
D(a) =V, (t®a)

where ¢ is the generator of Hy(BG,,) and ¥ the BG,, action on 9. Note that if z is the
generator of H?(BG,,) and we interpret the map ¥, as an element of

Homg (H«(BG,,) @ Ho (M), H.(M)) ~ Homg (H,.(9N), H.(M)[=]) ,

then the translation operator is defined by the formula ¥, = e*".

Finally, the state-field correspondence is defined as follows: for a € H,(9M,) and b €
H, (f)ﬁg),

(32) Y(a,z)b = (—1)"(”"5)29‘(“’5)*"(5’“)2*((eZD ®id)c,-1(0) N (a®D))

where

O = Exty, + Exto; .
Moreover, the Z/2-grading can be upgraded to a Z-grading by declaring the degree j part
of the vertex algebra to be

@ HJ’*QX(Oé:a) (ma) .
aeC(A)

Theorem 7.7 ([Joyl]). The data above defines a graded vertex algebra on H, (9 4).

Via the construction of Borcherds explained in Section 7.1, one obtains a Lie algebra
structure on I?[*(Em), which is where wall-crossing formulas for cohomological invariants
are written. According to [Joyl, Proposition 3.24], the natural projection H.(9) —
H,.(9M"8) is surjective and its kernel is precisely im(D), so we have an identification

H,(ON) ~ H,(9re).

7.3. Liu’s vertex algebra in K-homology. [Liu] constructs the analogue of the vertex
algebra explained before in the K-theoretic world. It naturally leads to a multiplicative
vertex algebra. The underlying vector space of this multiplicative vertex algebra is not
the entire K-homology introduced in Section 3.2 due to a subtle but very important
point regarding convergence, but we need to restrict to a smaller subset. There is some
freedom in how to do it, as discussed in [Liu, Section 2.2.3], but we will stick to what Liu
calls concrete K-homology. We will instead call it regular K-homology, in analogy with

historical terminology in the motivic setting surveyed in Section 1.2.

Definition 7.8 (Regular K-homology). Let X be a derived stack. We let

Kr(x) = | im(G(2) = Ku(2) 2 K.(%)) € K.(%)

zZeC
f:Z-%x
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where the union is over all Z in the class C of classical, proper, finite type schemes with the
resolution property'®, together with a map f: Z — X. The morphism G(Z) — K.(Z2),
for Z proper, is explained in Section 3.2.

A fundamental difference between K;®(X) and K,(X) is that elements of K™ sat-
isfy the finiteness condition [Liu, Definition 2.2.2 (iii)]. Letting I(X) < K*(X) be the
augmentation ideal of rank 0 complexes on X and ¢ € K;*(X), we have

(33) t(I(X)N) =0 for N » 1.

Indeed, this follows from the fact that I(Z)Y = 0 for sufficiently large N if Z is a finite
type scheme with the resolution property [Liu, Lemma 2.1.7].

Liu defines a multiplicative vertex algebra structure on Ki®(9M4). The vacuum 1 €
K2 (9My) = K:8({0}) is defined by

(1)s : K*(S x {0}) 2 K*(9).

The translation operator is characterized by the following property: for ¢ € K;(9),V €
K*(OM x S),

(D(u)¢)s(V) = ¢s(T*V) € K*(5)[u™]
where U*: K*(9 x S) — K*(M x BG,, x S) ~ K*(M x S)[u*!]. The fact that such
D(u) can be regarded as a power series in 1 — u with coefficients being endomorphisms
of K;*#(9) is established in [Liu, Lemma 3.3.7]. It will be convenient to consider also
D(u)® and D(u)® as operators Ky (9 x M) — KB (M x M)[1 — u] which are defined
similarly using the BG,, action on the first or second copy of 9, respectively.

The state-field correspondence is defined as follows for ¢, 1) € K" (9M):

Y (6, u) = Bu(D(w) M (T(u) 0 (0R19))

where
C(u) = A, (Extyy) @ A_,—1(Exty;) .

Let us clarify what exactly is meant by I'(u) n (¢ X ¢). By definition of K.™(91), there

is some Z € C and f: Z — M x M such that ¢ X ¢ = f.&, and we use it to define
I'(u) N (¢X¢) as

Fe(Amu (" Exctyy) @ Aoy (f* Exty))) 0 ) € KM x M)[(1 — u)*™]

14The resolution property [Tot] implies that K*(Z) = Ko(Vect(Z)). It holds for quasi-projective schemes,
so in particular all projective schemes are contained in C. Imposing the resolution property is necessary
for somewhat technical reasons in [Liu], but it would be desirable to remove it since it is unknown if some
moduli spaces of complexes satisfy it.
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where the exterior powers are expanded as explained in Lemma 3.7. In particular, observe
that if V e K*(9 x S) then

(Y(d, w))s(V) € K*(S)[(1 — u)*]
is a Laurent polynomial in 1 — wu, rather than a Laurent series.

Theorem 7.9 ([Liu]). The data above defines a multiplicative vertex algebra structure
on K% (My)g-

7.4. The relation to the K-Hall algebra. Combining the material of the previous

sections, one gets a Lie algebra structure on
KI5(M)g = KI*E(M)g/ im(D(z) — id).

As explained in [Liu, Lemma 3.3.17], the morphism 7, : K:*(0) — K.*¢(9"¢) fac-
tors through f(;eg(sm). Unlike in the homology case, it is unclear if the induced map
KI8(90) — K°8(9M%) is an isomorphism. We have the following diagram involving the
different versions of K-homology of 9t and Jtrie:

KI5(9) < s K (M)

| !

K (OM) —— KIB(OMrie) 5 K, (90e)

Note that the the left bottom corner of the diagram (after ®Q) is the Joyce-Liu Lie
algebra and the right bottom corner is the the K-Hall algebra from Section 4.1, which is
an associative algebra. We regard K, (91"8)q also as a Lie algebra with Lie bracket given
by the commutator of the K-Hall product in Definition 4.2. Our main result from this
section is the following:

Theorem 7.10. The morphism K8(9)g — K, (M*#)q is a homomorphism of Lie alge-

bras.

Proof. Let ¢,v € Ki(9) and let V e K*(9"8 x S). We denote by ¢, 1) their images in
K, (9M8). We have by definition

(34) Y (¢, u))s(m*V) = (¢ W) (I'(u) @ VTE* TV

which is an element of K*(S)[(1 — u)*], that we denote by y. By Lemma 3.7 (see also
Remark 4.5), the expansion y_ of y in K*(S)(u™')) is precisely what appears in the
expression (8), and hence

[y = (@5 D)s(V).
In a similar way we conclude that [u°]y, = (¢ ¢)s(V). The conclusion then follows from
Remark 7.6. O
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In light of the previous theorem, the following definition is natural:

Definition 7.11. We define the Lie subalgebra K™8(A) of K(A) (with the K-Hall com-
mutator) as

K8 (A) = im (KI5 (9)g — K. (M)g) .

This Lie subalgebra is, from our point of view, a natural analogue of M™8(A) in the
motivic setting presented in Section 1.2. As in the motivic setting, K™#(A) is not an
associative subalgebra; indeed, in Example 4.14 it is observed that

g1 € K™ (Vect) but €1 = 1 ¢ K™ (Vect).
The following is a natural analogue of the no-pole theorem:

Conjecture 7.12 (No-poles'®). We have ¢* € K"8(A). In particular, e# satisfies the
finiteness condition (33).

It would be interesting to have a direct proof of this conjecture. The conjecture does
hold in the following situations:

Proposition 7.13. We have % € K*8(A) if one of the following holds:

(1) There are no p-strictly semistable objects in class o and the moduli space M*
satisfies the resolution property.

(2) There is a path of stability conditions from g to p’ satisfying the conditions of
Theorem 5.15 and the conjecture holds for the stability condition g’

(3) There is a framing functor, as in Section 6.1, and the moduli spaces of Joyce-Song
pairs satisfy the resolution property. Moreover, when that is the case, e¥ are the

image of Liws classes zo (1) € Ki3(9M)g via the morphsim
Ki® (M) — K (MM*)q .

Proof. Part (1) is clear since when there are no pu-strictly semistable objects the classes
gl = 61 are, by definition, the image of Oy, by the map

G(ME) — Ko (ML) — K. (L")

Part (2) is an immediate consequence of K"8(.A) being a Lie subalgebra and the wall-
crossing formula of Theorem 5.15.

The claim that our classes are the image of Liu’s classes follows from comparing The-
orem 6.6 with [Liu, Theorem 4.2.5], and part (3) follows. O

15We warn the reader that this conjecture, with our current definition of K*®# (A), might very well fail in
cases where the good moduli spaces are proper but not projective, due to the requirement of schemes in
class C to have the resolution property. We believe the finiteness part of the conjecture should still hold
even if that is not the case.
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8. FROM K-THEORY TO COHOMOLOGY

So far, our approach to generalized invariants and wall-crossing has been entirely in
the realm of K-theory. We now explain how these relate to wall-crossing formulas for
cohomological invariants, and how K-theory formulas can be used to deduce cohomological
ones. The main result of this section is that Joyce’s homological invariants, when defined,
are homological lifts of our classes €%, in the sense of Definition 8.2. We conjecture that
(canonical) homological lifts exist also in the absence of a framing functor. Moreover,
Theorem 8.6 and Proposition 8.13 together imply that in general homological lifts of
classes satisfy automatically the same wall-crossing formulas, at least when we restrict
ourselves to (algebraic) tautological insertions — this reproves Joyce’s cohomological wall-

crossing formulas for (algebraic) tautological integrals.

8.1. The Riemann—Roch morphism and homological lifts. The virtual Riemann—
Roch theorem [FG, Corollary 3.4] (see also [Kha2, Theorem 6.12] for a version that does
not require an embedding into a smooth ambient space) is the statement that, for a proper
scheme M with a 2-term perfect obstruction theory, we can write K-theoretic invariants

as intersection numbers:

OLOFOV) = | a(V)(Tp).
[M]vir

This motivates the following definition:

Definition 8.1. Let X be a derived stack'® (for instance, X = M4 for a good abelian
category A). We define the morphism

T=r1x: K*(X) > H*(X)
a — ch(a)td(Ty)
and its dual version

TV Hyo(X) = K*(X)g -

When 0t = 9t 4, the derived tangent bundle Tyy is given by the restriction of Extys[1]
to the diagonal (1). The virtual Riemann—Roch says that, if u-stable is equivalent to

u-semistable for objects of class «, then
(eh)pr = TV ([MAT™).
We remind the reader that, as explained in Section 7.2, when 2t = 91 4 is the moduli
stack of objects in an abelian category, H,(90) carries the structure of a vertex algebra

6We remind the reader that derived stacks in this paper are assumed to have perfect tangent complex,
so that td(Tx) makes sense.
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and K" (91) carries the structure of a (multiplicative) vertex algebra. Ideally, we would
have liked to state that an upgrade of 7V defines a homomorphism of vertex algebras.
Unfortunately, there is no way to lift 7V to a map H,(9) — K, (9M), so strictly speaking
this is not possible. On the other hand, 7V is not compatible with Kunneth maps since
there is no Kunneth map on (K*)¥. We introduce the notion of homological lift, which
works around these technical points.

Definition 8.2 (Homological lift). Let ¢ € K,(X). We say that A € H.(X) is a homo-
logical lift of ¢ if for any derived stack S the diagram

K*(X x S) -2 K*(S)

lT?{ xS lTS

H*(% x ) 25 H*(8)

commutes, where / is the slant product.

Remark 8.3. Admitting a homological lift is a strong condition. For example, if ¢
admits a homological lift then it satisfies the finiteness condition that ¢ (1(X)") = 0 for
all sufficiently large N. This is a consequence of the fact that 7 maps I(X) to H>*(X).

Taking S = pt in the definition, it follows that A being a homological lift of ¢ implies
that 7V(A) = ¢. However, being a homological lift has better compatibility with the
Kunneth maps in (K-)homology, as illustrated by the following lemma:

Lemma 8.4. The following properties of homological lifts hold:

(1) If A; € H.(X;) is a homological lift of ¢; € K.(X;) then A; X ...X A, € Hy(%; x
. x X,,) is a homological lift of ¢1 X]... X ¢, € Ki(X1 X ... x X,,). In particular,

Tv(Al...An)Z(le...qbn)pt.

(2) If Ae H.(X) is a homological lift of ¢ € K,(X) and V € K*(X) then ch(V) n A is
a homological lift of V' n ¢.

(3) If f: X — 3 and A € H.(X) is a homological lift of ¢ € K, (X) then f, (td(T;)nA) €
H,.(3) is a homological lift of f.¢ € K.(3).

(4) If X is a quasi-smooth proper algebraic space, then the homological virtual funda-
mental class [X ]y € H,(X) is a homological lift of the K-theoretic fundamental
class [X |k € Ki(X) (cf. Theorem 3.12).

Proof. The first 3 properties are obtained straight from the definition. The last one
is a consequence of the virtual Grothendieck—Riemann—Roch for the projection maps
X xS — S, which we prove in Lemma 8.5. To apply the lemma, two observations are
necessary: first, under the assumptions on X the projection 7g: X x S — S admits
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pushforwards on K*, and the K-theoretic fundamental class [X]x consists precisely of
the collection of all pushforwards mg,: K*(X x S) — K*(S). Secondly, Khan’s virtual
fundamental class

[X x S/S] e Hiy(X x S/S)
is the pullback of the virtual fundamental class [X ]y € HEM(X) = H,(X), by the base
change formula [Khal, Theorem 3.13]. O

Lemma 8.5 (Virtual Grothendieck-Riemann-Roch). Let X,3 be derived stacks and
f: X — 3 be a quasi-smooth proper representable morphism. Then the following di-

agram commutes

where f is the composition
* o[X/3 * *
(%) 2 HPM(%/3) £ 17(3)
and [X/3] € HEM(X/3) is Khan’s virtual fundamental class, see [Khal, Section 3.4] for

more details.'”

Proof. The Chern character map ch: K*(—) — H*(—) can be factored as the composition

(4) é (B) é ch *
K*(=) = K*(=)g —> K*(~)o — KH"(~)g — H

mot

(7)< H ().

Here, K%(—)g and K H®(—)q are the étale localizations of K*(—)q and KH(—)g, KH
is the homotopy invariant version of K-theory, and H} , is the motivic cohomology with
coefficients in ), _, Q(n)[2n]. We refer to [Kha2, Sections 4, 5] and [Khal, Example 2.10,
2.13] for details. A Grothendieck—Riemann—Roch theorem for K H®(—)q D HE () s
proven in [Khal, Corollary 3.25]. The maps (A), (B) are easily seen to commute with
pushforward of maps, when defined. The map (C') is induced by the Betti realization (see
[Ayo, Section 2]), which also commutes with pushforwards as shown in loc. cit. Note
that we are defining [X/3] € HPM(X/3) as the image of [X/3] € Hy""™"(%/3) under the
Betti realization morphism Hy "™"(%X/3) — HBM(X/3), so it is clear that f; commutes
with (C). O

17Technically, [Khal] works with cohomology theories in the algebraic category, but here we are regarding
[X/3] in Borel-Moore homology, in the sense of the 6 functor formalism in the topological category, by
applying the Betti realization morphism, as discussed in the proof. Let us also remark that the cohomology
of derived stacks defined through the 6 functor formalism on the topological category agrees with the
cohomology of the topological realization of the stack [Kha3, Proposition 2.8].
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Recall that we have Lie brackets on H, (91"8) and on K, (91"8). The former is obtained
from the vertex algebra structure on Hy(91) and the isomorphism H, (90"€) ~ H,(9M),
and the latter is the commutator of the K-Hall product.

Theorem 8.6. If A, Ay € H,(9"8) are homological lifts of ¢1, ¢y € K,(9M"8) then
[A;, As] is a homological lift of [¢1, ¢s].

8.2. Proof of compatibility of Lie algebras and homological lifts. This Section is
dedicated to the proof of Theorem 8.6. We start by observing that we have the following
diagram:

[#1,42]s

KO0 % §) 2y o (omrie o x §) MBS pee g

I I [

H* (8 x S) 2y [ (o x e x )/ A g
/[A1,42]

The maps bg, by above are, roughly speaking, the dual maps to the Lie brackets on K-
homology and homology, respectively; we will describe them explicitly below. The square
on the right commutes by hypothesis and Lemma 8.4(1), so it is enough to prove that
the left square commutes as well. For ease of notation, we show it when S = pt, but the

general case is the same.

First of all, the map by, when restricted to H* (9)?2%5) — H*(9ONte x imgg), is given
by18

by = Res,_o(—1)X@P) pxem@B e (@)Tre*(—),
where we are regarding V7 as a map
H*(M x M) - H*(BG,, x M x M) ~ H* (M x M)[=] .

The map by is the anti-symmetrization of the “coproduct” mg, i.e. by = mxg —o* omg
where o switches the two copies of 91"& and

my = [u]l-(u) @ UTE*(-).
For a derived stack X, we introduce the completion
H*X)[(1 - w)*™] € H*(X)((1-u)™)

18T be more precise, the formula above defines a map H* (M, 5) — H* (M, x M) which descends to

by: H* (93?2%5) — H* (98 x zmgg). The same applies to the desctiption of mg below.
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of H*(X)[(1—u)*'] as the set of Laurent series in (1 —u)~! with coefficients in H*(X) with
the property that, for any N € Z,, their image modulo H>"(X) is a Laurent polynomial
in 1 — u; in other words, the coefficient of (1 — )~ has large cohomological degree for
large . Since homology is the direct sum over degrees, we have a pairing

(==t Ho(X) @ H*(X)[(1 —w)™] - Q[(1 —u)*™].
There is a residue map Res,—;: H*(X)[(1 — u)*!'] — H*(X) and it satisfies
(—,Resy=1 —) = Res,—1{—, —).

An element of H*(X)[(1 — u)*']" admits an expansions in u or in u~'. By the

proof of Lemma 3.7, for any V € K*(X) we can define an element of H*(X)[(1 —

u)*!]” with the property that its u-expansion is ch(A_,(V)) and its u~!-expansion is

(—u)™ V) ch (A~ (VV)®det(V)). Note that the algebraic splitting principle is not neces-
sary for this, since the statement only depends on the image of V' in topological K-theory,
i.e. on the homotopy class of the map X — Mpesr ~ Z x BU induced by a perfect complex
representing V; therefore the splitting principle applies even if algebraically V' does not
admit a resolution by vector bundles.

We recall the complex
C(u) = A (Ext)y) ® A_—1 (Exty)) .

We will denote by ch(T'(u)) the element of H*(X)[(1 — u)*']" obtained from I'(u) as
explained above. Its u~'-expansion is equal to ch(I'_(u)) and its u-expansion is equal to
ch(I'; (u)) where

Dy (u) = (—u) ™A, (Ext)y) @ A, (Extyy) ® det(Exty;) = o*T_(u™).
Using the above relation, we find that
o omic = [u]0 () ® Wi (-
combining this with Remark 7.6 we obtain
7(bx(V)) = Res,—1 u 'ch(T'(u))ch (Vi S*V)td(T)td(Tp) € H* (MLE x M#)

where T, is shorthand for Tey, . We will use the following elementary lemma to compare
['(u) and c,-1(©):
Lemma 8.7. Let V € K*(X). We have equalities

ch(A_y=1(VY)) - td(V ®u) = 2% WVe, (V)

ch(A_,(VY)) - td(V@u™) = (—=2)* Ve, (V)

in H*(X)[(1 —u)*'] after the change of variable u = €.
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Proof. All the 4 quantities are multiplicative in V| in the sense that they all satisfy f(V +
V') = f(V)f(V'). By the splitting principle (as before, we do not need it algebraically,
but only in topological K-theory), it is enough to verify the claim when V is a line bundle.
In this case, the equalities turn into

(]_ — €_Z_a>m = Z(l + Cl{/Z)
(1— ez-a)l__z% — —2(1—a/2)
where a = ¢, (V). O

Using the previous lemma for V' = Extq5, Exts;, we obtain the identity
ch(D(u)) = (—1)X@B) xem@B e (©)td(—Extio ® u™)td(—Exty @ u).
Note also that
UiS* T =To+Tp — Extiy @u™' — Exty @ u.
Using the last two equations together, one obtains the equality
ch (L (uw))ch(UFS*V)td(T,)td(Ts)
= (—1)Xe@dxeml@Be (@) TE* (ch(V)td(Tass))

z

in the completion H*(X)[(1 — u)*!] ", after the change of variables u = e*. Applying

Res,—1 u~! = Res,—q (see Remark 7.5) to both sides gives the equality
T(bx(V)) = bu(r(V))

as desired.

8.3. Homological lifts of ¢ classes. In the (co)homological setting, Joyce defines ele-
ments that we denote by

et € Hy zy(a) (M)
assuming the existence of framing functors. Note that 1 — x(«, @) is the dimension of
the derived stack 98, When all semistable objects are stable, these are simply the
pushforward of the virtual fundamental class [M¥]"" to 9. The general construction
utilizes the moduli of Joyce-Song pairs P(‘fa), where stable=semistable holds, and defines

et recursively through a formula that resembles (23). More precisely,

(35) I (cu(T) N el )

S A Vo | B e L §

|
al+...ftan=a n:
ploi)=p(c)
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where, on the left hand side, 5’{;’ SI is defined as the homological virtual fundamental class

[Pf7,]¥". The equality holds in the Lie algebra H, (91").

Theorem 8.8. Assume that there is a framing functor as in Section 6. Then Joyce’s
classes e/ are homological lifts of our classes e”.

Proof. We argue by induction on «, as in the proof of Theorem 6.6. By induction and
Theorem 8.6, [[ ... e eH], ... etH] is a homological lift of [[...[e~ e~ |,... e~ |
for all non-trivial (n > 1) partitions of a. Therefore, to prove that the remaining term
e’ on the right hand side of (35) is a homological lift of the remaining term & on the
right hand side of (23), it is enough to show that the left hand side of (35) is a homological

lift of the left hand side of (23).

By Lemma 8.4(4), the class 5’(‘;’1? is a homological lift of 5’{;1). Note that we have the
identity

ch(A—1(Ty7))td(Tn) = e (Tu)
by setting z = 0 (i.e. v = 1) in Lemma 8.7. By (2) and (3) in Lemma 8.4 it follows that

I, (crk(']TH) A 52‘;11){) is a homological lift of II, (A_l(']I‘ﬁ) ) 62‘;1)), as we wanted. O

We expect that (canonical) homological lifts exist, even when there is no framing func-

tor. We state this as a conjecture:

Conjecture 8.9 (Homological lift and homogeneity). If x is a stability condition as in
Assumption 2.11 and a € C'(A),e, then the classes e € K, (91"¢) admit a homological lift
with the expected homological degree:

€Z’H € H2*2X(C‘fva) (mrig) .

As explained in Remark 8.3, this conjecture is closely related to the no-pole Conjec-
ture 7.12. The homogeneity property with respect to the homological degree is an even

stronger property.

Remark 8.10. The homological lift conjecture is compatible under wall-crossing by The-
orem 8.6. This is a consequence of the homological Lie bracket being well behaved with

respect to the degree, in the sense that it maps
[= =1t Ha ay(aa) (PGE) @ Hy oy (5.5 (MLE) — Ha oy(atpars (D5 5) -

8.4. Cohomological descendents from K-theory descendents. Suppose that we
have homological lifts e#f of e#. The K-theoretic classes " satisfy wall-crossing for-
mulas as shown in Section 5. The homological lifts are expected to satisfy the same
wall-crossing formulas, and indeed Joyce proves such formulas for his invariants, under
stronger assumptions. We will now explain that (co)homological wall-crossing formulas
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follow formally from K-theoretic wall-crossing formulas, at least when we restrict our-
selves to tautological integrals on moduli of sheaves/complexes on a variety X. By (21)
and Theorem 8.6, both sides of

ML N Ulanyansp ) - (L[ e et
al+...to=a

are homological lifts of the same element eg/, and in particular their images under 7" are
the same. Hence, deducing cohomological wall-crossing from K-theoretic wall-crossing is
related to injectivity properties of 7V, or equivalently surjectivity of 7. Of course, 7 is far
from surjective since for example there are no odd classes in the image.

Given a smooth projective variety X, suppose that A is either Coh(X) or, more gen-
erally, the heart of a t-structure on D°(X). Then, there is a universal sheaf/complex F
on M x X.

Definition 8.11 (Tautological classes). Given v € H*(X) and k > 1, we let
chy(7) = ps (chi(F)g*y) € H* (M)

where p, g are the projections of 9t x X onto 9t and X, respectively.

We say that a monomial
(36) D =] [ echg(w)
i=1

is algebraic if 71 ® ... ® 7, is in the image of the cycle class map CH*(X") — H*(X™).

We denote by
t*aut,alg(m) = H,

taut

(M) < H*(9m)
the subalgebra spanned by algebraic monomials and the subalgebra of tautological classes,

respectively.

Remark 8.12. If the Hodge conjecture holds for powers of X, then H* (901) is spanned

taut,alg

by Hodge balanced monomials of the form (36) with v; € HP»%(X) and > | p; = > | ;-

Suppose M is a moduli space with a virtual fundamental class. Since virtual fundamental

classes [M]""" are algebraic, unbalanced monomials have trivial integral since'”

| Tt
[M]¥ =1

= J (1 ®- - ®%) 0 g ((chiy (F1) - chy, (Fa)) 0 p*[M]™) =0,

where F; is the pullbacks of F along the i-th projection M x X™ — M x X and q: M x
X" — X" p: M x X" — M are the two obvious projections.

This argument was explained to the second author by Y. Bae.
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The following proposition provides a tool to lift equalities from K-homology to homol-
ogy.

Proposition 8.13. Let A, B € H,(9) and suppose that 7¥(A) = 7V (B). Then A and

B agree on algebraic tautological classes, i.e.
J.o=1,
A B
().

If A, B are algebraic, in the sense that they are in the image of CH,(Z) — H.(Z) ELN
H,(9M) for some morphism f: Z — 9 from Z a proper algebraic space, and the Hodge
(9m).

for any D € H

taut,alg

conjecture holds for powers of X then the statement holds for any D € H

Proof. Since td(Tyy) can itself be expressed in terms of algebraic tautological classes [She,
Proposition 3.3], it is enough to prove that for any monomial (36) there is some V €

K*(9M) such that
J,p=J o= [ om0

Note that D is given by

Px (H chy, (F)(m®...® 'Yn))

where F;, p, q are as in Remark 8.12. We will construct the class V' using Adams operations
to isolate chy, (F;) from ch(F;).

Recall that the Adams operation 1/ on K-theory has the property that chy(y7F) =
j*chy(F). Let N = N’ + n - dim(X) where N’ is such that

A,B S HSN/(DLR)

Given k < N, we can pick rational numbers aé? such that

N

k -m
Z a;j
i=0

is 1 when m = k and 0 when m € [0, N]\{k}; indeed, af are the entries in the inverse of
a Vandermonde matrix. Now let

We have
ch(F;) = chy,(F) mod HZN (MM x X™).
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Since the Chern character induces an isomorphism between K-theory and Chow for X"
(with Q-coeflicients), we can pick a class d € K*(X")g so that

ch(d) = (M ®...@y)td(Tx»)"".
Finally, we claim that

V=p.(Fi®..0F®q¢0)
does the job. Indeed, by Grothendieck—Riemann—Roch and the definition of f}, we have

ch(V) = pu(chyy (F1) - .. chy, (F)@* (1 ® ... ®7,)) mod H>N ().
The second part of the statement follows from Remark 8.12. U
Remark 8.14. If one replaces algebraic K-theory by Blanc’s topological K-theory (cf.
Remark 3.3) then the same argument works for any D € H{:

& (M) since the Chern char-
acter defines an isomorphism between Kt*op(X ") and H*(X™). We expect that equality

in Blanc’s K-theory actually implies A = B.
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