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Abstract. Given an abelian category and a stability condition satisfying appropriate

conditions, we define generalized K-theoretic invariants and prove that they satisfy wall-

crossing formulas. For this, we introduce a new associative algebra structure on the K-

homology of the stack of objects of an abelian category, which we call the K-Hall algebra.

We first define δ-invariants directly coming from the stack of semistable objects and use

the K-Hall algebra to take a formal logarithm and construct ε-invariants. We prove

that these satisfy appropriate wall-crossing formulas using the non-abelian localization

theorem. Based on work of Joyce in the cohomological setting, Liu had previously defined

similar invariants assuming the existence of a framing functor; we show that when their

definition of invariants makes sense it agrees with ours. Our results extend Joyce–Liu

wall-crossing to non-standard hearts of DbpXq, for which framing functors are not known

to exist.
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1. Introduction

A sizable portion of enumerative geometry concerns understanding invariants arising

from moduli spaces of objects in certain abelian categories A, such as the abelian category
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1
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of sheaves on a smooth projective variety X, of representations of a quiver Q, or of

objects in non-standard hearts of DbpXq. To form good moduli spaces we require a

stability condition µ and look at the moduli space (or moduli stack) Mµ
α of µ-semistable

objects on A of topological type α P CpAq – topological type can mean, for example,

the Chern character of a sheaf, or the dimension vector of a representation of a quiver.

The prototypical example of a stability condition is the slope µpEq “ degpEq{rkpEq of a

vector bundle E on a curve. There are many different invariants we may attach to the

moduli space Mµ
α , such as:

(1) Motivic invariants, for example the Euler characteristic epMµ
α q or the virtual

Poincaré polynomial.

(2) Cohomological invariants, i.e. (virtual) intersection numbers of tautological classes

D:
ż

rMµ
α svir

D P Q .

(3) K-theoretic invariants, i.e. (virtual) Euler characteristic of tautological K-theory

classes V :

χpMµ
α ,Ovir

b V q P Q .

In either case, a fundamental problem is to understand how the invariants depend on

the choice of stability condition µ. A closely related question is to define such invariants

in cases where there are strictly semistable objects.

In the motivic setting, a very successful theory of wall-crossing has been around for

20 years, developed by Joyce [Joy2, Joy3, Joy4, Joy6], Joyce–Song [JS] and Kontsevich–

Soibelman [KS]. It plays a key role, for example, in the proof of the DT/PT correspon-

dence [Tod2, Bri1], the PT rationality conjecture [Tod3], and in many other applications.

A more recent development is a proposal of a wall-crossing theory for cohomological

invariants [Joy1, Joy7, GJT]. Liu adapted the ideas from the cohomological setting to

the K-theory setting in [Liu]. The cohomological and K-theoretic settings share some

similarities with the motivic one, most notably the existence of a Lie algebra that is

used to write down the wall-crossing formulas; indeed, the wall-crossing formulas in all 3

contexts look exactly the same, but in 3 different Lie algebras.

However, there are also many differences. In the motivic wall-crossing setting, the in-

variants in the presence of strictly semistable objects can be defined from the stacks of

semistable objects, which have well-defined virtual Poincaré polynomials, for example.

On the other hand, there is no reasonable way to take intersection numbers on a stack,

so Joyce’s approach in the cohomological case is quite different. He instead uses the addi-

tional data of a framing functor to construct auxiliary moduli spaces of pairs – which do
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not have strictly semistable objects –, and uses those to define “generalized cohomological

invariants”.

There are natural framing functors for sheaves or for representations of quivers. How-

ever, if we are interested in counting (weak) Bridgeland stable objects – which is necessary

in some applications, such as the PT rationality [Tod3, Bri1] or the rank r from rank 0{1

theorem [FT2, FT1] –, it is unclear how to construct framing functors, and even if one

should expect them to exist. For this reason, wall-crossing formulas in such contexts were

so far only conjectural.

In this paper, we develop a completely new approach to Joyce–Liu style generalized K-

theoretic invariants and wall-crossing formulas. Our approach does not require a framing

functor, and therefore we are able to prove wall-crossing formulas in greater generality,

including for example (weak) Bridgeland stability conditions. What we do is much closer

in spirit to the motivic approach, where invariants are extracted directly from Artin stacks

of semistable objects.

We expect that this increase in scope will have interesting applications soon. Our proof

is also shorter and, arguably, conceptually cleaner – although it requires some machinery,

most notably the virtual non-abelian localization theorem of Halpern-Leistner [HL1] – so

we hope this will make the theory more accessible and easier to extend to new contexts.

1.1. Summary of results. Throughout, A will be an abelian category, µ a stability

condition and α a topological type of objects in A. We will consider the (derived) stack

M “ MA of all objects in A and the (open) substack Mµ
α Ď M of µ-semistable objects

in class α. We dedicate Section 2 to explaining the technical assumptions we make on

this data. In particular, we will require that Mµ
α is finite type, quasi-smooth, and has

a proper good moduli space in the sense of [Alp]. Often, we will rigidify these stacks

to Mrig,Mµ,rig
α , which means removing the copy of Gm from the automorphisms of each

object. When µ-semistable objects in class α are automatically µ-stable, the rigidification

Mµ,rig
α is a proper good moduli space.

1.1.1. δ-invariants. A feature of K-theory which plays an essential role in this paper is

that we can take Euler characteristics of perfect complexes on stacks with appropriate

assumptions. In particular,

χpMµ,rig
α , V q :“

ÿ

nPZ

p´1q
n dimHn

pMµ,rig
α , V q P Z

is well-defined for any perfect complex V , meaning that the cohomology groups are finite

dimensional and only finitely many are non-trivial. Note that the stacks considered have

derived structures, so this is really a virtual Euler characteristic. Thus, the stack Mµ
α
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defines a functional

δµα : K
˚
pMrig

q Ñ K˚
pMµ,rig

α q
χ
ÝÑ Z ,

where K˚p´q denotes K-theory of perfect complexes and the first map is restriction

along the open inclusion Mµ,rig
α Ď Mrig. For technical reasons, it is important that this

functional can be upgraded to an element of K-homology δµα P K˚pMrigq, see Definition

3.9 and Theorem 3.12. The necessary material on K-theory and K-homology is covered

in Section 3.

1.1.2. K-Hall algebra and ε-invariants. While the δ-invariants carry information concern-

ing K-theoretic invariants of the stack of semistables, they are not the “correct” ones. For

example, they do not agree with the ones defined in [Liu]. Indeed, it turns out that our

δ-invariants do not even live in the version of K-homology that Liu uses (cf. Definition

7.8, Example 4.14). A similar phenomena happens in the motivic setting, and we use the

same solution: define ε-invariants from δ-invariants by taking a “logarithm”. We survey

the motivic setting, and the no-pole theorem, in Section 1.2, which served as inspiration

for our approach.

It turns out that we can define a product on K˚pMrigq, which should be regarded as

the analog of the multiplication in the motivic Hall algebra.

Theorem A (=Theorem 4.6). Definition 4.2 makes

KpAq :“ K˚pMrig
A qQ

an associative algebra.

We use this product structure to take a formal logarithm and define

εµα :“
ÿ

kě1

p´1qk´1

k

ÿ

α1`...`αk“α
µpαiq“µpαq

δµα1
˚ . . . ˚ δµαk

.

This sum is finite by our assumptions on the stability condition. The relation can be

inverted to express δ-invariants in terms of ε-invariants:

δµα “
ÿ

kě1

1

k!

ÿ

α1`...`αk“α
µpαiq“µpαq

εµα1
˚ . . . ˚ εµαk

.

1.1.3. Wall-crossing formula. The δ and ε invariants satisfy wall-crossing formulas that

can be expressed in terms of the associative algebra structure on KpAq. These wall-

crossing formulas are obtained as a consequence of a general theorem by Halpern-Leistner,

which expresses Euler characteristics of perfect complexes in terms of the centers of a Θ-

stratification – a notion that generalizes Harder–Narasimhan (HN) stratifications.
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Every object E of A admits a canonical µ-HN filtration

0 “ E0 Ĺ E1 Ĺ . . . Ĺ En “ E

such that the slopes of the successive quotients are increasing. When the stackM, without

any stability, is itself finite type and quasi-smooth, the wall-crossing formula can be

expressed as the statement that the element
ÿ

α“α1`...`αn
µpα1qą...ąµpαnq

δµα1
˚ . . . ˚ δµαn

in KpAq does not depend on the stability condition µ, and indeed it is equal to the δ-

invariant defined with the trivial stability condition. This is the case only in very simple

examples, such as representations of quivers.

In general, we use the µ-HN stratification of the stack Mµ0
α to prove a wall-crossing

formula between µ and µ0, where µ0 is a stability condition on a wall and µ is in a

chamber adjacent to µ.

Example 1.1. Let α be a topological type and µ0 be on a simple wall determined by a

partition α “ α1 ` α2, and µ´, µ` be stability conditions on the two adjacent chambers,

so that

µ0pα1q “ µ0pα2q , µ´pα1q ą µ´pα2q , µ`pα1q ă µ`pα2q .

A µ0-semistable object E has two possible types of µ´-HN filtrations: either E is µ´-

semistable itself, or it is an extension of the form

0 Ñ E1 Ñ E Ñ E2 Ñ 0

where E1, E2 are semistable1 and have topological types α1, α2, respectively. Thus, the

stack Mµ0
α admits a Θ-stratification of the form

Mµ0
α “ Mµ´

α \ Sα1,α2

where Sα1,α2 is the stack of extensions as above. Non-abelian localization then says that

χpMµ0
α , F q “ χpMµ´

α , F q ` χpMµ´

α1
ˆ Mµ´

α2
, F b Eα1,α2q

for any perfect complex F on Mα, where for ease of notation we omit all the restrictions of

F . The complex Eα1,α2 is, roughly speaking, the inverse Euler class of the normal bundle

to the direct sum map Mα1 ˆ Mα2 Ñ Mα.

1It is part of the “simple wall” assumption that µ, µ´, µ` stabilities are equivalent for objects in class
α1, α2, and moreover there are no strictly semistables in those classes. Hence

εµ0
αi

“ εµ´
αi

“ εµ`
αi

“ δµ0
αi

“ δµ´
αi

“ δµ`
αi

.
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The product on KpAq is cooked up so that this formula can be expressed as

δµ0α “ δµ´

α ` δµ´

α1
˚ δµ´

α2
.

This is an instance of the dominant wall-crossing formula (Theorem 5.14). Similarly, we

have

δµ0α “ δµ`

α ` δµ`

α2
˚ δµ`

α1
.

If we convert from δ-invariants to ε-invariants using

δµ˘

α “ εµ˘

α and δµ0α “ εµ0α `
1

2
εµ0α1

˚ εµ0α2
`

1

2
εµ0α2

˚ εµ0α1

we obtain the identities

εµ´

α `
1

2

“

εµ´

α1
, εµ´

α2

‰

“ εµ0α “ εµ`

α ´
1

2

“

εµ`

α1
, εµ`

α2

‰

,

where rϕ, ψs “ ϕ ˚ψ ´ψ ˚ ϕ is the commutator in KpAq. It is a general feature that wall-

crossing formulas between ε-invariants can be written using exclusively commutators.

Theorem B (=Theorem 5.15). If µ, µ1 can be connected by a continuous path crossing

finitely many walls then we have the wall-crossing formulas

δµ
1

α “
ÿ

α1`...`αl“α

Spα1, . . . , αn;µ, µ
1
q ¨ δµα1

˚ . . . ˚ δµαn

εµ
1

α “
ÿ

α1`...`αl“α

Ũpα1, . . . , αn;µ, µ
1
q ¨ rr. . . rεµα1

, εµα2
s, . . . , s, εµαn

s

in KpAq, where Sp´q, Ũp´q P Q are explicit combinatorial coefficients (cf. [Joy6, Section

4]).

A particular setting where our theorem establishes a wall-crossing formula that was not

previously proven is that of tilt stability:

Corollary 1.2. If X is a surface with nef anticanonical or a Fano 3-fold satisfying the

BMT inequality then we have generalized K-theoretic invariants of the moduli of tilt

semistable objects and these satisfy the wall-crossing formulas in Theorem B.

We refer to Sections 2.3 and 5.6 for details on this application.

1.1.4. Comparison with Joyce–Liu invariants. Sections 6, 7 and 8 are dedicated to com-

paring our construction with the one by Liu [Liu] and Joyce [Joy7]. When the moduli

stack Mµ
α contains strictly semistable objects, they define invariants using the auxiliary

data of a framing functor Φ (cf. Definition 6.1). A framing functor can be used to con-

struct a moduli space of Joyce–Song pairs P JS
α , which no longer contains strictly semistable

objects. The main result of Section 6 expresses the relation between invariants defined

with Joyce–Song pairs and our ε-invariants:
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Theorem C (=Theorem 6.6). Let Φ be a framing functor and P µ,JS
α the corresponding

moduli of Joyce–Song pairs. We have

Π˚

`

Λ´1pT_
Πq X rP JS

α s
vir

˘

“
ÿ

α1`...`αn“α
µpαiq“µpαq

p´1qn´1

n!
λpα1q

““

. . .
“

εµα1
, εµα2

‰

, . . . , εµαn

‰

.

This identity is taken as the definition of K-theoretic invariants in [Liu], following

Joyce’s cohomological version, except for the fact that Liu uses a different Lie algebra,

denoted in this paper by qKreg
˚ pMqQ – his Lie algebra is induced by the structure of a

multiplicative vertex algebra on Kreg
˚ pMqQ. To establish that the invariants are the same,

we compare these two Lie algebras in Section 7.

Theorem D (=Theorem 7.10, Proposition 7.13(3)). The natural map

qKreg
˚ pMqQ Ñ KpAq

is a homomorphism of Lie algebras. Moreover, when there is a framing functor this natural

map sends Liu’s classes to ε classes.

An important point here is that the Lie algebra qKreg
˚ pMqQ is not obtained as the

commutator of some naturally defined product. Indeed, its image in KpAq is far from

being an associative subalgebra, despite being a Lie subalgebra. Moreover, qKreg
˚ pMqQ

does not typically contain δ-classes. See the discussion in Section 1.2 for an analogous

situation with MregpAq and MpAq.

Finally, in Section 8 we relate our invariants to Joyce’s cohomological invariants. To

state our comparison, we introduce the notion of homological lift, cf. Definition 8.2.

Roughly speaking, a class A P H˚pXq is a homological lift of ϕ P K˚pXq if they are related

by a Riemann–Roch type formula.

Theorem E (=Theorem 8.8). If there exists a framing functor, Joyce’s classes inH˚pMrig
α q

are homological lifts of ε classes.

We expect canonical homological lifts of ε classes to exist in general, without assuming

the existence of a framing functor, and we hope to address this question in the future.

In Section 8.4 we explain that our wall-crossing formulas for ε invariants implies Joyce’s

wall-crossing formulas for the homological lifts, at least if we consider only intersection

numbers of (algebraic) tautological classes.

1.2. Analogy with motivic wall-crossing. Part of the motivation for the present ar-

ticle is to make the cohomological or K-theoretic wall-crossing [Joy7, Liu] closer to the

approach to motivic invariants [Joy4, Joy2, JS, KS, Bri2]. We will now describe some
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aspects of the motivic story to make this comparison apparent. For simplicity, we re-

strict ourselves to hereditary categories A, such as representations of a quiver or moduli

of bundles on a curve, and to standard Euler characteristic (i.e. “naive DT invariants”),

rather than Behrend weighted Euler characteristics (“genuine DT invariants”). We also

work only in the quantum torus, and not in the motivic Hall algebra.

Let µ be a stability condition on A and α a topological type. When µ-stability and

µ-semistablity coincide, we are interested in motivic invariants of the good moduli space

Mµ
α “ Mµ,rig

α , such as its Euler characteristic epMµ
α q or its virtual Poincaré polynomial

PqpM
µ
α q P Qrq

1
2 s, which is the unique motivic invariant which agrees with the usual

Poincaré polynomial

PqpXq “
ÿ

i

p´q1{2
q
i dimH i

pXq

when X is smooth and proper. Being motivic means that it satisfies

PqpX ˆ Y q “ PqpXqPqpY q and PqpXq “ PqpUq ` PqpXzUq

for any X, Y and U Ď X open. The virtual Poincaré polynomial can be constructed for a

general variety X using the weight filtration on its cohomology [DK]. The specialization

q1{2 “ 1 recover the Euler characteristic.

To define invariants in the presence of strictly semistable objects, one might try to

use directly the stack Mµ
α or its rigidification Mµ,rig

α . Indeed, it is explained in [Joy5,

Section 4.2] that there is a unique way to extend the virtual Poincaré polynomial to finite

type stacks with affine stabilizers by requiring that PqprX{Gsq “ PqpXq{PqpGq for special

groups G (in particular, G “ GLn is special); for such stacks X ,

PqpX q P Zrq˘1{2, p1 ´ qiq´1
s .

Since PqpM
µ,rig
α q has a pole at 1 when stable is not equal to semistable, we cannot set

q1{2 “ 1 and obtain the Euler characteristic. One way to obtain something like an Euler

characteristic is to first take a “logarithm” on the motivic Hall algebra, or on the quantum

torus.

The quantum torus of A is defined to be the associative Qrq˘1{2, p1 ´ qiq´1s-algebra

MpAq :“
à

αPCpAq

Qrq˘1{2, p1 ´ qiq´1
s ¨ eα

with product given by2

eα ˚ eβ “
q´χpβ,αq

q ´ 1
eα`β .

2Usually there is no factor of 1{pq ´ 1q and δ invariants below are defined using the non rigidified stack,
but to make the analogy with the K-theory setting more clear we are making this small modification.

The usual δ, ε invariants are
δµα
q´1 ,

εµα
q´1 in our convention.
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The virtual Poincaré polynomial of the (rigidified) stack defines an element

δµα :“ PqpM
µ,rig
α q ¨ eα .

Then, we modify these classes by taking a logarithm in the quantum torus, i.e.

εµα “
ÿ

α“α1`...`αn
µpαiq“µpαq

p´1qn´1

n
δµα1

˚ . . . ˚ δµαn
.

A remarkable theorem of Joyce [Joy4, Theorem 8.7] is that the ε invariants no longer

have a pole at q “ 1 – see also [BNK] and [BR] for more recent approaches to the proof

of this result. More precisely, they are regular elements, i.e. lie in

MregpAq :“
à

αPCpAq

Qrq˘1{2, p1 ` q ` . . . ` qi´1
q

´1
s ¨ eα Ď MpAq .

In particular, it now makes sense to specialize q1{2 “ 1. This produces the definition of

generalized (naive) DT invariants:

εµα|q“1 “ DTµ
α ¨ eα .

Example 1.3. Consider A “ Vect the abelian category of finite dimensional vector spaces

with the trivial stability condition. Then

δn “ PqpBPGLnq ¨ en “ q´n`1
n´1
ź

n“1

pqn ´ qiq´1
¨ en .

Then we have, for example,

ε2 “ δ2 ´
1

2
ε1 ˚ ε1 “

ˆ

1

qpq2 ´ 1q
´

1

2qpq ´ 1q

˙

¨ e2 “ ´
1

2qpq ` 1q
¨ e2 .

In particular, DT2 “ ´1
4
. More generally, DTn “

p´1qn´1

n2 [JS, Example 6.2].

The regular elements MregpAq Ď MpAq do not form a subalgebra of MpAq. However,

they form a Lie subalgebra of MpAq with the commutator ru, vs “ u ˚ v ´ v ˚ u. This is

clear from the observation that

reα, eβs “
q´χpβ,αq ´ q´χpα,βq

q ´ 1
¨ eα`β

is a polynomial in q.

Wall-crossing formulas can be efficiently written inMpAq. Indeed, they take exactly the

form discussed in Section 1.1.3, and served as inspiration for our construction of KpAq.

For example when Mα itself is finite type
ÿ

α“α1`...`αn
µpα1qą...ąµpαnq

δµα1
˚ . . . ˚ δµαn

“ PqpMαq ¨ eα



10 I. KARPOV AND M. MOREIRA

does not depend on µ. Indeed, this is a consequence of the Harder–Narasimhan stratifi-

cation, as the product ˚ is built so that the Harder–Narasimhan stratification gives this

formula. This provides a way to compare classes δµα, δ
µ1

α for two stability conditions µ, µ1.

Joyce shows [Joy6, Theorem 5.4] that when we replace δ classes by ε classes, the resulting

formula can be written entirely using the commutator on MpAq; in other words, it can be

written entirely inside the Lie subalgebra MregpAq.

1.3. Conjectures and future directions. In certain aspects, we have opted to keep a

slightly simpler (and hence less general) setup than in [Joy7]. For example, we do not

consider here the possibility for reduced obstruction theories, necessary for wall-crossing

on surfaces with pg ą 0. We have also opted to do everything non-equivariantly, unlike

[Liu]. It should be possible to incorporate both of these aspects in our approach without

too much trouble.

Recently, [BHLNK, BNK] established a generalization of the motivic DT theory to

stacks that do not come from linear moduli problems. This is done by replacing the motivic

Hall algebra by a structure they call “motivic Hall induction”, intrinsically associated

to any stack (under reasonable conditions). A similar extension of the content of this

paper using their formalism is possible, and will be pursued elsewhere. This should, in

particular, answer questions raised, e.g., by Bu in the setting of wall-crossing for self-dual

categories: [Bu2].

A more ambitious extension is to the setting of sheaves on Calabi–Yau 4-folds, or more

generally p´2q-shifted symplectic stacks. A mild modification of ourK-Hall algebra allows

a definition of generalized K-theoretic invariants in that context. The missing piece is an

appropriate version of the non-abelian localization theorem for p´2q-shifted symplectic

stacks.

We make Conjectures 7.12 and 8.9, which are similar in spirit to the no-pole theorem in

the motivic setting. The first says that the classes εµα more or less comes from a scheme,

and the second says that εµα admits a homological counterpart that lives in algebraic degree

equal to the virtual dimension. We show that both of these hold when there are framings,

but it would be desirable to have a more general argument. We hope these conjectures

might be addressed by relating ε classes to the (derived) Kirwan desingularization of the

moduli stack, cf. [HRS].

The more straightforward applications are the ones to explicit wall-crossing problems

which still remain unsolved at the time of our writing the present paper. First of all,

it seems that with little extra care the PT-rationality for Fano threefolds (i.e., the Fano

analogue of [Tod3]) may be obtained. Second, in some cases, we are able to apply the
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present results to imitate Feyzbakhsh-Thomas programme (cf., e.g., [FT2]) for Fano 3-

folds, hence, answering (at least, some particular manifestation of) the corresponding

Joyce’s conjecture [Joy8, p.14]. Both questions will be answered in two upcoming works

of ours in the nearest future.

1.4. Notation and conventions. Every scheme, algebraic space, stack and derived

stack in this paper is considered over C. By (derived) stack we mean a (derived) 1-

Artin stack; all the (derived) stacks in this paper will be locally of finite type, have affine

diagonal, and a perfect cotangent complex. Higher (derived) stacks are in the sense of

higher Artin stacks of [Toë]. We will typically denote stacks with calligraphic font (e.g.

X ,Z,M) and derived stacks with Fraktur font (e.g. X,Z,M).

By (co)homology of a derived stack X we mean the (co)homology with Q-coefficients

of the topological realization (cf. [Bla, Section 3]) of the classical truncation X ; this

agrees with a 6-functor formalism type definition by [Kha3, Proposition 2.8]. Homology

is considered a direct sum over its degrees and cohomology a direct product,

H˚p´q “
à

ně0

Hnp´q and H˚
p´q “

ź

ně0

Hn
p´q .

Chern classes of perfect complexes are defined by pulling back universal Chern classes

along the topological realization of the induced map X Ñ MPerf to the stack of perfect

complexes. Given an abelian group A we write AQ “ A bZ Q.

1.5. Acknowledgments. We would like to thank Younghan Bae, Chenjing Bu, Pavel

Etingof, Daniel Halpern-Leistner, Andrés Ibáñes Nuñéz, Dominic Joyce, Adeel Khan,

Vasily Krylov, Woonam Lim, Henry Liu, and Davesh Maulik for conversations related to

this project.

The first author wishes to especially thank Davesh Maulik: the present work owes its

existence to his suggestion of considering the wall-crossing applications of non-abelian

localization.

2. Preliminaries: abelian categories and stability conditions

2.1. Abelian categories and moduli stacks. Let A be a C-linear abelian category.

Under appropriate conditions, it is possible to form a derived moduli stack M “ MA over

C parametrizing objects of A. This stack will play a central role in this paper and we

need it to have certain structures and properties, so we will now explain the necessary

assumptions on the abelian category A.

The standard example to keep in mind of a good abelian category is A “ CohpXq for a

smooth projective scheme X. Other examples include the categories of finite dimensional
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vector spaces and finite dimensional representations of an acyclic quiver. Other hearts

of t-structures on DbpXq are often good abelian categories (cf. [AHLH, Example 7.22,

7.26]). We summarize in the next definition/proposition the properties that we require

and discuss them in more detail below.

Definition/Proposition 2.1. We say that A is a good abelian category if Assumptions

2.2 and 2.3 hold. When that is the case, there is a derived moduli stack MA parametrizing

objects of A. The derived stack MA is locally finite type, has affine diagonal and its

derived tangent complex is given by (1). The derived stack comes with a direct sum map

Σ, a BGm action and a complex Ext12 on M ˆ M with compatibilities detailed in [Joy7,

Assumption 4.4 (c), (f)].

As discussed in [AHLH, Section 7.1] following [AZ], to construct a classical stack MA

parametrizing objects in A we need A to be the subcategory of compact objects of some

locally Noetherian cocomplete category C (for example, CohpXq are the compact objects

of QCohpXq if X is smooth projective).

Assumption 2.2. The abelian categoryA is Noetherian and there is a cocomplete abelian

category C such that A “ Cpe is the subcategory of perfect objects, and moreover A
generates C.

In particular, C is locally Noetherian and there exists a classical moduli stack M “

MA as in [AHLH, Section 7.1]. Note that this stack actually depends on the choice of

embedding into the cocomplete category C, as remarked in [AHLH, Warning 7.11], but we

will suppress it from the notation since in our examples there is always a natural choice

of C.
We would like to have a natural derived enhancement of M, which we denote by

M “ MA, whose derived tangent bundle is given by

(1) TM “ ∆˚Ext12r1s .

This means that HomApF, F q controls the stackiness of M at F , Ext1ApF, F q the defor-

mations and Extą1
A pF, F q the (higher) obstructions.

Toën-Vaquié [TV] construct higher derived stacks parametrizing objects in saturated

dg categories. See Definition 2.4 in loc. cit. for the definition of saturated; when X is a

smooth proper scheme, the dg enhancement of DbpXq (which is unique by [CS, Corollary

7.2]) is saturated [TV, Lemma 3.27]. Hence, we require the following:

Assumption 2.3. There is a saturated dg category T such that A is a full subcategory

of the homotopy category HopTq and MA is an open substack of the classical truncation

of MT.
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This open inclusion induces a derived enhancement MA of MA, which is open inside

MT; cf. [STV, Proposition 2.1]. When A “ CohpXq, or some other heart of DbpCohpXqq,

for a projective smooth variety X, we let T be the dg enhancement of DbpCohpXqq. The

openness of MCohpXq is shown for example in [HL4, Proposition 6.2.7]; other natural

hearts related to stability conditions are also shown to be open in3 [PT, Section 4], [HL4,

Proposition 6.2.7] and [BCR, Proposition 4.6]. It is shown in [TV, Theorem 0.2] that MT

is locally of finite type, and hence the same is true for MA. By [AHLH, Lemma 7.20]

it follows that MA has affine diagonal. The derived stack MA comes with the following

structures:

(1) A direct sum morphism Σ: M ˆ M Ñ M that acts on points as pF,Gq ÞÑ F ‘G.

(2) A BGm action Ψ: BGmˆM Ñ M induced by the scaling action Gm Ñ AutApF q.

(3) A perfect complex Ext12 on MˆM whose value over a point pF1, F2q on MˆM is

RHomApF1, F2q. We also denote by Ext21 the complex RHomApF2, F1q, which is

obtained by pulling back Ext12 along the map MˆM Ñ MˆM which permutes

the two factors.

These can all be defined on MT (see, for example, [KPS, Proposition 8.29]) and restricted

to MA. They satisfy a series of compatibilities which are described in detail in [Joy7,

Assumption 4.4 (c), (f)]. For example, the complex Ext12 should be “bilinear” with

respect to Σ, in the sense that

RHomApF1, F2 ‘ F 1
2q “ RHomApF1, F2q ‘ RHomApF1, F2q .

The complex Ext12 has weight ´1 with respect to the BGm action on the first coordinate

and weight 1 with respect to the action on the second coordinate. When A “ CohpXq

(or more generally A is the heart of a t-structure in DbpXq) the Ext complex is given by

Ext12 “ Rp˚

`

RHompF13,F23q
˘

where F is the universal bundle (complex) on M ˆX, F13,F23 are the pullbacks of F to

M ˆ M ˆX indicated by the subscript, and p is the projection M ˆ M ˆX Ñ M ˆ M.

See for example [GJT, (5.4)] for the explicit form in the case of quivers.

We denote by CpAq the set of connected components of MA, or equivalently MA, and

we let Mα Ď MA be the connected component corresponding to α P CpAq, so that

MA “
ğ

αPCpAq

Mα .

3In all of these, the results are stated as MA being open inside Lieblich’s [Lie] stack of complexes with
Extă0

pF, F q “ 0. This is an open substack of MDbpXq, as pointed out in [TV, Corollary 3.21].



14 I. KARPOV AND M. MOREIRA

The direct sum map on MA gives CpAq the structure of a monoid. Since the rank of

Ext12 is locally constant, we define the Euler form

χpα, βq “ rk
`

pExt12q|MαˆMβ

˘

.

Given an object E of A, we denote by rEs P CpAq the connected component of the

corresponding C-point in the stack Mα.

Remark 2.4. If A is a good abelian category of homological dimension ď 2, meaning

that Extą2
A “ 0, then MA is a quasi-smooth derived stack, due to (1).

Also, using the BGm action, one may define the rigidified (or the projective linear, to

use the terminology from [Joy7]) version Mrig of M.

Definition 2.5. Suppose that X is a (derived) stack admitting a free BGm action. Then,

there is a rigidified (derived) stack Xrig “ X(Gm (cf. [AOV, Appendix A]); it comes with

a canonical map π : X Ñ Xrig which is a Gm gerbe – in particular, its fibers are isomorphic

to BGm. Roughly speaking, Xrig is the stack with the same points as X and with isotropy

groups obtained by quotienting out the Gm coming from the action. The rigidification

sits in the following homotopy cartesian square:

BGm ˆ X X

X Xrig

Ψ

p2 π

π

Every complex in X pulled back from Xrig has weight 0, by commutativity of the square

above.

2.2. Stability conditions, Θ-stratifications and good moduli spaces. To make

sense of taking integrals (i.e, Euler characteristics) of perfect complexes over some stack,

one usually requires the existence of a proper good moduli space. This statement is for-

malized as Theorem 3.12 below.

Definition 2.6 ([Alp]). Let X be an Artin stack. A good moduli space for X is an

algebraic space X together with a morphism ϕ : X Ñ X such that

(1) ϕ is quasi-compact;

(2) the pushforward functor ϕ˚ : QCohpX q Ñ QCohpXq is exact on the categories of

the quasi-coherent sheaves;

(3) the natural morphism OX Ñ ϕ˚OX is an isomorphism.

A good moduli space of a derived stack X is a good moduli space of its classical truncation

X “ Xcl (alternatively, see [AHPS]).



K-THEORETIC WALL-CROSSING 15

Note that if X admits a proper good moduli space then X is quasi-compact. This is

rarely the case for the stacks parametrizing objects in abelian categories considered above:

it is not true for A “ CohpXq if dimpXq ą 0, but it is true for representations of acyclic

quivers.

Proposition 2.7 ([AHLH, Theorem 7.23]). Let A be a good abelian category and α P

CpAq. If the stack Mα is of finite type, then Mα admits a proper good moduli space.

Typically, to get proper good moduli spaces we need to impose some sort of stability.

In the rest of the present section, we will work with a good abelian category A as in

Section 2.1, and recall the criterion for the existence of proper good moduli spaces for the

moduli stacks of semistable objects on MA (following the exposition of [Joy7, Subsection

3.1]).

We start with the notion of a weak stability condition on A. The definition we use is

due to Joyce [Joy4]; its roots go back to Rudakov [Rud]

Let pT,ďq be a totally ordered set, and let µ be a map µ : CpAq Ñ T . Given an object

E of A, we will write µpEq :“ µprEsq; in other words, µ is a locally constant function

MA Ñ T . We call µ the slope function.

Definition 2.8. We call pµ, T,ďq a weak stability condition on A if for any α, β, γ P CpAq

with β “ α ` γ either µpαq ď µpβq ď µpγq, or µpαq ě µpβq ě µpγq.4

A weak stability condition defines the notion of µ-stable and µ-semistabile objects as

follows.

Definition 2.9. An object E P A is said to be µ-semistable if µpE 1q ď µpE{E 1q for

all subobjects 0 ‰ E 1 Ĺ E. We say that E is µ-stable if we have a strict inequality

µpE 1q ă µpE{E 1q in the same setting. If E is µ-semistable but not µ-stable we say it is

strictly semistable.

If the category A is µ-Artinian and A is Noetherian (which is part of our definition

of good abelian category) then any object E P A has a canonical Harder-Narasimhan

filtration

(2) 0 “ E0 Ĺ E1 Ĺ E2 . . . Ĺ En “ E ,

so that all of the successive quotients Fi “ Ei{Ei´1 are µ-semistable, and

µpF1q ą µpF2q ą . . . ą µpFnq .

4We recall that for µ to be a stability condition (as opposed to a weak stabilty condition), the more
restrictive condition should hold: either µpαq ă µpβq ă µpγq, or µpαq ą µpβq ą µpγq, or µpαq “ µpβq “

µpγq.
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We call (2) the µ-HN filtration of E and the objects F1, . . . , Fn the µ-HN factors of E.

Moreover, any µ-semistable object has a Jordan–Hölder filtration whose successive quo-

tients are µ-stable objects with the same slope as the original object; the Jordan–Hölder

filtration is not unique in general, but the successive quotients of any two Jordan–Hölder

are the same up to a permutation. We refer the reader to [Joy4, Theorem 4.4, 4.5] for a

more precise formulation of these facts and proofs.

Definition 2.10. We denote by Mµ
α Ď Mα the substack of µ-semistable objects in Mα.

We will make a series of assumptions that guarantee that the stacks of semistables are

sufficiently nice to define enumerative invariants. In some natural cases, such assumptions

do not hold for arbitrary topological types α P CpAq, so we will consider a smaller set

of CpAqpe Ď CpAq of permissible classes as in [Joy7, Assumption 5.1(e)]. We now state

these assumptions and briefly explain them and their implications.

Assumption 2.11. Let A be a good abelian category and µ a weak stability condition

for which Harder–Narasimhan filtrations exist (e.g. A is µ-Artinian). We assume that

there is a set of permissible classes CpAqpe Ď CpAq such that for every α P CpAqpe the

following holds:

(1) The stack Mµ
α is open in Mα, quasi-compact, and its derived enhancement is

quasi-smooth.

(2) There is a (pseudo) Θ-stratification on Mα adapted to µ, as explained in Section

5.3, which satisfies the descendending chain condition. In particular, Mµ
α is the

semistable loci for this Θ-stratification.

(3) µ is equivalent to an additive stability condition on α, as defined in [AHLH, Section

7.3].

(4) If E is µ-semistable with rEs “ α and E 1 Ď E then rE 1s P CpAqpe.

(5) There are only finitely many partitions

α “ α1 ` . . . ` αl

with µpαiq “ µpαq and Mµ
αi

‰ H. By (4), we have αi P CpAqpe for any such

partition.

Since we required Mµ
α Ď Mα to be an open embedding, we obtain a derived enhance-

ment Mµ
α Ď Mα which is still an open embedding. Since MA is locally of finite type by

Proposition 2.1, it follows that Mµ
α is of finite type.

The concept of Θ-stratifications has been introduced and studied by Halpern–Leistner,

see for example [HL4, Definition 2.1.2]. Joyce defines in [Joy7, Definition 3.3.4] a weaker

notion which he calls pseudo Θ-stratification [Joy7, Definition 3.3.4]; in some cases, pseudo
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Θ-stratifications are more natural. We will discuss both of these in Section 5.1. For now,

we just point out that there are techniques to construct (pseudo) Θ-stratifications in most

cases of interest. There are two reasons for imposing the existence of these stratifications:

they guarantee the existence of proper good moduli spaces (cf. Theorem 2.13) and they

are necessary for the non-abelian localization theorem (cf. Theorem 5.6), which is the

heart of our wall-crossing formula.

Definition 2.12. We say that µ is additive at α if there is a totally ordered abelian group

pV,ďq and a monoid homomorphism ρα : CpAq Ñ V such that an object E with rEs “ α

is µ-semistable if and only if, for all subobjects F Ď E, ρprF sq ď 0.

This additive condition is very mild, and true for all the natural stability conditions

considered in enumerative geometry. If we can write µpαq “ dpαq{rpαq with d, r linear,

then we may take

ραpβq “ dpβqrpαq ´ dpαqrpβq .

We impose it since it is necessary in the theorem ensuring the existence of proper good

moduli spaces by Alper, Halpern–Leistner and Heinloth:

Theorem 2.13 ([AHLH, Theorem 7.27], [Joy7, Theorem 3.43]). Suppose that A is a

good abelian category, µ is as in Assumption 2.11 and α P CpAqpe. Then Mµ
α admits a

proper good moduli space.

The good moduli space Mµ
α Ñ Mµ

α factors through the rigidification Mµ,rig
α Ñ Mµ

α ,

and hence Mµ,rig
α ,Mµ,rig

α also admit the same good moduli space, see [HL2, Subsection

1.0.4].

2.3. Hearts of DbpXq and tilt stability. The setup in this paper gives some new wall-

crossing formulas for certain hearts of DbpXq. We collect here some references where the

technical assumptions made so far are verified.

Let X be a smooth projective variety and A is the heart of some t-structure on DbpAq.

Assumption 2.2 is shown to hold in [HL4, Proposition 6.1.7] provided that A is Noetherian

and bounded with respect to the standard t-structure. Indeed, we may take C to be the

heart of the induced t-structure on DpQCohpXqq.

For Assumption 2.3 we takeT to be the dg enhancement ofDbpXq, which is saturated by

[TV, Lemma 3.27]. Establishing that MA is an open substack of the classical truncation

of MT is a non-trivial task, but there are techniques for doing so in many examples of

interest5: see for example [PT, Section 4], [AB, Theorem A.3], [HL4, Proposition 6.2.7]

and [BCR, Proposition 4.6].

5In all of these, the results are stated as MA being open inside Lieblich’s [Lie] stack of complexes with
Extă0

pF, F q “ 0. This is an open substack of MDbpXq, as pointed out in [TV, Corollary 3.21].
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One particular way to obtain non-standard t-structures of DbpXq is to tilt the standard

t-structure with respect to a torsion pair. Even more concretely, we may do this by tilting

with respect to a stability condition on CohpXq, as in [BMT, Section 3], which we refer to

for further details. Given R-divisors ω,B with ω ample, there is a t-structure on DbpXq

with heart Aω,B and a stability condition νω,B on Aω,B. When X is a surface, pAω,B, νω,Bq

is a Bridgeland stability condition; if X is a 3-fold then Bridgeland stability conditions

can (conjecturally, but known in many cases) be obtained by tilting Aω,B once again. The

fact that Aω,B is a good abelian category follows from the results mentioned above, in

particular [BMT, Proposition 5.2.2], [HL4, Proposition 6.1.7] and [AB, Theorem A.3].

The existence of Harder–Narasimhan filtrations with respect to νω,B is shown in [BMT,

Lemma 3.2.4]. For Assumption 2.11 we take the permissible classes CpAω,Bq to be the

ones with νω,Bpαq ă 8; these are thought of as torsion-free classes in Aω,B. The stacks

Mνω,B
α being finite type and open in Mα is established in [Tod1, PT]; see also [HL4,

Proposition 6.2.7].

The finiteness condition (5) in Assumption 2.11 is known to hold if X is a surface or a

3-fold satisfying the [BMT] inequality, see [BMS, Conjecture 4.1]. For the case of 3-folds

see [FT2, Proposition 4.1]. Finally, the existence of Θ-stratifications is also known when

X is a surface or a 3-fold satisfying the BMT inequality by using [HL4, Theorem 6.5.3].

Regarding the assumptions in loc. cit.:

(1) Since the set of walls is locally finite [BMS, Proposition 12.5] we may assume that

ω,B are Q-divisors.

(2) Generic flatness in this example follows from [PT, Proposition 4.11].

(3) Boundedness of quotients for surfaces follows from [Tod1, Proposition 3.15]. While

[Tod1, Proposition 3.15] is only for Bridgeland stability conditions, a modification

of its proof using [FT2, Theorem C.5] shows boundedness of quotients for 3-folds

satisfying the BMT inequality.

The last point that is necessary to address is quasi-smoothness. When X is a surface

with nef anticanonical this is shown in [LM, Lemma 7.8]. For Fano 3-folds this will be

proved in forthcoming work by the first author. We summarize the discussion above in

the following proposition:

Proposition 2.14. Let X be a surface with nef anticanonical or a Fano 3-fold satisfying

the BMT inequality. Then Assumptions 2.2, 2.3 and 2.11 hold for pAω,B, νω,Bq, with the

permissible classes being the ones satisfying νω,Bpαq ă 8.
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3. Preliminaries: K-theory and K-homology

3.1. K-theory of stacks. Let X be a derived Artin stack. We briefly review the alge-

braic K-theory of X, following mostly [Kha2], and recall some results that we will need.

Denote by DQCohpXq the (unbounded) category of quasi-coherent complexes on X and by

QCohpXq its heart. Inside DQCohpXq we have the subcategories of perfect and coherent

complexes which we denote as

PerfpXq and DbCohpXq .

A complex is perfect/coherent if it is perfect/coherent on smooth affine charts (see [Kha2,

Definition 1.5]). The t-structure on DQCohpXq restricts to DbCohpXq and its heart is the

abelian category of coherent sheaves CohpXq. A complex being in DbCohpXq is equivalent

to having coherent cohomology groups, all but finitely many being 0.

When the structure sheaf OX is bounded, in the sense that H ipOXq “ 0 for all but

finitely many i, there is an inclusion

PerfpXq Ď DbCohpXq .

Proposition 3.1 ([Kha2, Corollary 6.1]). If X is quasi-smooth then OX is bounded.

The algebraic K-groups of X are defined as follows:

Definition 3.2. Let X be a derived stack. We let

K˚
pXq “ K0pPerfpXqq ,

GpXq “ K0pCohpXqq “ K0pD
bCohpXqq

where K0 denotes the Grothendieck group of a category.

The notation K˚ is not standard, but we will use it to indicate that we think of K˚

as a cohomology theory. When OX is bounded, there is a canonical morphism KpXq Ñ

GpXq induced by the inclusion of the respective categories; if X is regular this map is

an isomorphism. It it shown in [Kha2, Corollary 3.4] that if X is Noetherian then G-

theory is insensitive to the derived structure, i.e. the inclusion of the classical truncation

ι : X :“ Xcl Ñ X induces an isomorphism

ι˚ : GpX q Ñ GpXq .

The analogous statement is not true in general for K˚pXq [Ann].

Remark 3.3. Instead of working with algebraic K-theory, another option is to use topo-

logical K-theory, in the sense of Blanc [Bla], and define

K˚
toppXq “ Ktop

0 pPerfpXqq ‘ Ktop
1 pPerfpXqq .
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We can do the same with G theory, and these have the same functoriality properties

as their algebraic counterparts. It seems to us that everything in this paper could be

rewritten in that language. Halpern-Leistner has kindly informed us that his non-abelian

localization theorem [HL5] also holds for Blanc’s K-theory. The advantage of doing so

is that it makes the comparison with cohomology easier (cf. Section 8, and in particular

Remark 8.14) since, for example, the Chern character induces an isomorphism between

Blanc’s K-theory and cohomology (with Q-coefficients) for separated finite type schemes.

3.1.1. Operations in K and G theory. Given a morphism of derived stacks f : X Ñ Z we

have a derived pullback and a derived pushforward

Lf˚ : DQCohpZq Ñ DQCohpXq and Rf˚ : DQCohpXq Ñ DQCohpZq .

The pullback Lf˚ always preserves perfect complexes. If f is of finite Tor amplitude then

it also preserves coherent complexes. Hence we have pullback morphisms

f˚ : K˚
pZq Ñ K˚

pXq

f˚ : GpZq Ñ GpXq (f has finite Tor amplitude)

If f is proper and representable, the pushforward also preserves coherent complexes and,

under some extra mild conditions, perfect complexes. Hence, we have pushforward maps

f˚ : K
˚
pXq Ñ K˚

pZq (f proper, representable,

finite Tor amplitude, locally finite type)

f˚ : GpXq Ñ GpZq (f proper, representable)

There are some situations where pushforwards exist even without the map being proper,

see [HLP]. A particularly important one is the following:

Proposition 3.4 ([Alp, Theorem 4.16 (x)]). Let X be the classical truncation of X. If

f : X Ñ X is a good moduli space and X is Noetherian, then f˚ preserves coherent

complexes, and in particular there is a well-defined pushforward

f˚ : GpXq » GpX q Ñ GpXq .

The same is true if X is not necessarily an algebraic space but f still satisfies the two

conditions in the definition of good moduli space.

Another example is Proposition 3.8 below, concerning rigidification maps. Since the

tensor product restricts to PerfpXq, there is a product

K˚
pXq b K˚

pXq Ñ K˚
pXq .
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Tensoring by a perfect complex preserves coherent complexes, which endows GpXq with

a K˚pXq-module structure

X : K˚
pXq b GpXq Ñ GpXq .

The map from K-theory to G-theory when OX is bounded is precisely ´ X rOXs.

3.1.2. Exterior powers. Exterior powers Λnp´q endow K˚pXq with the structure of a λ-

ring. We let

(3) Λ´upV q “
ÿ

ně0

p´uq
nΛnpV q P K˚

pXqJuK .

A common theme in the paper will be how to expand Λ´upV q in different directions. We

regard (3) above as the “expansion of Λ´upV q around u “ 0”.

Lemma 3.5. If V is a vector bundle, then

(4) Λ´upV q “ p´uq
rkpV qΛ´u´1pV _

q b detpV q

in K˚pXqrus.

Proof. Let r “ rkpV q. This follows from the fact that

ΛnpV q b Λr´n
pV q Ñ ΛrpV q “ detpV q

defines a perfect pairing, and hence an isomorphism

ΛnpV q » Λr´n
pV q

_
b detpV q » Λr´n

pV _
q b detpV q . □

Remark 3.6. When V is a vector bundle the class

Λ´1pV _
q “

rkV
ÿ

n“0

p´1q
nΛnpV _

q

plays the role of the inverse Euler class of V , for example in the context of torus localization

[Oko, Section 2.3]

When V is not a vector bundle, the right hand side of (4) – which is a Laurent series

in u´1 – might be interpreted as the “expansion of Λ´upV q around u “ 8”. This might

be made precise when V P K˚pXq can be written as an alternating sum of line bundles

V “
řm
i“1 ϵiLi with ϵi P t´1, 1u. Then we have an equality

Λ´upV q “

m
ź

i“1

p1 ´ uLiq
ϵi “

m
ź

i“1

`

p1 ´ u´1L_
i q

ϵip´uLiq
ϵi

˘

“ p´uq
rkpV qΛ´u´1pV _

q b detpV q

as rational functions in u with coefficients inK˚pXq, but the left hand side is the expansion

in K˚pXqppuqq while the right hand side is the expansion in K˚pXqppu´1qq.
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The expansion around u “ 1,

Λ´upV q P K˚
pXq

`̀

p1 ´ uq
´1

˘̆

,

is also used in [Liu, Definition 2.1.8]. Unlike the previous two, its definition requires that

we assume that V can be represented as the difference between the classes of two vector

bundles; this is always the case when X has the resolution property, for example if X is a

smooth classical scheme. It is defined by using the splitting principle and expanding the

rational function above around u “ 1. In particular, if L is a line bundle,

Λ´up´Lq “
ÿ

ně0

un

p1 ´ uqn`1
pL ´ 1q

n .

When X “ X is a scheme, pL ´ 1qn “ 0 for sufficiently large n and the expression above

is a Laurent polynomial in 1 ´ u. Indeed, we have the following:

Lemma 3.7 ([Liu, 2.1.8, 2.1.11]). Let X be a finite type scheme and V P K0pVectpXqq.

Then there is an element of K0pVectpXqqrp1 ´ uq˘1s whose expansion in u is

Λ´upV q P K0pVectpXqqJuK

and whose expansion in u´1 is

p´uq
rkpV qΛ´u´1pV _

q b detpV q P K0pVectpXqqppu´1
qq .

3.1.3. K-theory of BGm and rigidifications. A quasi-coherent sheaf on BGm corresponds

to a representation of BGm on a (possibly infinite dimensional) vector space V . Such

representation is coherent if and only if it is perfect if and only if V is finite. The K-

theory of BGm is isomorphic to

K˚
pBGmq » RpGmq » Zru˘1

s

as a ring, where RpGq denotes the representation algebra of a group G and u is the class

of the standard representation corresponding to the weight 1 action of Gm on C. The

cohomology groups of a quasi-coherent sheaf V are given by

H i
pBGm, V q “

$

&

%

V G if i “ 0

0 otherwise

In particular, if π : BGm Ñ pt then the functor π˚ “ Rπ˚ is exact and preserves perfect

complexes. The pushforward

Zru˘1
s » K˚

pBGmq
π˚
ÝÑ K˚

pptq » Z

is identified with the operator ru0s of extracting the constant term of a Laurent polynomial.
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Consider now a (derived) stack X equipped with a BGm action Ψ: BGm ˆ X Ñ X.

Given a complex F on X, the BGm action induces a canonical weight decomposition

F “
à

µPZ
Fµ

where

Ψ˚F “
à

µPZ
uµ b Fµ .

A complex is said to be of weight µ if F “ Fµ. The next proposition relates the K-theory

of a stack and its rigidification (cf. Definition 2.5).

Proposition 3.8. The pullback

π˚ : K˚
pXrig

q Ñ K˚
pXq

is injective and its image are the weight 0 classes. Moreover, the pushforward

π˚ : K
˚
pXq Ñ K˚

pXrig
q

is well defined and we have

π˚π˚F “ F0 .

Proof. This follows essentially by [BS]. There, it is shown that the weight decomposition

induces an equivalence of categories

(5) DQCohpXq »
ź

µPZ

DQCohpXqµ

where DQCohpXqµ denotes the Serre subcategory of weight µ complexes. Moreover, [BS,

Proposition 5.7] shows that π˚ “ Lπ˚ gives an equivalence

DQCohpXrig
q

„
ÝÝÑ DQCohpXq0

with inverse given by π˚ “ Rπ˚. It is clear that the decomposition (5) restricts to an

isomorphism

PerfpXq »
à

µPZ
PerfpXqµ .

From here all the statements in the proposition are clear. □

If T is a n-dimensional torus then these statements generalize in a straightforward way.

The K-theory of BT is

K˚
pBT q » RpT q » ZrΛs

where Λ Ď t_ is the weight lattice of the torus. A BT action on X induces a weight

decomposition F »
À

µPΛ Fµ on any sheaf on X. A splitting T » Gm ˆ . . . ˆ Gm induces
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a basis on Λ and a corresponding isomorphism

K˚
pT q » Zru˘1

1 , . . . , u˘1
n s .

3.2. K-homology. Under appropriate conditions, a moduli spaceM with a virtual struc-

ture sheaf Ovir
M determines an “integration” functional K˚pMq Ñ Z by taking the Euler

characteristic:

V ÞÑ χpM,Ovir
M b V q .

Liu defines in [Liu] a notion of K-homology, which roughly is the space where such func-

tionals live. The most naive thing would be to simply define K-homology as the dual

to K-theory. However, the lack of a Kunneth decomposition creates issues when trying

to define some algebraic structures on K-homology. This is solved by working with an

operational theory that forces the existence of a Kunneth morphism.

Definition 3.9. Let X be a derived stack. An element ϕ in the K-homology group K˚pXq

is a collection of K˚pSq-linear maps

tϕS : K
˚
pX ˆ Sq Ñ K˚

pSqu

for every derived stack S which satisfies the following compatibility condition: for any

morphism h : S Ñ S 1, the diagram

K˚pX ˆ S 1q K˚pX ˆ Sq

K˚pS 1q K˚pSq

ϕS1

pidˆhq˚

ϕS

h˚

commutes.

Remark 3.10. There are two more conditions in the definition of K-homology in [Liu].

The “equivariant localization” is irrelevant for us since we are not working equivariantly.

The “finiteness condition”, on the other, is a fundamental difference and we really need

to exclude it. For example, for us

K˚pBGmq » HomZpK˚
pBGmq,Zq » ZZ ;

with the finiteness condition, the K-homology of BGm is isomorphic to Zrϕs (cf. [Liu,

Proposition 2.3.5]). We will further discuss this finiteness condition in Section 7.3.

Note that, by taking S “ pt, a class inK-homology determines a functional ϕpt : K
˚pXq Ñ

Z. If X has the property that the Kunneth map

K˚
pXq b K˚

pSq Ñ K˚
pX ˆ Sq
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is an isomorphism for every S, then K˚pXq » K˚pXq_. For most purposes, it is enough

to think of a K-homology class as just a functional, so we will often – when no subtlety

arises – do so for the sake of clarity of exposition.

We have the following structures on K-homology:

Cap product. There is a cap product

X : K˚
pXq b K˚pXq Ñ K˚pXq

obtained from the tensor product on K˚. At the level of functionals,

pV X ϕqptpW q “ ϕptpV b W q

for V,W P K˚pXq.

Kunneth map. For any X,Z there is a Kunneth map

b : K˚pXq b K˚pZq Ñ K˚pX ˆ Zq .

It is defined by setting pϕ b ψqS to be the composition

K˚
pX ˆ Z ˆ Sq

ϕZˆS
ÝÝÝÑ K˚

pZ ˆ Sq
ψS
ÝÑ K˚

pSq .

Note how this definition uses the operational definition in a fundamental way.

Pushforward. Given an arbitrary map f : X Ñ Z there is a pushforward f˚ : K˚pXq Ñ

K˚pZq. At the level of functionals, this is the dual of the pullback on K˚.

Proper pullback. If f : X Ñ Z is a proper, representable, finite Tor amplitude, locally

finite type morphism, then there is a pullback f˚ : K˚pZq Ñ K˚pXq. At the level of

functionals, this is the dual of the pushforward on K˚. By Proposition 3.8 we also have

pullbacks in K˚ along rigidification morphisms.

G to K˚ and universal invariants. Suppose that X is Noetherian and admits a proper

good moduli space. Then there is a canonical map

(6) GpXq Ñ K˚pXq .

At the level of functionals, it sends a coherent complex C P GpXq to the functional

K˚
pXq Q V ÞÑ χpX, V X Cq P Z .

The operational description requires some work. The coherent complex C is sent to ϕ

where

ϕSpV q “ pRp1q˚pV b p˚
2Cq
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and p1, p2 are the projections of X ˆ S onto X and S respectively. Using the fact that

pushforward along the good moduli morphism preserves coherent complexes (cf. Propo-

sition 3.4), it is not hard to see that the complex above is coherent, but being actually

perfect requires a proof.

Lemma 3.11. Let as above X be a Noetherian derived stack admitting a proper good

moduli space, V in PerfpXˆSq and C in DbCohpXq. Then pRp1q˚pV bp˚
2Cq is in PerfpSq.

Proof. Let ι : X “ Xcl Ñ X be the classical truncation. Since DbCohpXq has a bounded

t-structure with heart CohpXq and ι˚ : CohpX q
„

ÝÝÑ CohpXq is an isomorphism (cf. [Kha2,

Proposition 3.3, Corollary 3.4]), we may assume that C is obtained as a pushforward from

X . Hence, it is enough to prove the statement for the classical truncation X instead of

X.

The proof uses the notion of relatively perfect complexes as in [Lie] or [Sta, Section

0DHZ]; morally, we are introducing non-perfectness only along X , which is what this

notion captures. By [Sta, Example 0DI1, Lemma 0DI5] the complex p˚
2C “ Lp˚

2C is S-

perfect. By [Sta, Lemma 0DI4] it follows that E :“ V b p˚
2C is also S-perfect. Moreover,

it is coherent since V is perfect and p˚
2C is coherent.

If X itself was proper then [Sta, Lemma 0DJT] would give the desired conclusion.

Hence, it is enough to prove that the pushforward along the good moduli map (base

changed to S) f : X ˆ S Ñ X ˆ S preserves S-perfect complexes. This follows from the

same argument with the push-pull formula in the proof of [Sta, Lemma 08EV] using the

fact that f˚ “ Rf˚ is exact (which is preserved by base change, see [Alp, Proposition 3.9

(iv)]). □

It is not hard to see that the map GpXq Ñ K˚pXq is a homomorphism of K˚pXq-

modules.

If furthermore OX is bounded, then the image of rOXs P GpXq via the map above de-

fines a K-theoretic fundamental class rXs on X. Note that if X is quasi-smooth then OX

is bounded [Kha2, Corollary 6.1]. When this is the case, the structure sheaf rOXs cor-

responds, under the isomorphism GpXq » GpX q, to the well-known virtual fundamental

sheaf rOvir
X s on the classical truncation X “ Xcl [BF, Lee]. Roughly speaking, the fun-

damental class rXs tells us how to “integrate against rOvir
X s”, which is what K-theoretic

invariants in enumerative geometry are. We summarize this discussion in the following

theorem:

Theorem 3.12. Let X be a Noetherian derived stack admitting a proper good moduli

space. Then there is a well-defined homomorphism

GpXq Ñ K˚pXq
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of K˚pXq-modules constructed as above. If furthermore OX is bounded (e.g. X is quasi-

smooth), then there is a K-theoretic fundamental class

rXs “ rXsK P K˚pXq

defined as the image of rOXs P GpXq under the previous map which, at the level of

functionals, sends

K˚
pXq Q V ÞÑ χpX, V q “ χpX ,Ovir

X b V|X q P Z .

Let us emphasize that this fact is one of the places where we use K-theory, rather

than cohomology, in a fundamental way. Khan [Kha1] defines a virtual fundamental

class in Borel–Moore homology of X, which is analogous to rOXs P GpXq – they are even

comparable through a Grothendieck–Riemann–Roch type formula, cf. [Kha1, Theorem

3.23]. However, as far as we know, unlike in G-theory, there is no pushforward along

good moduli maps for Borel–Moore homology. Hence there is no good way to integrate

cohomology classes against such fundamental class, and therefore no good way to define

a fundamental class in the singular homology of X.

We should also point out that, unless X is actually a scheme, the class rXs in general

does not satisfy Liu’s finiteness condition. See Example 4.14.

Remark 3.13. It is an easy exercise to verify that the K-theoretic fundamental class is

well behaved with respect to products and the Kunneth map, in the sense that

rX ˆ Zs “ rXs b rZs .

4. The K-Hall algebra and generalized K-theoretic invariants

In this section we will introduce an associative algebra structure on K˚pMrig
A q, when A

is a good abelian category. This algebra is the analog of the motivic Hall algebra (or of

the quantum torus) in K-theory, and we call it the K-Hall algebra.

As in the motivic setting, we will use this product to define generalized K-theoretic

invariants – ε classes – by taking a formal logarithm of δ classes defined directly via the

stacks of semistable objects. The ε classes will be shown to agree with Joyce–Liu classes

in Sections 6 and 7.

Remark 4.1. Let us emphasize that, despite sharing some similarities, the algebra that

we introduce is not the K-theoretic Hall algebra from [Pă]. The K-theoretic Hall algebra

is also an associative algebra, but the underlying vector space is GpMq and the product

is defined by a push-pull construction on the stack of extensions. Another difference is
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that the K-theoretic Hall algebra requires some extra condition, such as MA being quasi-

smooth or p´1q-shifted symplectic, while ours does not. We hope that the distinction “K-

Hall algebra” versus “K-theoretic Hall algebra” will be enough not to confuse the reader.

It would also be interesting to understand the relation between the two constructions

when A has homological dimension ď 2.

4.1. The K-Hall algebra product. We will start by introducing some ingredients nec-

essary for the definition of theK-Hall product. On the stackMˆM there is a BGmˆBGm

action, where each BGm acts on each factor. Let us consider the stack

pM ˆ Mq
rig

obtained by rigidifying with respect to the diagonal BGm Ď BGm ˆ BGm. This stack

still admits a

pBGm ˆ BGmq{BGm » BGm ˆ 1 .

action. If we further rigidify with respect to this action, we obtain Mrig ˆMrig; we denote

by

π : pM ˆ Mq
rig

Ñ Mrig
ˆ Mrig

this second rigidification map. Since Σ: M ˆ M Ñ M intertwines the diagonal BGm

action on M ˆ M with the BGm action on M, there is a rigidified map

Σrig : pM ˆ Mq
rig

Ñ Mrig .

The last ingredient is the following quasi-coherent complex on MˆM, which is central

in the non-abelian localization theorem [TW, HL5]:

(7) Γ´ :“ Λ´1

`

Ext_
21 ` Ext12

˘

b detpExt12q
_

rrk12s ,

where rk12 is the locally constant function rkpExt12q on M ˆ M. Since Ext12,Ext21 have

weights p´1, 1q and p1,´1q, respectively, with respect to the BGm ˆ BGm action, they

are weight 0 for the diagonal BGm and hence descend to pM ˆ Mqrig. Thus the same is

true for Γ´.

Definition 4.2 (K-Hall algebra). Let A be a good abelian category. We define the

K-Hall algebra6

KpAq “ K˚pMrig
A qQ

with product

˚ : K˚pMrig
q b K˚pMrig

q Ñ K˚pMrig
q

defined by

ϕ ˚ ψ “ Σrig
˚

`

rΓ´s X π˚
pϕ b ψq

˘

.

6The algebra could be defined with Z coefficients, without tensoring by Q. However, rational coefficients
are necessary for the definition of generalized K-theoretic invariants.
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Remark 4.3. This definition and the proof of associativity below only depend on the

structures Σ,Φ,Ext12, and the compatibilities between them described in Section 2.1. In

particular, the same construction works if we take any substack of MA closed under direct

sum and the BGm action or if we take MT for a dg category T.

Let us unpack the definition and justify that it makes sense. We first recall that b is

the Kunneth map defined in Section 3.2, so ϕ b ψ P K˚pMrig ˆ Mrigq. The pullback π˚

is well-defined in K˚ since pushforwards of rigidification maps are well-defined in K˚, cf.

Proposition 3.4.

Since Γ´ is only quasi-coherent, the operation rΓ´s X ´ in not well defined in K˚.

Nevertheless, the end expression still makes sense as an element of K˚. For simplicity, let

us argue that at the level of functionals. The important observation is that, despite Γ´

not being perfect (or even coherent), its weight µ part is perfect and vanishes for µ " 0.

Here, we mean weight with respect to the BGm action

Ψ1 : BGm ˆ pM ˆ Mq
rig

Ñ pM ˆ Mq
rig

acting on the first M. Note that Ext12, Ext21 have weights ´1 and 1 with respect to this

action. Hence

Γ´puq :“ Ψ˚
1Γ´ “ Λ´1

`

Ext_
21 b u´1

` Ext12 b u´1
˘

b det
`

Ext12 b u´1
˘_

rrk12s

“ p´uq
rk12Λ´u´1pExt_

21q b Λ´u´1pExt12q b detpExt12q
_ .

In other words, even though Γ´ itself is not perfect, the class of Γ´puq is in the ring

K˚
`

pM ˆ Mq
rig

˘

ppu´1
qq

of Laurent series in u´1 with coefficients in K˚, where u denotes the class of the tauto-

logical line bundle on BGm.

Lemma 4.4. Let V be a perfect complex in Mrig. Then

π˚pΓ´ b pΣrig
q

˚V q

is perfect in Mrig ˆ Mrig.

Proof. By the proof of Proposition 3.4 applied to X “ pM ˆ Mqrig, the complex we are

considering is perfect if and only if the weight 0 part of Γ´ b pΣrigq˚V is perfect. But this

follows from the fact that

(1) pΣrigq˚V is perfect, hence its weight µ part is also perfect and it is zero except for

finitely many µ.

(2) Γ´ has perfect weight µ parts which are 0 for µ ą rkpExt12q. □
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One upshot of the considerations above is that the K-Hall product (at the level of

functionals) is characterized by the fact that the dual “coproduct”7 fits into the diagram

K˚pMq K˚pM ˆ Mq

K˚pMrigq K˚pMrig ˆ Mrigq

ρ˚ pρˆρq˚

˚_

where ρ : M Ñ Mrig is the rigidification map and the top arrow is given by the morphism

(8) ru0s
´

Γ´puq b Ψ˚
1Σ

˚
p´q

¯

.

Above, ru0sp. . .q denotes the constant coefficient of . . .. For a more symmetric version,

the same is also true if we replace the top arrow by

ru01u
0
2s

´

Γ´pu1, u2q b Ψ˚
12Σ

˚
p´q

¯

.

where Ψ12 : BGm ˆ BGm ˆ M ˆ M Ñ M ˆ M is the product of the two actions and

Γ´pu1, u2q :“ Ψ˚
12Γ´

“ p´u1{u2q
rk12Λ´u2{u1pExt_

21q b Λ´u2{u1pExt12q b detpExt12q
_ .

Remark 4.5. The K-theory class of the derived normal bundle to the morphism Σ is the

complex NΣ “ ´Ext12 ´ Ext21. The inverse of its K-theoretic Euler class (cf. Remark

3.6) is

Γ :“ Λ´1pN_
Σq

´1
“ Λ´1

`

Ext_
12 ` Ext_

21

˘

.

Note that

Γpuq :“ Ψ˚
1Γ “ Λ´u´1pExt_

12q b Λ´upExt_
21q

is precisely the complex appearing in the definition of the vertex algebra in [Liu], where

it is interpreted in terms of its 1 ´ u expansion, in the sense of Lemma 3.7. Unlike Γ´,

the complex Γ does not have the property that its weight µ part is perfect for every µ

since it is a product of a Laurent series in u´1 with a Laurent series in u. The complex

Γ´puq can be regarded as the u´1 expansion of Γpuq, following the discussion in Section

3.1.2 and Lemma 3.7.

4.1.1. Associativity. We will now prove the associativity of ˚. The argument is standard,

but requires somewhat cumbersome bookkeeping.

Theorem 4.6. The K-Hall algebra KpAq is an associative algebra.

7This is not really a coproduct, since there is no Kunneth map K˚pMrigˆMrigq Ñ K˚pMrigqbK˚pMrigq.



K-THEORETIC WALL-CROSSING 31

Proof. We fix

φα P K˚pMrig
α q , φβ P K˚pMrig

β q , φγ P K˚pMrig
γ q .

We will use α, β, γ as indices in the different objects involved in the definition of ˚ to keep

track of which copy we refer to. For example, Σα,β refers to the restriction of the direct

sum map to Mα ˆ Mβ Ñ Mα`β and Γα,β refers to the restriction of Γ´ to Mα ˆ Mβ or

pMα ˆ Mβqrig; we ease the notation by writing only Σα,β instead of Σrig
α,β. To calculate

φα ˚ pφβ ˚ φγq we consider the following diagram, where the square is cartesian:

pMα ˆ Mβ ˆ Mγqrig Mrig
α ˆ pMβ ˆ Mγqrig Mrig

α ˆ Mrig
β ˆ Mrig

γ

pMα ˆ Mβ`γqrig Mrig
α ˆ Mrig

β`γ

Mrig
α`β`γ

πα,β`γ

Σα,β,γ

πα,β,γ

Σβ,γ

πβ,γ

Σβ,γ

πα,β`γ

Σα,β`γ

The map Σα,β,γ is the triple direct sum map Mα ˆ Mβ ˆ Mγ Ñ Mα`β`γ (or its rigidifi-

cation), and by associativity of the direct sum it can be written as

Σα,β,γ :“ Σα,β`γ ˝ Σβ,γ “ Σα`β,γ ˝ Σα,β .

The map πα,β,γ is the rigidification with respect to the natural BT acting on pMα ˆ

Mβ ˆ Mγqrig – more precisely, T is the 2-dimensional torus obtained by modding out the

diagonal Gm from G3
m. We have the associativity type relation

πα,β,γ :“ πβ,γ ˝ πα,β`γ “ πα,β ˝ πα`β,γ .

Denote φαβγ “ φα b φβ b φγ P K˚pMrig
α ˆ Mrig

β ˆ Mrig
γ q. Then

φα ˚ pφβ ˚ φγq “ pΣα,β`γq˚

`

Γα,β`γ b π˚
α,β`γpΣβ,γq˚

`

Γβ,γ b π˚
β,γpφαβγq

˘˘

(9)

“ pΣα,β`γq˚

`

Γα,β`γ b pΣβ,γq˚π
˚
α,β`γ

`

Γβ,γ b π˚
β,γpφαβγq

˘˘

“ pΣα,β,γq˚

´

Σ
˚

β,γpΓα,β`γq b π˚
α,β`γpΓβ,γq b π˚

α,β,γpφαβγq

¯

Note that, by the properties of the Ext complex, we have

Extă :“ Extα,β ` Extα,γ ` Extβ,γ “ Σ˚
β,γpExtα,β`γq ` Extβ,γ

Extą :“ Extβ,α ` Extγ,α ` Extγ,β “ Σ˚
β,γpExtβ`γ,αq ` Extγ,β

on Mα ˆ Mβ ˆ Mγ, and therefore

Σ
˚

β,γpΓα,β`γq b π˚
α,β`γpΓβ,γq “ Λ´1

`

Extă ` Ext_
ą

˘

b detpExtăq
_

rrkExtăs ,
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which we can plug in (9). An entirely analogous calculation arrives at the same expression

for pφα ˚ φβq ˚ φγ. □

The proof of associativity provides a formula for the n-fold product. To state it, we

introduce the following notation:

(1) Σrns is the n-fold direct sum map Mˆn Ñ M.

(2) Denote by pMˆnqrig the diagonal rigidication of Mˆn, and consider the rigidifica-

tion

πrns : pMˆn
q
rig

Ñ pMrig
q

ˆn

with respect to the remaining pn ´ 1q-dimensional torus.

(3) Define the complex Γrns,´ on pMˆnqrig by

Γrns,´ :“ Λ´1

`

Extă ` Ext_
ą

˘

b detpExtăq
_

rrkăs ,

where

Extă “
ÿ

1ďiăjďn

Extij and Extą “
ÿ

1ďjăiďn

Extij

and Extij is the pullback of the complex Ext12 along the projection Mˆn Ñ Mˆ2

onto the i-th and j-th component.

Proposition 4.7. We have

ϕ1 ˚ . . . ˚ ϕn “
`

Σrig
rns

˘

˚

`

rΓrns,´s X π˚
rnspϕ1 b . . . b ϕnq

˘

.

Proof. The n “ 3 case is shown along the proof of associativity. The general case can be

shown by induction on n and the same calculation as in the proof of associativity. □

4.2. Generalized K-theoretic invariants. In analogy with the generalized motivic

Donaldson–Thomas invariants, we use the K-Hall algebra product to define generalized

K-theoretic invariants as a formal logarithm of the K-theoretic invariants constructed

directly from the stacks of semistable objects.

Definition 4.8. Let A be a good abelian category, let µ be a stability condition as in

Assumption 2.11 and let α P CpAqpe. Then by Theorem 3.12 and Theorem 2.13, we have

classes

δµα :“ j˚rMµ,rig
α s P KpAq

where j : Mµ,rig
α Ñ Mrig

A is the open inclusion, and j˚ the pushforward in K-homology.

We then define the generalized K-theoretic invariants εµα P KpAq by

(10) εµα :“
ÿ

kě1

p´1qk´1

k

ÿ

α1`...`αk“α
µpαiq“µpαq

δµα1
˚ . . . ˚ δµαk

.
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The relation expressing ε classes as a “logarithm” of δ classes can be formally inverted

to express δ classes as an “exponential” of ε classes:

(11) δµα “
ÿ

kě1

1

k!

ÿ

α1`...`αk“α
µpαiq“µpαq

εµα1
˚ . . . ˚ εµαk

.

Note that parts (5) and (4) of Assumption 2.11 guarantee that the sums in the previous

formulas are finite, and that αi are also permissible, so that δµα is defined. If there is no

non-trivial decomposition α1 ` . . . ` αk “ α with µpαiq “ µpαq, then every object in

Mµ
α is stable and hence Mµ

α “ Mµ,rig
α is the good moduli space of Mµ

α. In this case,

εµα “ δµα “ rMµ
α s encode the usual K-theoretic invariants of the good moduli space.

Remark 4.9. When Mα is itself finite type and quasi-smooth for every α (i.e., A has

homological dimension ď 2), then we might take the trivial stability condition in Definition

4.8 and obtain invariants δα, εα which are intrinsically associated to the abelian category

A. If µ is a stability condition and for some s P T all classes with fixed slope µpαq “ s are

permissible, then we might think of the invariants δµα, ε
µ
α as being intrinsically attached to

the exact subcategory Aµ
s Ď A of µ semistable objects with fixed slope s.

We will show later that, in general, the classes εµα are precisely the K-theoretic Joyce–

Liu classes, denoted by Zαpµq in [Liu], when the latter are defined. Note that the definition

of Joyce–Liu classes is only available when there is a framing functor, and it is a hard

theorem that they are actually independent of the choice of framing functor (cf. [Joy7,

Proposition 9.12] and [Liu, Theorem 4.2.5]). On the other hand, in our approach we

do not need a framing functor, which extends the definition to new cases – for example,

moduli spaces of (weak) Bridgeland stable objects on Fano surfaces or 3-folds – and makes

the independence of the framing functor obvious. We see this as one of the strengths of

our new approach. For example, with our definition the following fact is basically trivial:

Proposition 4.10. Let B : A „
ÝÝÑ A1 be an isomorphism of abelian categories and let µ

be a stability condition on A as in Assumption 2.11. Let B˚µ be the stability condition

on A1 defined by B˚µpα1q “ µpB´1pα1qq. Then

B˚δ
µ
α “ δB

˚µ
Bpαq

and B˚ε
µ
α “ εB

˚µ
Bpαq

.

Proof. The equality for the δ classes is trivial once we notice that BpEq is B˚µ semistable

if and only if E is µ semistable. Then the equality for ε classes follows from the definition

and the observation that B˚ : KpAq Ñ KpA1q is an algebra homomorphism. □

A typical scenario where these type of results might be useful is when B is an auto-

morphism of a derived category, A is the heart of a t-structure and A1 the image of A by
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B. In the Calabi–Yau setting, automorphisms of derived categories have often been used

to constrain enumerative invariants, see for example [Tod3, OS, BM, Tho].

In contrast with the trivial proof given above, in Joyce’s setting these results might be

quite subtle. Since the definition of invariants depends on a framing functor, equalities as

in Proposition 4.10 are only immediate if we choose compatible framing functors on both

sides. So a general statement requires the hard result that the choice of framing functor

is actually not important; that requires [Joy7, Assumptions 5.1(g), 5.2(h)], which could

potentially be difficult to verify in examples.

4.3. Example: Vect. We consider now the simplest possible abelian category, the cate-

gory of vector spaces A “ Vect. The stack of vector spaces is

MVect “
ğ

ně0

BGLn

where n P CpVectq “ Zě0 corresponds to the dimension of the vector space. Its rigidifica-

tion is

Mrig
Vect “

ğ

ně0

BPGLn .

Note that K˚pBPGLnq is the representation ring of PGLn, and K˚pBPGLnq is the dual

to the representation ring. Given a representation V of PGLn, the Euler characteristic of

the corresponding vector bundle on BPGLn is

χpBPGLn, V q “ dimpV PGLnq .

This follows from the fact that representations of PGLn are completely reducible and

Whitehead’s lemma, which states that H ipPGLn, V q “ 0 for any i and any non-trivial

irreducible representation V . So the functional δn is the functional that sends a repre-

sentation to the dimension of its fixed part or, in other words, to the multiplicity of the

trivial representation in its decomposition into irreducible representations. For n “ 1 the

group PGL1 is trivial and ε1 “ δ1 is the isomorphism K˚pBPGL1q
„

ÝÝÑ Z sending V to

dimpV q.

In the following proposition we show that εn “ 0 for n ą 1. Note that in Joyce’s [Joy7]

approach to cohomological invariants the analogous statement is trivial since the class he

defines has negative homological degree 2p1 ´ n2q. However, from our perspective this

is a non-trivial statement. One way to prove it is via the connection to the homological

invariants which we will show later in Theorem 8.8. We present here a direct proof using

the Weyl character formula.
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Proposition 4.11. If A “ Vect then εn “ 0 for n ą 1. In other words, we have

dimpV PGLnq “
1

n!
pε1 ˚ . . . ˚ ε1
looooomooooon

n times

qpV q

for every representation V of PGLn.

Proof. Let ρ˚V be the induced representation of GLn for which the diagonal Gm acts

trivially. Let T “ pBGmqˆn be the maximal torus of GLn and let

Σrns : M
ˆn
1 “ BT Ñ BGLn “ Mn

be the induced map. By Proposition 4.7 and the discussion in Section 4.1 we have

pε1 ˚ . . . ˚ ε1qpV q “ ru01 . . . u
0
ns

`

Γrns,´ b Σ˚
rnsρ

˚V
˘

where

Γrns,´ “
ź

1ďi‰jďn

ˆ

1 ´
ui
uj

˙

P Zru˘1
1 , . . . , u˘1

n s » K˚
pBT q ;

note that Extă is
ř

1ďiăjďn uj{ui and similarly for Extą, and recall Remark 4.5. Note

also that

Σ˚ρ˚V “
ÿ

µPZn

dimpVµquµ P Zru˘1
1 , . . . , u˘1

n s

is the character of the representation V . Recall that the root system of sln is ∆ “

tei ´ eju1ďi‰jďn, where e1, . . . , en is the standard basis of t_. Therefore, we can rewrite

Γrns,´ more conceptually as

Γrns,´ “
ź

αP∆

puα{2
´ u´α{2

q .

Note that this is almost the Weyl denominator, except that we take the product over

all roots and not just the positive ones. The proof is now concluded using the following

lemma for general semisimple Lie algebras. □

Lemma 4.12. Let g be a semisimple Lie algebra and L an irreducible representation of

g. Then we have

ru0s

˜

ź

αP∆

puα{2
´ u´α{2

q ¨ chpLq

¸

“

$

&

%

|W | if L is the trivial representation

0 otherwise

where ∆ Ď t_ is the root system of g, W the Weyl group, and chpLq P Zrt_s is the

character of L.

Proof. Choose a set of positive roots ∆` and let ∆´ “ ∆z∆` be the negative roots. Let

λ be the highest weight vector of L, which is integral and dominant. We recall the Weyl
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character formula:

chpLq “

ř

σPW sgnpσquσpλ`ρq

ś

αP∆`

`

uα{2 ´ u´α{2
˘

where ρ “ 1
2

ř

αP∆`
α is the Weyl vector. Using this and the Weyl denominator formula

for the negative roots, we have

ź

αP∆

puα{2
´ u´α{2

q ¨ chpLq “
ź

αP∆´

puα{2
´ u´α{2

q

˜

ÿ

σPW

sgnpσquσpλ`ρq

¸

“

˜

ÿ

σ1PW

sgnpσ1
qu´σ1pρq

¸ ˜

ÿ

σPW

sgnpσquσpλ`ρq

¸

“
ÿ

σ,σ1PW

sgnpσσ1
quσpλ`ρq´σ1pρq .

If λ “ 0 then the terms with σ “ σ1 are precisely the ones contributing to the constant

coefficient, which shows what we wanted. We now argue that the constant coefficient is

equal to 0 for λ ‰ 0 by showing that there are no σ, σ1 such that σpλq “ σ1pρq ´ σpρq;

without loss of generality we may assume that σ1 “ id, so suppose that σpλq “ ρ ´ σpρq.

Since λ is dominant we have

0 ď xρ, λy “ xσpρq, σpλqy “ xσpρq, ρy ´ ||σpρq||2 ď 0

where the last inequality follows from Cauchy-Schwarz, and we have used twice that σ is

an isometry. Hence xρ, λy “ 0, which implies that xα, λy “ 0 for every positive root α and

therefore λ “ 0. □

Remark 4.13. Our K-Hall algebra admits a generalization to arbitrary stacks in the

spirit of “intrinsic Donaldson–Thomas theory” from [BHLNK, ?], which will be pursued

elsewhere. The fact that Lemma 4.12 holds for a general semisimple Lie algebra translates

to a vanishing statement of ε invariants for stacks BG.

Example 4.14. In [Liu], the author introduces a slightly different notion of K-homology

where he requires a finiteness condition, see Definition 7.8 and the discussion that follows

it. Let us check that ε1 ˚ ε1, or equivalently δ2, does not satisfy the finiteness condition.

Let V be the canonical representation of PGL2, which has weight p1,´1q. Then

pε1 ˚ ε1qpt
`

pV ´ 2q
N

˘

“ ru0s
`

p2 ´ u ´ u´1
qpu ` u´1

´ 2q
N

˘

“ p´1q
N

ˆ

2N ` 2

N ` 1

˙

is non-zero for every N . Since rkpV q “ 2, this shows that the finiteness condition (33)

does not hold. In particular, δ2 is not in the image of the pushforward along a map

Z Ñ BPGL2 from a finite type scheme Z.
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5. Non-abelian localization and the wall-crossing formula

In this section we state and prove the wall-crossing formula for δ and ε invariants.

The fundamental tool is the virtual non-abelian localization theorem of Halpern–Leistner

[HL1, HL5].

5.1. Θ-stratifications. The non-abelian localization is stated in the language of derived

Θ-stratifications, which we briefly introduce now following [HL3, Section 1]; the reader

can refer to loc. cit. for details on this topic.

Let X be a derived algebraic stack over C which is locally of finite type. We will mostly

be interested in the case of X being the moduli stack of objects in some abelian category,

and we specialize the discussion to that case in Section 5.3.

Now consider Θ :“ A1{Gm, and the derived stacks:

i) GradpXq :“ MapspBGm,Xq which is called the stack of the graded points of X;

ii) FiltpXq :“ MapspΘ,Xq, which is called the stack of the filtered points of X.

We have the following canonical maps of derived stacks:

(12)

FiltpXq X

GradpXq

ev1

gr σ Σ

The canonical morphism gr is the restriction via the inclusion 0{Gm Ñ Θ; the evaluation

map ev1 is given by restricting the map to the open substack pA1zt0uq{Gm inside Θ. The

morphism σ is a section of gr, i.e. gr ˝ σ “ idGrad, and is induced by the projection

Θ Ñ BGm. Finally, Σ is the composition ev1 ˝ σ.

Definition 5.1 (Θ-stratum). A derived Θ-stratum inside X is a union of connected com-

ponents S Ă FiltpXq so that the morphism ev1 : S Ñ X is a closed immersion.

Definition 5.2 (Θ-stratification). Let pΓ,ďq be a totally ordered set with a minimal

element 0. A derived Θ-stratification of X indexed by Γ consists of:

(1) a collection of open derived substacks Xďc for c P Γ, such that Xďc Ď Xďc1 for

c ď c1;

(2) for each c P Γ, a derived Θ-stratum Sc Ď FiltpXďcq such that

Xďcz ev1pScq “
ď

c1ăc

Xďc1 .

(3) for every point x in X, the set tc P Γ | x P Xďcu admits a minimal element.
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A consequence of (3) is that the open sets Xďc exhaust X. The open set Xď0 is called

the semistable locus of the Θ-stratification, and denoted by Xss; its complement is called

the unstable locus. We will use the notation

X“c :“ ev1pScq , Xăc :“ XďczX“c
p2q
“

ď

c1ăc

Xďc1 .

By the definition of Θ-stratification, every point in X comes with a distinguished fil-

tration f P Sc Ď FiltpXq such that ev1pfq “ x. This distinguished filtration is called

the Harder-Narasimhan filtration of x; in examples, they turn out to be the Harder-

Narasimhan filtrations in the usual sense.

Halpern-Leistner also introduces a notion of the tcenter of a stratum, which plays an

important role for us:

Definition 5.3 (Center). For a derived Θ-stratum S in X, one defines its center Z as

Z “ σ´1
pSq Ď GradpXq .

Note that the center Z is itself a union of connected components of GradpXq (connected

components of GradpXq and FiltpXq are in bijection, c.f. [HL4, Lemma 1.3.8]) and S “

gr´1pZq.

Joyce defined in [Joy7, Section 3.3.4] a slight weakening of the notion of Θ-stratification,

which he calls pseudo Θ-stratification.

Definition 5.4 (Pseudo Θ-stratification). Let pΓ,ďq be a partially ordered set with a

minimal element 0 such that every c, c1 P Γ have a greatest lower bound, denoted by c_c1.

A derived pseudo Θ-stratification of X indexed by Γ consists of:

(1) a collection of open derived substacks Xďc for c P Γ, such that XďcXXďc1 “ Xďpc_c1q.

In particular, Xďc Ď Xďc1 for c ď c1;

(2) for each c P Γ, there exists a Θ-stratum Sc Ď FiltpXďcq such that

Xďcz ev1pScq “
ď

c1ăc

Xďc1 .

(3) for every point x in X, the set tc P Γ | x P Xďcu admits a minimal element.

The two main differences between a pseudo Θ-stratification and a Θ-stratification are

that we no longer require the indexing set Γ to be totally ordered, and a Θ-stratum Sc is

no longer part of the data, we just require that it exists. This is a fairly mild difference

and most of results concerning Θ-stratifications also apply to pseudo Θ-stratification. In

some cases, it is easier and more natural to construct a pseudo-Θ stratification, so we will

formulate our results in that language.
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5.2. The non-abelian virtual localization theorem. Let X be a quasi-smooth derived

stack which admits a Θ-stratification. For simplicity, and because it is enough for our

purposes, we will assume that the Θ-stratification is finite (i.e. Γ is finite) and that X

admits a proper good moduli space, as well as all the centers Zc.
8

Note that the stack of graded points comes with a canonical BGm action. This action

preserves the center Zc Ď GradpXďcq of Sc. We regard the center Zc as a substack of X

via the locally closed immersion Σ: Zc Ñ Xďc Ď X. We consider now the decomposition

TX|Zc “ T´
c ‘ T0

c ‘ T`
c

of the restriction of the derived tangent bundle to Zc into its negative/zero/positive weight

parts, according to the canonical BGm action.

Remark 5.5. The complexes T´{0{`
c have natural interpretations in terms of the derived

normal bundles of the immersions in (12). By [HL3, Lemma 1.3.2, Lemma 1.5.5] we have

T0
c » TZc

T´
c » σ˚TSc{Xr1s

T`
c » TZc{Scr1s

For c P Γ we introduce the following complex on Zc:

(13) Ec “ Sym
`

pT`
c q

_
‘ T´

c

˘

b detpT´
c q

_
r´ rkT´

c s.

Note that Ec is not perfect or coherent in general, but it has the property that its weight

µ part is coherent for every µ and vanishes for µ " 0; see the discussion in Section 4.1

regarding Γ´.

Theorem 5.6 ([HL5, Corollary 3.16], Virtual non-abelian localization). Let X be a finite

type quasi-smooth derived stack admitting a derived Θ-stratification indexed by a finite

set Γ. Assume that X, Zc have proper good moduli spaces.

Then, for any V P K˚pXq, the following formula holds:

(14) χpX, V q “ χpXss, V |Xssq `
ÿ

cPΓzt0u

χpZc, V |Zc b Ecq

Note that Xss “ Z0 and E0 “ OXss , so on the right hand side we could have written

just a sum over all c P Γ. All the terms are well defined by Theorem 3.12, since X being

quasi-smooth implies that the centers Zc are also quasi-smooth by Remark 5.5 (see [HL3,

Lemma 3.1.4] for further details). This holds even though Ec is not coherent by the same

argument as in the proof of Lemma 4.4.

8As explained in [HL5], it is possible in some cases to allow X to be non finite-type (e.g. the moduli of all
bundles on a curve) and the stratification to be infinite. One of the remarkable aspects of the theorem,
which we do not explore at all here, is that sometimes χpX, V q can be defined even in that setting.
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Remark 5.7. For the wall-crossing formula formulated in operational K-homology we

will also use the following relative version of the non-abelian localization, as in [HLH,

Proposition 6.10]. If X satisfies the conditions of Theorem 5.6, S is some derived stack

and V P K˚pX ˆ Sq then we have an equality

pX ˆ S Ñ Sq˚V “
ÿ

cPΓ

pZc ˆ S Ñ Sq˚pV |XcˆS b Ecq

in K˚pSq.

Remark 5.8. Theorem 5.6 still holds for pseudo Θ-stratifications, as long as we pick

some strata and corresponding centers. The proof in [HL5] shows the result when there

is just one stratum and then inducts on the number of strata. To induct on the number

of strata when Γ is just partially ordered we take a maximal element c P Γ so that there

is no c1 ą c. Then

XzX“c “
ď

c1‰c

X“c1 “
ď

c1‰c

Xďc1 ,

so in particular X“c is closed in X and XzX“c inherits a pseudo Θ-stratification indexed

by c1 P Γztcu with the same centers.

5.3. (Pseudo) Θ-stratifications on MA. Let us now consider the case of stacks which

come from a good abelian category; we start in the underived setting, and later consider

the derived enhancement. It is shown in [AHLH, Proposition 7.12, Corollary 7.13] that the

stacks of graded points and filtered points correspond, respectively, to Z-graded objects

of A and Z-filtered objects of A:

GradpMAq “
ğ

c,w

Mα1 ˆ . . . ˆ Mαn(15)

FiltpMAq “
ğ

c,w

Extc,w .

In either case, the union is over all possible choices of n ě 1, c “ pα1, . . . , αnq with

αi P CpAqzt0u and integer weights

w1 ą . . . ą wn ,

and the stack Extc,w parametrizes Z-indexed (descending) filtrations

. . . Ď Ẽ1 Ď Ẽ0 Ď Ẽ´1 Ď . . .

such that Ẽw “ 0 for w ą w1 and rẼw{Ẽw`1s “ αi if w “ wi and 0 otherwise; in particular,

Ẽw “ E stabilizes for w ă wn and rEs “ α1 ` . . . ` αn. Note that, by setting Ei “ Ẽwi
,

the data of such a filtration is the same as the data of

0 “ E0 Ĺ E1 Ĺ . . . Ĺ En “ E
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together with the choice of weights. In a similar way, a point in GradpMAq is canonically

described as an object E together with a decomposition E “
À

wPZ F̃w, with rF̃ws “ αi
for w “ wi and 0 otherwise, but this is the same data as E “ F1 ‘ . . . ‘ Fn and a choice

of weights. The stacks of graded and filtered points on Mα are the union of components

such that α1 ` . . . ` αn “ α. The map ev0 described in the previous section sends a

filtration Ẽ‚ to its associated graded
À

wPZ Ẽw{Ẽw´1 and ev1 sends the filtration to the

total object E. The map σ sends a graded point
À

wPZ F̃w to the filtered point defined by

Ẽw “
À

w1ěw F̃w1 .

We will assume the existence of a pseudo Θ-stratification adapted to µ. Let

HNαpµq “ tpα1, . . . , αnq : α1 ` . . . ` αn “ α and µpα1q ą . . . ą µpαnqu

be the set of possible µ-HN types. Any object in A has an associated µ-HN type c “

pα1, . . . , αnq where αi “ rEi{Ei´1s are the types of its µ-HN factors in (2). Given c P

HNαpµq, we consider the substack Mµ
“c Ď Mα of objects whose µ-HN type is c.

Definition 5.9. We say that there is a pseudo Θ-stratification of Mα adapted to µ if

there is a partial ordering of HNαpµq which satisfies9

(16) pα1, . . . , αi, . . . , αj, . . . , αnq ě pα1, . . . , αi ` αj, . . . , αnq

and for which

Mµ
ďc :“

ď

c1ďc

Mµ
“c1

forms a pseudo Θ-stratification.

Condition (16) should be interpreted as saying that if rFis “ αi then the µ-HN type

of
Àn

i“1 Fi is ě pα1, . . . , αnq, which is the form in which we will use this condition in the

proof of Proposition 5.10. It implies in particular that c “ pαq is the minimal element of

HNαpµq. Since E is semistable if and only if its µ-HN type is pαq, the definition implies

that µ-semistability agrees with semistability in the sense of the Θ-stratification.

We believe that in all cases of interest there is a natural choice of partial ordering

making this hold. The main point is that the partial ordering should be chosen in a way

that Mµ
ďc is open. In some cases, it is possible to upgrade the pseudo-Θ stratification

to a honest Θ-stratification; see [HL4, Theorem 2.2.2] for some technical conditions that

make this possible. Doing so amounts to choosing a total ordering, instead of a partial

ordering, and a choice of weights for each c (i.e., a choice of Θ-stratum).

9In the right hand side of (16), αi ` αj is put in a position that makes it a µ-HN type, i.e. it is put
between αk and αk`1 such that µpαkq ą µpαi ` αjq ą µpαk`1q. In the case that µpαkq “ µpαi ` αjq for
some k, the right hand side should be interpreted as p. . . , αi ` αk ` αj , . . .q.
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5.3.1. Centers. Given c P HNαpµq and a choice of weights w, we have a Θ-stratum

Sc,w Ď Extc,w Ď FiltpMαq

which is the preimage of Mµ
“c along the map ev1 : Extc,w Ñ Mα. The next proposition

identifies the centrum Zc,w of this stratum:

Proposition 5.10. For every c “ pα1, . . . , αnq P HNαpµq and choice of weights w, the

center Zc,w is a product of stacks of µ-semistable objects:

Zc,w » Mµ
α1

ˆ . . .Mµ
αn
.

Proof. By definition, the center is a substack of the connected component of GradpMαq

which is isomorphic to Mα1 ˆ . . .ˆ Mαn . Let E “
Àn

i“1 Fi be a point in such connected

component. By [HL4, Corollary 2.3.6], E “
Àn

i“1 Fi is in the center if and only if the

total object E is in Mµ
ďc. If F1, . . . , Fn are all semistable, then

0 Ď F1 Ď F1 ‘ F2 Ď . . . Ď

n
à

i“1

Fi “ E

is the µ-HN filtration of E, so E is indeed in Mµ
ďc. On the other hand, if not all the Mαi

are semistable, then (16) implies that the µ-HN type of E is ą c, so E “
Àn

i“1 Fi is not

in the center. □

Since the strata Sc,w and the centers Zc,w are identified for different w, we will drop it

from the notation and just write Sc “ Sc,w and Zc “ Zc,w.

5.3.2. Derived enhancement. We explain now how to upgrade the statements above to

the derived setting. The stacks of filtered and graded points of a derived stack inherit a

natural derived enhancement (cf. [HLP, Theorem 5.1.1] or [HL3, Theorem 1.2.1]).

Recall from Section 2.1 that the stack MA admits a derived enhancement MA, which

is obtained from the open embedding of MA into the classical truncation of MT, where

T is a saturated dg category. By [KPS, Proposition 8.26], the derived stacks of graded

and filtered points on MT admit descriptions analogous to (15); hence, the same is true

for the derived stack MA.

The pseudo Θ-stratification on MA considered in Definition 5.9 induces a derived

pseudo Θ-stratification on MA by [HL3, Lemma 1.2.3]. In particular, this means that

for each c P HNαpµq we have derived enhancements Sc,Zc of Sc,Zc, and maps of derived

stacks as follows:

Sc Mµ
“c Ď Mα

Zc

„

ev1

gr σ
Σ
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By the previous considerations, the description of the center in Proposition 5.10 can be

enhanced to

Zc » Mµ
α1

ˆ . . . ˆ Mµ
αn
.

Note that Σ “ ev1 ˝ σ is precisely the direct sum map.

Let us now identify the complex Ec appearing in the non-abelian localization formula

with the class Γ´ in the definition of the K-Hall algebra.

Denote by Extij the pullback of Ext12 via the map Zc Ñ Mµ
αi

ˆ Mµ
αj
. In particular,

when i “ j, the map above factors through the diagonal Mµ
αi

Ñ Mµ
αi

ˆ Mµ
αi

and Extii is

the pullback of TMµ
αi

r´1s to Zc by (1). By bilinearity of the Ext complex, we have

Σ˚TMα “
ÿ

1ďi,jďn

Extijr1s .

Given a weight w, the canonical BGm action on the center can be described as

BGm ˆ

n
ź

i“1

Mµ
αi

p´qw

ÝÝÝÑ

n
ź

i“1

pBGm ˆ Mµ
αi

q
Φˆ...ˆΦ
ÝÝÝÝÝÑ

n
ź

i“1

Mαi
.

Here, p´qw : BGm Ñ pBGmqn denotes the map given by p´qwi in the i-th copy of BGm.

Note that Extij has weight wj ´ wi with respect to this action. Therefore, we have

T0
c “ Ext“r1s “ TZc , T`

c “ Extąr1s , T´
c “ Extăr1s .

Observe that, although the BGm action depends on the choice of weights, the splitting

of Σ˚TMα above into zero/positive/negative weights does not. Hence the complex Ec is

precisely

Ec “ SympExt_
ąr´1s ` Extăr1sq b detpExtăr1sqrrkăs(17)

“ Λ´1

`

Ext_
ą ` Extă

˘

b detpExtăq
_

rrkpExtăqs “ Γrns,´

5.4. Dominant wall-crossing formula. We now prove the dominant wall-crossing for-

mula, which compares invariants defined with respect to two stability conditions µ0, µ

where µ0 dominates µ. The typical scenario where a stability dominates another is when

µ0 is on some wall in the space of stability conditions and µ is in an adjacent chamber.

For us, dominance means the following:

Definition 5.11 (Dominance). Let µ0, µ be as in Assumption 2.11. We say that µ0

dominates µ at α P CpAqpe if the following condition holds for every E with rEs “ α: E

is µ0-semistable if and only if

µ0pF1q “ . . . “ µ0pFnq .

where F1, . . . , Fn are the µ-HN factors of E.



44 I. KARPOV AND M. MOREIRA

The more standard definition of dominance (see [Joy4, Definition 4.10]) is that µ, µ0

should satisfy

µpβq ě µpγq ñ µ0pβq ě µ0pγq

for every β, γ P CpAq. This implies dominance as in Definition 5.11, but it is sometimes

too restrictive in applications, see for example [FT2, Section 4.1]. The following notion

of dominance is more flexible, and implicitly used in loc. cit.

Definition 5.12 (Numerical dominance). Let µ0, µ be as in Assumption 2.11. We say

that µ0 numerically dominates µ at α P CpAqpe if the following holds:

(1) If E is µ0-semistable of class α and 0 “ E0 Ĺ E1 Ĺ . . . Ĺ En “ E is the µ-HN

filtration of E, then rEi{Ejs P CpAqpe is permissible for any i ą j.

(2) We have

µpβq ě µpγq ñ µ0pβq ě µ0pγq

for every β, γ P CpAq such that β ` γ “ rEi{Ejs, where Ei are steps in the µ-HN

filtration of some µ0-semistable object in class α as above, γ P CpAqpe, and the

stack Mµ0
γ are non-empty.

Proposition 5.13. If µ0 numerically dominates µ then µ0 dominates µ.

Proof. Let I Ď CpAqpe be the set of types of the form rEi{Ejs for some E which is

µ0-semistable of type α. In particular, α P I. We start by proving that if rE 1s P I

then E 1 being µ-semistable implies that E 1 is µ0-semistable. Suppose that E 1 is not µ0-

semistable and let E2 Ď E 1 be its maximally destabilizing subobject with respect to µ0; in

particular, E2 is µ0-semistable. Using the condition with γ “ rE2s (note that γ P CpAqpe

by Assumption 2.11(4)) and β “ α1 ´ γ “ rE 1{E2s it follows that E2 also destabilizes E 1

with respect to µ, a contradiction.

Since extensions of µ0-semistable objects with the same µ0-slope are still µ0-semistable,

if the µ-HN factors Fi “ Ei`1{Ei – which are µ-semistable by definition, and hence µ0-

semistable – of E have the same µ0-slope then E is µ0-semistable. On the other hand, we

have

µpFiq ą µpFi`1q ñ µ0pFiq ě µ0pFi`1q

for each i “ 0, . . . , n ´ 1; note that rFis ` rFi`1s “ rEi`2{Eis P I. But if one of the

inequalities is strict then

µ0pEiq “ µ0pF1 ` . . . ` Fiq ě µ0pFiq ą µ0pFi`1q ě µ0pFi`1 ` . . . ` Fnq “ µ0pE{Eiq

which would mean that E is not µ0-semistable. □

We now prove the dominant wall-crossing formula:
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Theorem 5.14 (Dominant wall-crossing). Let µ0, µ be stability conditions as in Assump-

tion 2.11 such that µ0 dominates µ. Then we have the equality

(18) δµ0α “
ÿ

pα1,...,αnqPHNαpµ{µ0q

δµα1
˚ . . . δµαn

in KpAq where

(19) HNαpµ{µ0q :“ tpα1, . . . , αnq P HNαpµq : µ0pαiq “ µ0pαq, i “ 1, . . . , nu .

Proof. By the definition of dominance, the stack of µ0-semistables is a union of strata

Mµ0
α “

ğ

cPHNαpµ{µ0q

Mµ
“c .

The µ pseudo Θ-stratification on Mα restricts to a pseudo Θ-stratification of Mµ0
α indexed

by HNαpµ{µ0q. By Assumption 2.11, this is a finite set.

We now apply the virtual non-abelian localization theorem, cf. Theorem 5.6. For

simplicity, we argue at the level of functionals; see Remark 5.7 for the operational version.

Let V P K˚pMrig
α q.

Then

δµ0α pV q “ χpMµ0,rig
α , V q “ χpMµ0

α , π
˚V q

“
ÿ

pα1,...,αnqPHNαpµ{µ0q

χ
`

Mµ
α1

ˆ . . . ˆ Mµ
αn
,Σ˚π˚V b Ec

˘

“
ÿ

pα1,...,αnqPHNαpµ{µ0q

χ
`

pMµ
α1

ˆ . . . ˆ Mµ
αn

q
rig, pΣrig

q
˚V b Ec

˘

The first equality is just the definition of δµ0α ; second and fourth equalities are obtained

from Proposition 3.8; the third equality is the non-abelian localization theorem applied to

the µ pseudo Θ-stratification of Mµ0
α (see Remark 5.8). Finally, we have by Proposition

4.7 and Remark 3.13 the equality

χpMµ
α1

ˆ . . . ˆ Mµ
αn
,Σ˚π˚V b Ecq “ pδµα1

˚ . . . δµαn
qpV q

which finishes the proof of (18). □

5.5. General wall-crossing formula. It is explained in [Joy7, Section 11] how a gen-

eral wall-crossing formula for stability conditions connected by a continuous path can be

deduced from the dominant wall-crossing formula. The statement of the general wall-

crossing formula involves the combinatorial coefficients

Spα1, . . . , αn;µ, µ
1
q P t0,´1, 1u , Upα1, . . . , αn;µ, µ

1
q P Q ,

Ũpα1, . . . , αn;µ, µ
1
q P Q
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defined in [Joy6, Section 4] for α1, . . . , αn P CpAq and µ, µ1 two stability conditions.

Theorem 5.15 (Continuous path wall-crossing). Let µ, µ1 be two stability conditions

which can be connected by a continuous path crossing finitely many walls, in the precise

sense that it satisfies [Joy7, Assumption 5.3]10. Then we have the following wall-crossing

formulas in KpAq:

δµ
1

α “
ÿ

α1`...`αl“α

Spα1, . . . , αn;µ, µ
1
q ¨ δµα1

˚ . . . ˚ δµαn
(20)

εµ
1

α “
ÿ

α1`...`αl“α

Upα1, . . . , αn;µ, µ
1
q ¨ εµα1

˚ . . . ˚ εµαn
(21)

“
ÿ

α1`...`αl“α

Ũpα1, . . . , αn;µ, µ
1
q ¨ rr. . . rεµα1

, εµα2
s, . . . , s, εµαn

s

In every case, the sum runs over αi P CpAqpe with Mµ1

αi
‰ 0 and non-zero S, U coef-

ficients, and with those restrictions they are finite sums by assumption. In the last line,

the bracket ru, vs is the commutator u ˚ v ´ v ˚ u in the associative algebra KpAq.

Proof. The argument of [Joy7, Section 11] reduces the statement to that of the dominant

wall-crossing formula. For the reader’s convenience, we quickly summarize how it goes.

Let µt, t P r0, 1s be a continuous path of stability conditions with µ0 “ µ, µ1 “ µ1. Then

[Joy7, Assumption 5.3] implies that we can find

0 “ t0 ă t1 ă . . . ă tN´1 ă tN “ 1

such that:

(1) The coefficients Spα1, . . . , αn;µ, µtq are constant for t P pti, ti`1q;

(2) The moduli stacks Mµt
α , and hence the classes δµtα , are constant for t P pti, ti`1q;

(3) If s P pti´1, ti`1q then µti numerically dominates µs. Moreover, the coefficient

Spα1, . . . , αn;µs, µtiq is equal to 1 if pα1, . . . , αnq P HNαpµs{µtiq and 0 otherwise.

Then the wall-crossing (20) for the pairs pµ, µ1q “ pµs, µtiq is the dominant wall-crossing

formula in Theorem 5.14. By [Joy7, Lemma 11.5], using the formal properties of the

coefficients in [Joy6, Theorem 4.5], the dominant wall-crossing formulas can be combined

to prove (20) for the pairs pµ, µ1q “ pµ0, µtq for every t P r0, 1s, by induction on the i such

that t P rti, ti`1q.

The wall-crossing formula for the ε invariants (21) formally follows from (20), see the

last step in the proof of [Joy6, Theorem 5.2]. The fact that (21) can be written entirely

in terms of commutators is shown in [Joy6, Theorem 5.4]. □

10Since we are stating a formula for δ invariants as well, we should replace the non-vanishing condition
on U coefficients in [Joy7, Assumption 5.3] by non-vanishing of S coefficients.
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5.6. Changing the heart. We shall now briefly discuss the alterations necessary for

when we consider stability conditions when the underlying abelian categories are different

hearts of the same triangulated category HopTq, such as the case of tilt stability discussed

in Section 2.3. First of all, the natural place to write wall-crossing formulas is in the Hall

algebra

KpTq :“ K˚pMTqQ ,

see Remark 4.3. The inclusion of MA into MT induces algebra homomorphisms KpAq Ñ

KpTq, and hence the classes εµα may be regarded as being in KpTq.

Definition 5.16. We say that σ0 “ pA0, µ0q dominates σ “ pA, µq if every σ-semistable

object is in A0 and an object in A0 is σ0-semistable if and only if it lies in A X A0 and

its σ-HN factors have the same µ0 slope.

With this notion of dominance, the exact same proof of the dominant wall-crossing

formula goes through, showing that (18) holds in KpTq.

Consider now the case of tilt stability σω,B “ pAω,B, νω,Bq discussed in Section 2.3.

Given a fixed topological type α, the moduli stack Mσ
α is empty unless ch1pαq ¨ ω2 ě

ch0pαqω2 ¨ B, by construction of Aω,B. When equality holds, α is not permissible, so we

define the space of stability conditions11

Sα “ tσω,B : ω ample and ch1pαq ¨ ω2
ą ch0pαqω2

¨ Bu .

Corollary 5.17. Suppose we are in the setting of Proposition 2.14 and either ch0pαq ą 0

or ch0pαq “ 0 and ch1pαq is effective. If σ, σ1 P Sα then we have wall-crossing formulas as

in Theorem 5.15 comparing εσα and εσ
1

α in KpDbpXqq.

Proof. Given σ “ σω,B, the abelian category Atω,B does not depend on t ą 0 by con-

struction. When t " 0, all σtω,B semistable objects are in CohpXq, and indeed stability

is equivalent to pω,B ´K{2q-twisted Gieseker stability. Then, we can compare σω,B and

σω1,B1 by comparing

σω,B ú σtω,B ú σtω1,B1 ú σω1,B1 .

Each of the 3 wall-crossing formulas is an application of the general wall-crossing formula

(21) for the abelian categories Aω,B,CohpXq,Aω1,B1 , respectively. □

6. Framing functor and pair invariants

The original approach of [Liu] – following [Joy7] – to generalized K-theoretic invariants

does not use the stack of semistable objects, but instead a framing functor that “stabilizes”

11In [FT2, Figure 1] this is the region to the left (assuming ch0pEq ą 0) of the vertical line through
ΠpEq “ Πpαq.
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the problem. In this section, we recover their definition of invariants, but now as a theorem

(cf. Theorem 6.6). Once we compare our algebraic setup to theirs (cf. Theorems 7.10

and 8.6), the main result of this section establishes that our ε classes match their classes

(cf. Proposition 7.13(3), Theorem 8.8).

6.1. Framing functor and stack of pairs. Throughout this section, we fix α P CpAqpe

and µ a stability condition. We denote by Cα Ď CpepAq the subset of all α1 for which

there exists α2 so that α “ α1 ` α2 with µpα1q “ µpαq “ µpα2q and Mµ
α1 ,M

µ
α2 ‰ H. We

allow α2 “ 0, so that α P Cα. By Assumption 2.11, Cα is finite. In other words, Cα is the

set of topological types which appear as µ-Jordan–Hölder factors of µ-semistable objects

in class α.

Recall from our assumptions (cf. Definition 2.1) that A comes with an embedding into

the homotopy category of a dg category T (for example DbpXq). Let Perf be the dg

category of perfect C-complexes.

Definition 6.1. A framing functor for pA, α, µq is a functor of dg categories Φ: T Ñ Perf

with the following properties:

(1) If F P A then H ipΦpF qq “ 0 for i ă 0.

(2) If rF s P Mµ
α then H ipΦpF qq “ 0 for i ‰ 0, i.e. ΦpF q is a vector space. Moreover,

ΦpF q ‰ 0.

Note that a framing functor for α is automatically also a framing functor for any α1 P Cα.

By functoriality of the construction in [TV], a framing functor induces a map of stacks

MA Ñ MT Ñ MPerf

which preserves the monoidal structure and the BGm action on the stacks. The stack

MPerf carries a universal perfect complex, and we denote by V the pullback of this perfect

complex to MA. Note that V is connective (i.e. hă0pVq “ 0) by (1) and its restriction to

Mµ
α1 is a vector bundle by (2).

Let

λ : CpAq ÝÑ π0pMTq
Φ
ÝÑ π0pMPerfq » Z

be the homomorphism of monoids sending α to rkpV|Mαq. Note that λpα1q ą 0 for α1 P Cα.

We will denote by Φ0 the left exact functor sending an object F of A to the vector space

H0pΦpF qq.

We let B be the exact subcategory of A of objects F such that H ipF q “ 0 for i ‰ 0,

which in particular contains all the µ-semistable objects in class α1 P Cα. Let MB Ď MA

be the stack which parametrizes objects in B; in other words, MB is the locus where the

perfect complex V is concentrated in degree 0, which is open in MA. Note that B is closed
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under direct sums and quotients, but not necessarily kernels, so it is not necessarily an

abelian category.

The following examples of framing functors have been considered in [Joy7, GJT, Bu1,

Mor].

Example 6.2. Let Q be a quiver, A “ RepQ and fix some positive integers av P Zą0

for each vertex v P Q0. Then the functor that maps a representation tVvuvPQ0 of Q to
À

vPQ0
V ‘av
v is a framing functor for every α, µ. In this case, H ipΦpF qq “ 0 for every i ‰ 0

and F P RepQ.

Example 6.3. Suppose that X “ CohpXq and α P CpCohpXqq and µ satisfies Assump-

tion 2.11 (for example µ is slope or Gieseker stability). Let OXp1q be an ample line

bundle. By [HL6, Lemma 1.7.2], every object in B is N -regular for sufficiently large N ,

and hence the functor

RΓp´ b OXpNqq : Db
pXq Ñ Perf

is a framing functor.

Example 6.4. Suppose that A “ CohpCq where C is a curve and fix a point p P C;

denote by ι : tpu Ñ C the inclusion. Then

Lι˚p´q
_ : Db

pCq Ñ Db
ptpuq » Perf

is a framing functor for slope stability.

We let AΦ be the mapping cylinder of Φ0 (cf. [Moz]), i.e. the abelian category which

parametrizes triples pF,U, fq where U P Vect, F P A and f : U Ñ Φ0pF q is a morphism

in Vect; we call an element of AΦ a Φ-pair, and we sometimes denote it by rU Ñ Φ0pF qs.

Similarly, define BΦ to be the mapping cylinder of Φ: B Ñ Vect, which is the exact

subcategory of AΦ where F P B. The topological type of a Φ-pair is prF s, dimUq P

CpAq ˆ Zě0.

We now define the derived stack P “ PA,Φ which parametrizes objects in BΦ. Recall

that MB has the vector bundle V whose fiber over F is ΦpF q, and let U be the universal

vector bundle on

MVect “
ğ

ně0

BGLn .

Then P is defined to be the total space of the vector bundle

P :“ TotMBˆMVect

`

U_
b V

˘

.
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We still denote by U ,V the pullbacks to P; on P there is a universal linear map U Ñ V .
The stack P admits a decomposition into connected components

P “
ğ

pα,dqPCpAqˆZě0

Ppα,dq ,

some of which are possibly empty (for example if λpαq ă 0). Note that

Ppα,0q » MB,α :“ MB X Mα

and in general there is a projection map Π: Ppα,dq Ñ MB,α. The fibers of this map are

isomorphic to

Ad¨λpαq
{GLd

and in particular this is a smooth map.

We define an Ext complex on P ˆ P as

(22) ExtΦ12 “ Π˚Ext12 ‘
“

U_
1 b U2

0

Ñ U_
1 b V2

1

‰

.

Despite BΦ not being an abelian category, the stack P and the complex ExtΦ12 have all

the structure and properties discussed in Section 2.1; see [Joy7, Section 5.2] for a detailed

discussion. In particular, (1) holds and the relative derived tangent bundle of Π is

TΠ “
“

U_
b U

´1
Ñ U_

b V
0

‰

.

This follows from the fact that TMVect
“ pU_ b Uqr1s. The restriction of TΠ to the locus

of P which parametrizes Φ-pairs with f : U Ñ ΦpV q injective is a vector bundle. The

K-Hall algebras KpBq “ K˚pMBq bZQ and KpBΦq “ K˚pPq bZQ are defined in the same

way as for an abelian category.

6.2. Stability conditions on AΦ. From the stability condition µ on A, we define 2

stability conditions on the abelian category of pairs AΦ. The first is the “naive” stability

condition

µ0 : CpAΦqztp0, 0qu Ñ T Y t8u

where 8 ą t for every t P T , and is defined by

µ0pβ, dq “

$

&

%

µpβq if β ‰ 0

8 if β “ 0 .

The second one is the Joyce–Song stability condition. To define it, we consider some rank

function12 rk : CpAqz0 Ñ Zą0 which satisfies

µpβq “ µpβ1
q ñ rkpβq ` rkpβ1

q “ rkpβ ` β1
q .

12The choice of rank function not really play any role, as we will see in Proposition 6.5. In examples
there is often a natural choice, which is the denominator of µ.
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Then we let

µ0 : CpAΦqztp0, 0qu Ñ pT ˆ Qq Y t8u ,

where T ˆ Q is given the lexicographic order and 8 is the maximum, given by

µ`pβ, dq “

$

&

%

`

µpβq, d{rkpβq
˘

if β ‰ 0

8 if β “ 0 .

Stability can be characterized as follows:

Proposition 6.5. Let α1 P Cα.

(a) A pair rF Ñ 0s of topological type pα1, 0q is µ0-(semi)stable if and only if it is

µ`-(semi)stable if and only if F is µ-(semi)stable.

(b) A pair rU
f
ÝÑ Φ0pF qs of topological type pα1, 1q (in particular with dimU “ 1) is

µ0-(semi)stable if and only if F is µ-(semi)stable and f ‰ 0.

(c) A pair rU
f
ÝÑ Φ0pF qs of topological type pα1, 1q is µ`-semistable if and only if

it is µ` stable if and only if F is semistable, f ‰ 0, and f does not factor as

U Ñ Φ0pF 1q Ĺ Φ0pF q for some subobject F 1 ‰ 0 with µpF 1q “ µpF {F 1q.

(d) The stability condition µ0 dominates µ` at pα1, 1q, in the sense of Definition 5.11.

Proof. Part (a) is trivial. Part (b) is also easy, since clearly µ0-stability implies µ-stability

of F and, if F is µ-semistable, the only possible destabilizing subobject of U Ñ V is

U Ñ 0, which is a subobject if and only if f “ 0. Part (c) is standard, see [Joy7, Example

5.6].

For part (d), obviously µ`-semistablity implies µ0-semistability. Suppose that rU
f
ÝÑ

Φ0pF qs is µ0-semistable but not µ`-semistable. Then its µ`-HN filtration is

0 Ĺ rU
f
ÝÑ Φ0

pF 1
qs Ĺ rU

f
ÝÑ Φ0

pF qs

where F 1 is the maximal subobject of F with µpF 1q “ µpF {F 1q through which f factors.

Then the µ`-HN factors both have

µ0prU
f
ÝÑ Φ0

pF 1
qs “ µpF 1

q “ µpF q “ µpF {F 1
q “ µ0prF {F 1

Ñ 0sq .

The other implication is also easy to establish. □

Recall the definition (19) of HNαpµ`{µ0q. It follows from the proof of (d) above that

HNαpµ`{µ0q “ tpα, 1qu Y t
`

pα1, 1q, pα2, 0q
˘

: α1
` α2

“ α, µpα1
q “ µpα2

qu .

Given α1 P Cα we denote by

P
µ`

pα1,1q
Ď Pµ0

pα1,1q
Ď Ppα1,1q
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the stacks of µ` and µ0-semistable pairs. By Proposition 6.5(b), Pµ0
pα1,1q

is a projective

bundle over Mµ
α1 :

Π: Pµ0
pα1,1q

“ PpVq Ñ Mµ
α1 .

By Proposition 6.5, there are no µ`-strictly semistable pairs, and in particular ε
µ`

pα,1q
“

δ
µ`

pα,1q
P KpBΦq are defined without any trouble. The next result expresses the ε classes

inductively in terms of the classes coming from the moduli spaces of Joyce–Song pairs.

Indeed, in the theories of Joyce and Liu, this theorem is actually their definition of in-

variants.

Theorem 6.6. Let Φ be a framing functor as above and let µ` be Joyce–Song stability

on AΦ. Then, we have the equality

(23) Π˚

`

Λ´1pT_
Πq X ε

µ`

pα,1q

˘

“
ÿ

α1`...`αn“α
µpαiq“µpαq

p´1qn´1

n!
λpα1q

““

. . .
“

εµα1
, εµα2

‰

, . . . , εµαn

‰

.

in KpAq.

6.3. Morphisms between K-Hall algebras. In the proof of Theorem 6.6, we will need

as an input the property that Π˚pΛ´1pT_
Πq X ´q is (for practical purposes) a homomor-

phism. Indeed, this is a somewhat general phenomena that could be of interest in other

scenarios, so we formulate it in general. In what follows, the main example to keep in mind

is the forgetful functor C “ AΦ Ñ A and the induced projection of stacks Π: P Ñ M.

Consider a morphism of abelian categories C Ñ A and assume that it lifts to a map

of derived stacks f : MC Ñ MA which is compatible with the direct sum maps and the

BGm actions. We also write f for the induced map Mrig
C Ñ Mrig

A . Define the K-theory

class

(24) F12 “ pf ˆ fq
˚ExtA12 ´ ExtC12 P K˚

pMC ˆ MCq .

Similarly, define F21. Note that F12 descends to pMC ˆ MCqrig. The relative derived

tangent bundle of the morphism f is given by the restriction

Tf “ TC ´ f˚TA “ ∆˚F12 P K˚
pMCq

to the diagonal ∆: MC Ñ MC ˆ MC, and it descends to Mrig
C .

The following proposition, constructing a homomorphism of associative algebras, is

analogous to the homomorphism of vertex algebras and Lie algebras in [GJT, Theorem

2.12].
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Proposition 6.7. Suppose that the K-theory class F is represented by a vector bundle

on MC ˆ MC. Then the map

Υ: KpCq Ñ KpAq

ϕ ÞÑ f˚pΛ´1pT_
f q X ϕq

is a homomorphism of associative algebras.

More generally, if Z1, Z2 Ď MC are such that the restriction of F12 to Zi ˆ Zj is

represented by a vector bundle and ϕ, ψ are pushed forward from Z1, Z2, respectively,

then

Υpϕ ˚ ψq “ Υpϕq ˚ Υpψq .

Proof. Assume first that F12 is globally a vector bundle. Let us denote by Fij the pullback

of F12 via the map MC ˆ MC
piˆpj
ÝÝÝÑ MC ˆ MC where pi is the projection in the i-th

component for i “ 1, 2. In particular, Fii “ p˚
i Tf . Then, we have

(25) Σ˚Tf “ F11 ` F22 ` F12 ` F21 .

Since by assumption F12 is a vector bundle, Proposition 3.5 gives an equality

(26) Λ´1pF
_
12q “ Λ´1pF12q b detpF12q

_
rrkF12s .

Combining (24), (25) and (26) we get the equality

(27) Λ´1pΣ
˚T_

f q b pf ˆ fq
˚ΓA

´ “ p˚
1Λ´1pTf q b p˚

2Λ´1pTf q b ΓC
´

in K˚pMC ˆMCq, where we denote by ΓA
´,Γ

C
´ the complexes (7) for the abelian categories

A and C. Together with the compatibilities

f ˝ ΣC “ ΣA ˝ pf ˆ fq and pf ˆ fq ˝ πC “ πA ˝ pf ˆ fq ,

where ΣA,ΣC, πA, πC are the maps in Definition 4.2 for C,A, we obtain Υpϕ ˚ψq “ Υpϕq ˚

Υpψq by unraveling the definitions.

In the more general case, if j1 : Z1 ãÑ MC then Υpϕq is, more precisely, defined by

Υpϕq :“ pf ˝ j1q˚pΛ´1pj
˚
1T_

f q X ϕq .

Equality (27) still holds after restriction to Z1ˆZ2 and the proof goes through by push-pull

to Z1 ˆ Z2. □

The following is a straightforward corollary:

Corollary 6.8. Let C,A be good abelian categories such that C Ď A is a full and faithful

subcategory. Then pushforward along the inclusion Mrig
C ãÑ Mrig

A induces a homomor-

phism

KpCq Ñ KpAq .
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Proof. Proposition 6.7 applies with F “ 0. □

6.4. Proof of Theorem 6.6. The basic idea of the proof is to combine the projective

bundle Pµ0,rig
pα,1q

Ñ Mµ,rig
α with the wall-crossing formula relating µ0 and µ` stability. We

will use the morphism Υ from the previous section given by

Υpϕq “ Π˚pΛ´1pT_
Πq X ϕq P KpAq

for ϕ P KpBΦq for which it is defined. We also have homomorphisms KpBq Ñ KpAq and

KpBq Ñ KpBΦq induced by the respective inclusions of categories, cf. Corollary 6.8.

We will abbreviate εα “ εµα, ε
`

pα,1q
“ ε

µ`

pα,1q
and ε0

pα,1q
“ εµ0

pα,1q
, and use similar notation

for δ classes. By abuse of notation, the classes εα can be regarded either in KpBq, KpAq

or KpBΦq. Following this abuse, we have by Proposition 6.5(a)

εα “ ε0pα,0q “ ε`

pα,0q
P KpBΦq .

Step 1: Projective bundle formula. By Proposition 6.5(b) and the discussion that follows

it, Pµ0,rig
pα,1q

is the projectivization of the restriction of V to Mµ,rig
α , which is a vector bundle

of rank λpαq. By [Liu, Lemma 2.1.16] it follows that

(28) Υpδµ0
pα,1q

q “ λpαqδµα .

Note that [Liu, Lemma 2.1.16] is stated for schemes with an obstruction theory, but the

projective bundle formula in [Kha2, Propositions 3.1(iii), 3.2] can be used to extend it to

derived stacks. Equation (28) also holds if we replace α by any α1 P Cα.

Step 2: Wall-crossing. By the dominant wall-crossing formula (cf. Theorem 5.14)

and Proposition 6.5(d), we have the wall-crossing formula between naive and Joyce–Song

stabilities:

(29) δ0pα,1q “ δ`

pα,1q
`

ÿ

α1`α2“α
µpα1q“µpα2q

δ`

pα1,1q
˚ δα2

in KpBΦq.

Step 3: Applying Υ. We now apply Υ to (29) to obtain

(30) λpαqδα “ Υpε`

pα,1q
q `

ÿ

α1`α2“α
µpα1q“µpα2q

Υpε`

pα1,1q
q ˚ δα2 .

Here, we are using (28) on the left hand side and the general version of Proposition

6.7. To see that we can apply it, note that in this case the K-theory class F12 is given by

U_
1 bV2 ´U_

1 bU2 (cf. (22)) and we may take Z1 “ Mµ0
pα1,1q

and Z2 “ Mµ
pα2,0q

. Indeed, the

restriction of U_
1 bU2 is trivial when we restrict to ZiˆZj except in the case pi, jq “ p1, 1q.
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When pi, jq “ p1, 1q, F12 can be represented by the cokernel of U_
1 bU2 Ñ U_

1 bV2, which

is a vector bundle since U Ñ V is injective over Mµ0
pα1,1q

.

Step 4: Combinatorics. Observe that (30) determines recursively the invariants δα, and

hence εα, from Υpε`

pα1,1q
q. The same is true for the formula (23), so it remains to show

that the two are equivalent, which is a combinatorial statement. We define classes ε̃α1 , for

α1 P Cα, to be the classes that satisfy (23) (for any α1 P Cα in place of α), i.e.

Υ
`

ε`

pα,1q

˘

“
ÿ

α1`...`αn“α
µpαiq“µpαq

p´1qn´1

n!
λpα1q

““

. . .
“

ε̃α1 , ε̃α2

‰

, . . .
‰

, ε̃αn

‰

“
ÿ

α1`...`αn“α
µpαiq“µpαq

n
ÿ

p“1

p´1qn´p

n!
λpαpqε̃α1 ˚ ε̃α2 ˚ . . . ˚ ε̃αn .

The second equality is [Joy7, (9.54)]. Define invariants δ̃α in terms of ε̃α. We ought to

show that δ̃α “ δα, which amounts to show that δ̃α satisfies (30). For α1 ` α2 “ α and

µpα1q “ µpα2q we have

Υpε`

pα1,1q
q ˚ δ̃α2 “

ÿ

α1`...`αk“α1

µpαiq“µpαq

ÿ

αk`1`...`αk`l“α
2

µpαiq“µpαq

k
ÿ

p“0

p´1qk´p

k!l!

ˆ

k ´ 1

p ´ 1

˙

λpαpqε̃α1 ˚ . . . ˚ ε̃αk`l
.

Hence, the term ε̃α1 ˚ . . . ˚ ε̃αn appears in

Υpε`

pα,1q
q `

ÿ

α1`α2“α
µpα1q“µpα2q

Υpε`

pα1,1q
q ˚ δ̃α2(31)

with coefficient
n

ÿ

p“1

λpαpq
ÿ

kěp, lě0
k`l“n

p´1qk´p

k!l!

ˆ

k ´ 1

p ´ 1

˙

“
1

n!

n
ÿ

p“1

λpαpq “
1

n!
λpαq .

Note that the isolated term Υpε`

pα,1q
q corresponds to allowing l “ 0. The identity used is

deduced from the observation that the coefficient of xn in

p1 ` xq
n xp

p1 ` xqp
“ xpp1 ` xq

n´p

is 1. Then (31) is equal to λpαqδ̃α, which concludes the proof.

7. Comparison with Liu’s vertex algebra

In previous work by Joyce [Joy7] (in cohomology) and Liu [Liu] (in K-theory), the Lie

algebra where wall-crossing formulas are written is obtained from a (multiplicative) vertex
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algebra. In this section we compare our construction to theirs, matching the wall-crossing

formulas obtained from either method.

7.1. Vertex algebras and multiplicative vertex algebras. We start by recalling the

notion of (graded) vertex algebras (cf. [FBZ, Kac, Li, LL, Joy7]). To distinguish from

multiplicative vertex algebras, we will sometimes call regular vertex algebras “additive”.

Given a vector space V we write V ppzqq “ V JzKrz´1s for the ring of Laurent series with

coefficients in V .

Definition 7.1. An (additive) super13 vertex algebra is the data of pV,1, D, Y q where:

(i) V is a vector space over Q with a Z{2-grading;

(ii) 1 P V is the identity element, with parity 0;

(iii) D : V Ñ V is the translation operator, which preserves the parity.

(iv) Y is the state-field correspondence: Y : V b V Ñ V ppzqq. We write

Y pa, zqb “
ÿ

nPZ

panbqz
´1´n

where anb P V and it is 0 for n " 0.

These objects are required to satisfy the following properties for all a, b, c P V :

(i) Vacuum: Y p1, zqa “ a;

(ii) Associativity: Y pa, z ´ wqY pb, zqc ” Y pY pa, zqb, wqc where ” means that both

sides are obtained from expanding the same element in

V Jz, wKrz´1, w´1, pz ´ wq
´1

s .

(iii) Skew-symmetry: Y pa, zqb “ p´1q|a||b|ezDY pb,´zqa where |a| P t0, 1u denotes the

Z{2-grading of a.

The vertex algebra is said to be Z-graded if there is a Z-grading on V upgrading the

Z{2-grading such that 1 is degree 0, D is of degree 2, and Y is of degree 0 where the

variable z is regarded as having degree ´2.

Remark 7.2. The equivalence ” in the associativity axiom is equivalent to the existence

of some integer N ą 0 such that

pz ´ wq
NY pa, z ´ wqY pb, zqc “ pz ´ wq

NY pY pa, zqb, wqc .

There are several different ways to formulate the vertex algebra axioms. For example,

the ones above imply the locality axiom

Y pa, zqY pb, wqc ” p´1q
|a||b|Y pb, wqY pa, zqc

13We consider the “super” case for additive vertex algebras since the main example we have in mind
comes from the homology of a stack, that admits a natural Z{2-grading.
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which is sometimes included in the definition.

Note that the translation operator always appears through

Dpzq :“ ezD : V Ñ V JzK

which satisfies

DpzqDpwq “ Dpz ` wq and Dp0q “ id .

The formal variable z in the definition of vertex algebra should be thought as being

“additive”. Indeed, there is a generalization of vertex algebras where this additivity

is replaced by any group law [Li]. The multiplicative case plays a central role in the

formulation of K-theoretic wall-crossing in [Liu].

Definition 7.3. A multiplicative vertex algebra is the data of pV,1, Dpuq, Y q where:

(i) V is a vector space over Q;

(ii) 1 P V is the identity element, with parity 0;

(iii) Dpuq : V Ñ V J1 ´ uK is the translation operator, satisfying DpuqDpvq “ Dpuvq

and Dp1q “ id.

(iv) Y is the state-field correspondence Y : V b V Ñ V pp1 ´ uqq.

These objects are required to satisfy the following properties for all a, b, c P V :

(i) Vacuum: Y p1, uqv “ v;

(ii) Associativity: Y pY pa, uqb, vqc ” Y pa, uvqY pb, vqc, where ” means that both sides

are the expansions of the same element in

V J1 ´ u, 1 ´ vKrp1 ´ uq
´1, p1 ´ vq

´1, p1 ´ uvq
´1

s.

(iii) Skew-symmetry: Y pa, uqb “ DpuqY pb, u´1qa;

It turns out that vertex algebras associated to a group law can be effectively reduced to

the usual ones (over a field of characteristic 0) by a simple change of variable. We state

this only for the additive/multiplicative cases.

Proposition 7.4 ([Li, Proposition 3.6]). The change of variables u “ ez determines an

equivalence of categories between the categories of multiplicative and additive vertex alge-

bras. More precisely, if pV,1, Dpuq, Y q is a multiplicative vertex algebra then pV,1, D1, Y 1q

is an additive vertex algebra, where D1puq “ Dpezq and Y 1pa, zq “ Y pa, ezq. Here, we are

implicitly using the isomorphism

QJ1 ´ uK » QJzK

which sends 1 ´ u ÞÑ 1 ´ ez P zQJzK.
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Given a (super) additive vertex algebra V , there is an associated (super) Lie algebra,

constructed by Borcherds [Bor]. Its underlying vector space is the quotient

qV :“ V { impDq

and the Lie bracket is defined by

rā, b̄s :“ Resz“0 Y pa, zqb .

When V is a multiplicative vertex algebra, an analogous construction appears in [Liu,

3.2.13]. In the multiplicative case, one defines

qV :“ V { impDpuq ´ idq

where impid´Dpuqq is the subspace of V generated by the coefficients of pDpuq ´ idqa for

all a P V , and

ra, bs :“ Resu“1 u´1fpuq .

Remark 7.5. Note that if u “ ez then

Resu“1 u
´1fpuq “ Resz“0 fpzq ,

so the Lie algebras obtained by regarding V as either a multiplicative or additive vertex

algebra, through Proposition 7.4, are the same.

Remark 7.6. If fpuq P Qrp1 ´ uq˘1s is a rational function with poles only at 1, then the

residue theorem implies that

Resu“1 u
´1fpuq “ ´Resu“8 u

´1fpuq ´ Resu“0 u
´1fpuq

“ Resu“0 ufp1{uq ´ Resu“0 u
´1fpuq “ ru0spf´ ´ f`q

where f´, f` are the Taylor expansions of f in u´1 and u, respectively, and ru0sp. . .q

denotes the u0 coefficient. The latter expression is the definition that Liu uses in the

equivariant setting, where the equality above does not hold due to the presence of non-

trivial roots of unity as poles. See [Liu, Appendix A] for a more detailed discussion of

these residue maps.

7.2. Joyce’s vertex algebra. In what follows, A is a good abelian category as in Def-

inition 2.1 and M “ MA is the stack of objects of A or, more generally, any stack that

satisfies the conclusion of Proposition 2.1. Joyce defines the structure of an additive super

vertex algebra on H˚pMAq which we now recall.

The Z{2-grading on H˚pMq is induced by the homological grading. The vacuum vector

1 is given as the image of 1 P Q under the natural map

Q “ H˚pt0uq “ H˚pM0q Ñ H˚pMq .



K-THEORETIC WALL-CROSSING 59

The translation operator is defined by

Dpaq “ Ψ˚pt b aq

where t is the generator of H2pBGmq and Ψ the BGm action on M. Note that if z is the

generator of H2pBGmq and we interpret the map Ψ˚ as an element of

HomQ
`

H˚pBGmq b H˚pMq, H˚pMq
˘

» HomQ
`

H˚pMq, H˚pMqJzK
˘

,

then the translation operator is defined by the formula Ψ˚ “ ezD.

Finally, the state-field correspondence is defined as follows: for a P H˚pMαq and b P

H˚pMβq,

Y pa, zqb “ p´1q
χpα,βqzχpα,βq`χpβ,αqΣ˚

`

pezD b idqcz´1pΘq X pa b bq
˘

(32)

where

Θ “ Ext_
12 ` Ext21 .

Moreover, the Z{2-grading can be upgraded to a Z-grading by declaring the degree j part

of the vertex algebra to be
à

αPCpAq

Hj´2χpα,αqpMαq .

Theorem 7.7 ([Joy1]). The data above defines a graded vertex algebra on H˚pMAq.

Via the construction of Borcherds explained in Section 7.1, one obtains a Lie algebra

structure on qH˚pMq, which is where wall-crossing formulas for cohomological invariants

are written. According to [Joy1, Proposition 3.24], the natural projection H˚pMq Ñ

H˚pMrigq is surjective and its kernel is precisely impDq, so we have an identification
qH˚pMq » H˚pMrigq.

7.3. Liu’s vertex algebra in K-homology. [Liu] constructs the analogue of the vertex

algebra explained before in the K-theoretic world. It naturally leads to a multiplicative

vertex algebra. The underlying vector space of this multiplicative vertex algebra is not

the entire K-homology introduced in Section 3.2 due to a subtle but very important

point regarding convergence, but we need to restrict to a smaller subset. There is some

freedom in how to do it, as discussed in [Liu, Section 2.2.3], but we will stick to what Liu

calls concrete K-homology. We will instead call it regular K-homology, in analogy with

historical terminology in the motivic setting surveyed in Section 1.2.

Definition 7.8 (Regular K-homology). Let X be a derived stack. We let

Kreg
˚ pXq :“

ď

ZPC
f : ZÑX

im
`

GpZq Ñ K˚pZq
f˚
ÝÑ K˚pXq

˘

Ď K˚pXq
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where the union is over all Z in the class C of classical, proper, finite type schemes with the

resolution property14, together with a map f : Z Ñ X. The morphism GpZq Ñ K˚pZq,

for Z proper, is explained in Section 3.2.

A fundamental difference between Kreg
˚ pXq and K˚pXq is that elements of Kreg sat-

isfy the finiteness condition [Liu, Definition 2.2.2 (iii)]. Letting IpXq Ď K˚pXq be the

augmentation ideal of rank 0 complexes on X and ϕ P Kreg
˚ pXq, we have

(33) ϕptpIpXq
N

q “ 0 for N " 1 .

Indeed, this follows from the fact that IpZqN “ 0 for sufficiently large N if Z is a finite

type scheme with the resolution property [Liu, Lemma 2.1.7].

Liu defines a multiplicative vertex algebra structure on Kreg
˚ pMAq. The vacuum 1 P

Kreg
˚ pM0q “ Kreg

˚ pt0uq is defined by

p1qS : K˚
pS ˆ t0uq

id
ÝÑ K˚

pSq .

The translation operator is characterized by the following property: for ϕ P Kreg
˚ pMq, V P

K˚pM ˆ Sq,

pDpuqϕqSpV q “ ϕSpΨ˚V q P K˚
pSqru˘1

s

where Ψ˚ : K˚pM ˆ Sq Ñ K˚pM ˆ BGm ˆ Sq » K˚pM ˆ Sqru˘1s. The fact that such

Dpuq can be regarded as a power series in 1 ´ u with coefficients being endomorphisms

of Kreg
˚ pMq is established in [Liu, Lemma 3.3.7]. It will be convenient to consider also

Dpuqp1q and Dpuqp2q as operators Kreg
˚ pMˆMq Ñ Kreg

˚ pMˆMqJ1´uK which are defined

similarly using the BGm action on the first or second copy of M, respectively.

The state-field correspondence is defined as follows for ϕ, ψ P Kreg
˚ pMq:

Y pϕ, uqψ “ Σ˚

`

Dpuq
p1q

pΓpuq X pϕ b ψq
˘

where

Γpuq “ Λ´upExt_
12q b Λ´u´1pExt_

21q .

Let us clarify what exactly is meant by Γpuq X pϕ b ψq. By definition of Kreg
˚ pMq, there

is some Z P C and f : Z Ñ M ˆ M such that ϕ b ψ “ f˚ξ, and we use it to define

Γpuq X pϕ b ψq as

f˚

`

pΛ´u´1pf˚ Ext_
12q b Λ´upf˚ Ext_

21qq X ξ
˘

P Kreg
˚ pM ˆ Mqrp1 ´ uq

˘1
s

14The resolution property [Tot] implies thatK˚pZq “ K0pVectpZqq. It holds for quasi-projective schemes,
so in particular all projective schemes are contained in C. Imposing the resolution property is necessary
for somewhat technical reasons in [Liu], but it would be desirable to remove it since it is unknown if some
moduli spaces of complexes satisfy it.
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where the exterior powers are expanded as explained in Lemma 3.7. In particular, observe

that if V P K˚pM ˆ Sq then

pY pϕ, uqψqSpV q P K˚
pSqrp1 ´ uq

˘1
s

is a Laurent polynomial in 1 ´ u, rather than a Laurent series.

Theorem 7.9 ([Liu]). The data above defines a multiplicative vertex algebra structure

on Kreg
˚ pMAqQ.

7.4. The relation to the K-Hall algebra. Combining the material of the previous

sections, one gets a Lie algebra structure on

qKreg
˚ pMqQ :“ Kreg

˚ pMqQ{ impDpzq ´ idq .

As explained in [Liu, Lemma 3.3.17], the morphism π˚ : Kreg
˚ pMq Ñ Kreg

˚ pMrigq fac-

tors through qKreg
˚ pMq. Unlike in the homology case, it is unclear if the induced map

qKreg
˚ pMq Ñ Kreg

˚ pMrigq is an isomorphism. We have the following diagram involving the

different versions of K-homology of M and Mrig:

Kreg
˚ pMq K˚pMq

qKreg
˚ pMq Kreg

˚ pMrigq K˚pMrigq

Note that the the left bottom corner of the diagram (after bQ) is the Joyce–Liu Lie

algebra and the right bottom corner is the the K-Hall algebra from Section 4.1, which is

an associative algebra. We regard K˚pMrigqQ also as a Lie algebra with Lie bracket given

by the commutator of the K-Hall product in Definition 4.2. Our main result from this

section is the following:

Theorem 7.10. The morphism qKreg
˚ pMqQ Ñ K˚pMrigqQ is a homomorphism of Lie alge-

bras.

Proof. Let ϕ, ψ P Kreg
˚ pMq and let V P K˚pMrig ˆ Sq. We denote by ϕ̃, ψ̃ their images in

K˚pMrigq. We have by definition

pY pϕ, uqψqSpπ˚V q “ pϕ b ψq pΓpuq b Ψ˚
1Σ

˚π˚V q ,(34)

which is an element of K˚pSqrp1 ´ uq˘s, that we denote by y. By Lemma 3.7 (see also

Remark 4.5), the expansion y´ of y in K˚pSqppu´1qq is precisely what appears in the

expression (8), and hence

ru0sy´ “ pϕ̃ ˚ ψ̃qSpV q .

In a similar way we conclude that ru0sy` “ pψ̃ ˚ ϕ̃qSpV q. The conclusion then follows from

Remark 7.6. □
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In light of the previous theorem, the following definition is natural:

Definition 7.11. We define the Lie subalgebra KregpAq of KpAq (with the K-Hall com-

mutator) as

Kreg
pAq :“ im

`

Kreg
˚ pMqQ Ñ K˚pMrig

qQ
˘

.

This Lie subalgebra is, from our point of view, a natural analogue of MregpAq in the

motivic setting presented in Section 1.2. As in the motivic setting, KregpAq is not an

associative subalgebra; indeed, in Example 4.14 it is observed that

ε1 P Kreg
pVectq but ε1 ˚ ε1 R Kreg

pVectq .

The following is a natural analogue of the no-pole theorem:

Conjecture 7.12 (No-poles15). We have εµα P KregpAq. In particular, εµα satisfies the

finiteness condition (33).

It would be interesting to have a direct proof of this conjecture. The conjecture does

hold in the following situations:

Proposition 7.13. We have εµα P KregpAq if one of the following holds:

(1) There are no µ-strictly semistable objects in class α and the moduli space Mµ
α

satisfies the resolution property.

(2) There is a path of stability conditions from µ to µ1 satisfying the conditions of

Theorem 5.15 and the conjecture holds for the stability condition µ1.

(3) There is a framing functor, as in Section 6.1, and the moduli spaces of Joyce–Song

pairs satisfy the resolution property. Moreover, when that is the case, εµα are the

image of Liu’s classes zαpµq P qKreg
˚ pMqQ via the morphsim

qKreg
˚ pMqQ Ñ K˚pMrig

qQ .

Proof. Part (1) is clear since when there are no µ-strictly semistable objects the classes

εµα “ δµα are, by definition, the image of Ovir
Mµ

α
by the map

GpMµ
α q Ñ K˚pMµ

α q Ñ K˚pMµ,rig
α q .

Part (2) is an immediate consequence of KregpAq being a Lie subalgebra and the wall-

crossing formula of Theorem 5.15.

The claim that our classes are the image of Liu’s classes follows from comparing The-

orem 6.6 with [Liu, Theorem 4.2.5], and part (3) follows. □
15We warn the reader that this conjecture, with our current definition of KregpAq, might very well fail in
cases where the good moduli spaces are proper but not projective, due to the requirement of schemes in
class C to have the resolution property. We believe the finiteness part of the conjecture should still hold
even if that is not the case.
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8. From K-theory to cohomology

So far, our approach to generalized invariants and wall-crossing has been entirely in

the realm of K-theory. We now explain how these relate to wall-crossing formulas for

cohomological invariants, and howK-theory formulas can be used to deduce cohomological

ones. The main result of this section is that Joyce’s homological invariants, when defined,

are homological lifts of our classes εµα, in the sense of Definition 8.2. We conjecture that

(canonical) homological lifts exist also in the absence of a framing functor. Moreover,

Theorem 8.6 and Proposition 8.13 together imply that in general homological lifts of ε

classes satisfy automatically the same wall-crossing formulas, at least when we restrict

ourselves to (algebraic) tautological insertions – this reproves Joyce’s cohomological wall-

crossing formulas for (algebraic) tautological integrals.

8.1. The Riemann–Roch morphism and homological lifts. The virtual Riemann–

Roch theorem [FG, Corollary 3.4] (see also [Kha2, Theorem 6.12] for a version that does

not require an embedding into a smooth ambient space) is the statement that, for a proper

scheme M with a 2-term perfect obstruction theory, we can write K-theoretic invariants

as intersection numbers:

χpM,Ovir
M b V q “

ż

rMsvir

chpV qtdpT vir
M q .

This motivates the following definition:

Definition 8.1. Let X be a derived stack16 (for instance, X “ MA for a good abelian

category A). We define the morphism

τ “ τX : K
˚
pXq Ñ H˚

pXq

α ÞÑ chpαqtdpTXq

and its dual version

τ_ : H˚pXq Ñ K˚
pXq

_
Q .

When M “ MA, the derived tangent bundle TM is given by the restriction of Ext12r1s

to the diagonal (1). The virtual Riemann–Roch says that, if µ-stable is equivalent to

µ-semistable for objects of class α, then

pεµαqpt “ τ_
prMµ

α s
vir

q .

We remind the reader that, as explained in Section 7.2, when M “ MA is the moduli

stack of objects in an abelian category, H˚pMq carries the structure of a vertex algebra

16We remind the reader that derived stacks in this paper are assumed to have perfect tangent complex,
so that tdpTXq makes sense.



64 I. KARPOV AND M. MOREIRA

and Kreg
˚ pMq carries the structure of a (multiplicative) vertex algebra. Ideally, we would

have liked to state that an upgrade of τ_ defines a homomorphism of vertex algebras.

Unfortunately, there is no way to lift τ_ to a map H˚pMq Ñ K˚pMq, so strictly speaking

this is not possible. On the other hand, τ_ is not compatible with Kunneth maps since

there is no Kunneth map on pK˚q_. We introduce the notion of homological lift, which

works around these technical points.

Definition 8.2 (Homological lift). Let ϕ P K˚pXq. We say that A P H˚pXq is a homo-

logical lift of ϕ if for any derived stack S the diagram

K˚pX ˆ Sq K˚pSq

H˚pX ˆ Sq H˚pSq

τXˆS

ϕS

τS

´{A

commutes, where { is the slant product.

Remark 8.3. Admitting a homological lift is a strong condition. For example, if ϕ

admits a homological lift then it satisfies the finiteness condition that ϕptpIpXqNq “ 0 for

all sufficiently large N . This is a consequence of the fact that τ maps IpXq to Hě2pXq.

Taking S “ pt in the definition, it follows that A being a homological lift of ϕ implies

that τ_pAq “ ϕpt. However, being a homological lift has better compatibility with the

Kunneth maps in (K-)homology, as illustrated by the following lemma:

Lemma 8.4. The following properties of homological lifts hold:

(1) If Ai P H˚pXiq is a homological lift of ϕi P K˚pXiq then A1 b . . . b An P H˚pX1 ˆ

. . .ˆ Xnq is a homological lift of ϕ1 b . . .b ϕn P K˚pX1 ˆ . . .ˆ Xnq. In particular,

τ_
pA1 b . . . b Anq “ pϕ1 b . . . b ϕnqpt .

(2) If A P H˚pXq is a homological lift of ϕ P K˚pXq and V P K˚pXq then chpV q XA is

a homological lift of V X ϕ.

(3) If f : X Ñ Z and A P H˚pXq is a homological lift of ϕ P K˚pXq then f˚

`

tdpTf qXAq P

H˚pZq is a homological lift of f˚ϕ P K˚pZq.

(4) If X is a quasi-smooth proper algebraic space, then the homological virtual funda-

mental class rXsH P H˚pXq is a homological lift of the K-theoretic fundamental

class rXsK P K˚pXq (cf. Theorem 3.12).

Proof. The first 3 properties are obtained straight from the definition. The last one

is a consequence of the virtual Grothendieck–Riemann–Roch for the projection maps

X ˆ S Ñ S, which we prove in Lemma 8.5. To apply the lemma, two observations are

necessary: first, under the assumptions on X the projection πS : X ˆ S Ñ S admits
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pushforwards on K˚, and the K-theoretic fundamental class rXsK consists precisely of

the collection of all pushforwards πS˚ : K
˚pX ˆ Sq Ñ K˚pSq. Secondly, Khan’s virtual

fundamental class

rX ˆ S{Ss P H˚
BMpX ˆ S{Sq

is the pullback of the virtual fundamental class rXsH P HBM
˚ pXq “ H˚pXq, by the base

change formula [Kha1, Theorem 3.13]. □

Lemma 8.5 (Virtual Grothendieck–Riemann–Roch). Let X,Z be derived stacks and

f : X Ñ Z be a quasi-smooth proper representable morphism. Then the following di-

agram commutes

K˚pXq K˚pZq

H˚pXq H˚pZq

f˚

τ τ

f!

where f! is the composition

H˚
pXq

˝rX{Zs
ÝÝÝÑ HBM

˚ pX{Zq
f˚
ÝÑ H˚

pZq

and rX{Zs P HBM
˚ pX{Zq is Khan’s virtual fundamental class, see [Kha1, Section 3.4] for

more details.17

Proof. The Chern character map ch: K˚p´q Ñ H˚p´q can be factored as the composition

K˚
p´q Ñ K˚

p´qQ
pAq
ÝÝÑ K ét

p´qQ
pBq
ÝÝÑ KH ét

p´qQ
ch
ÝÑ H˚

motp´q
pCq
ÝÝÑ H˚

p´q .

Here, K étp´qQ and KH étp´qQ are the étale localizations of K˚p´qQ and KHp´qQ, KH

is the homotopy invariant version of K-theory, and H˚
mot is the motivic cohomology with

coefficients in
À

nPZQpnqr2ns. We refer to [Kha2, Sections 4, 5] and [Kha1, Example 2.10,

2.13] for details. A Grothendieck–Riemann–Roch theorem for KH étp´qQ
ch
ÝÑ H˚

motp´q is

proven in [Kha1, Corollary 3.25]. The maps pAq, pBq are easily seen to commute with

pushforward of maps, when defined. The map pCq is induced by the Betti realization (see

[Ayo, Section 2]), which also commutes with pushforwards as shown in loc. cit. Note

that we are defining rX{Zs P HBM
˚ pX{Zq as the image of rX{Zs P HBM,mot

˚ pX{Zq under the

Betti realization morphism HBM,mot
˚ pX{Zq Ñ HBM

˚ pX{Zq, so it is clear that f! commutes

with pCq. □

17Technically, [Kha1] works with cohomology theories in the algebraic category, but here we are regarding
rX{Zs in Borel–Moore homology, in the sense of the 6 functor formalism in the topological category, by
applying the Betti realization morphism, as discussed in the proof. Let us also remark that the cohomology
of derived stacks defined through the 6 functor formalism on the topological category agrees with the
cohomology of the topological realization of the stack [Kha3, Proposition 2.8].
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Recall that we have Lie brackets on H˚pMrigq and on K˚pMrigq. The former is obtained

from the vertex algebra structure on H˚pMq and the isomorphism H˚pMrigq » qH˚pMq,

and the latter is the commutator of the K-Hall product.

Theorem 8.6. If A1, A2 P H˚pMrigq are homological lifts of ϕ1, ϕ2 P K˚pMrigq then

rA1, A2s is a homological lift of rϕ1, ϕ2s.

8.2. Proof of compatibility of Lie algebras and homological lifts. This Section is

dedicated to the proof of Theorem 8.6. We start by observing that we have the following

diagram:

K˚pMrig ˆ Sq K˚pMrig ˆ Mrig ˆ Sq K˚pSq

H˚pMrig ˆ Sq H˚pMrig ˆ Mrig ˆ Sq H˚pSq

rϕ1,ϕ2sS

τ

bK

τ

pϕ1bϕ2qS

τ

bH

{rA1,A2s

{pA1bA2q

The maps bK , bH above are, roughly speaking, the dual maps to the Lie brackets on K-

homology and homology, respectively; we will describe them explicitly below. The square

on the right commutes by hypothesis and Lemma 8.4(1), so it is enough to prove that

the left square commutes as well. For ease of notation, we show it when S “ pt, but the

general case is the same.

First of all, the map bH , when restricted to H˚pMrig
α`βq Ñ H˚pMrig

α ˆ Mrig
β q, is given

by18

bH “ Resz“0p´1q
χpα,βqzχsympα,βqcz´1pΘqΨ˚

1Σ
˚
p´q ,

where we are regarding Ψ˚
1 as a map

H˚
pM ˆ Mq Ñ H˚

pBGm ˆ M ˆ Mq » H˚
pM ˆ MqJzK .

The map bK is the anti-symmetrization of the “coproduct” mK , i.e. bK “ mK ´ σ˚ ˝mK

where σ switches the two copies of Mrig and

mK “ ru0sΓ´puq b Ψ˚
1Σ

˚
p´q .

For a derived stack X, we introduce the completion

H˚
pXqrp1 ´ uq

˘1
s

p

Ď H˚
pXqppp1 ´ uq

´1
qq

18To be more precise, the formula above defines a map H˚pMα`βq Ñ H˚pMα ˆ Mβq which descends to

bH : H˚pMrig
α`βq Ñ H˚pMrig

α ˆ Mrig
β q. The same applies to the desctiption of mK below.
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of H˚pXqrp1´uq˘1s as the set of Laurent series in p1´uq´1 with coefficients in H˚pXq with

the property that, for any N P Z`, their image modulo HěNpXq is a Laurent polynomial

in 1 ´ u; in other words, the coefficient of p1 ´ uq´i has large cohomological degree for

large i. Since homology is the direct sum over degrees, we have a pairing

x´,´y : H˚pXq b H˚
pXqrp1 ´ uq

˘1
s

p

Ñ Qrp1 ´ uq
˘1

s .

There is a residue map Resu“1 : H
˚pXqrp1 ´ uq˘1sp Ñ H˚pXq and it satisfies

x´,Resu“1 ´y “ Resu“1x´,´y .

An element of H˚pXqrp1 ´ uq˘1sp admits an expansions in u or in u´1. By the

proof of Lemma 3.7, for any V P K˚pXq we can define an element of H˚pXqrp1 ´

uq˘1sp with the property that its u-expansion is chpΛ´upV qq and its u´1-expansion is

p´uqrkpV qch
`

Λ´u´1pV _qbdetpV q
˘

. Note that the algebraic splitting principle is not neces-

sary for this, since the statement only depends on the image of V in topological K-theory,

i.e. on the homotopy class of the map X Ñ MPerf » ZˆBU induced by a perfect complex

representing V ; therefore the splitting principle applies even if algebraically V does not

admit a resolution by vector bundles.

We recall the complex

Γpuq “ Λ´upExt_
12q b Λ´u´1pExt_

21q .

We will denote by chpΓpuqq the element of H˚pXqrp1 ´ uq˘1sp obtained from Γpuq as

explained above. Its u´1-expansion is equal to chpΓ´puqq and its u-expansion is equal to

chpΓ`puqq where

Γ`puq “ p´uq
´rk21Λ´upExt_

12q b Λ´upExt21q b detpExt_
21q “ σ˚Γ´pu´1

q .

Using the above relation, we find that

σ˚
˝ mK “ ru0sΓ`puq b Ψ˚

1Σ
˚
p´q ;

combining this with Remark 7.6 we obtain

τpbKpV qq “ Resu“1 u
´1ch

`

Γpuq
˘

ch
`

Ψ˚
1Σ

˚V
˘

tdpTαqtdpTβq P H˚
pMrig

α ˆ Mrig
β q

where Tα is shorthand for TMα . We will use the following elementary lemma to compare

Γpuq and cz´1pΘq:

Lemma 8.7. Let V P K˚pXq. We have equalities

ch
`

Λ´u´1pV _
q
˘

¨ td
`

V b u
˘

“ zrkpV qcz´1

`

V
˘

ch
`

Λ´upV _
q
˘

¨ td
`

V b u´1
˘

“ p´zq
rkpV qcz´1

`

V _
˘

in H˚pXqrp1 ´ uq˘1sp after the change of variable u “ ez.
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Proof. All the 4 quantities are multiplicative in V , in the sense that they all satisfy fpV `

V 1q “ fpV qfpV 1q. By the splitting principle (as before, we do not need it algebraically,

but only in topological K-theory), it is enough to verify the claim when V is a line bundle.

In this case, the equalities turn into

p1 ´ e´z´α
q

z ` α

1 ´ e´z´α
“ zp1 ` α{zq

p1 ´ ez´α
q

´z ` α

1 ´ ez´α
“ ´zp1 ´ α{zq

where α “ c1pV q. □

Using the previous lemma for V “ Ext12,Ext21, we obtain the identity

chpΓpuqq “ p´1q
χpα,βqzχsympα,βqcz´1pΘqtdp´Ext12 b u´1

qtdp´Ext21 b uq .

Note also that

Ψ˚
1Σ

˚Tα`β “ Tα ` Tβ ´ Ext12 b u´1
´ Ext21 b u .

Using the last two equations together, one obtains the equality

ch
`

Γpuq
˘

ch
`

Ψ˚
1Σ

˚V
˘

tdpTαqtdpTβq

“ p´1q
χpα,βqzχsympα,βqcz´1pΘqΨ˚

1Σ
˚
`

chpV qtdpTα`βq
˘

in the completion H˚pXqrp1 ´ uq˘1sp , after the change of variables u “ ez. Applying

Resu“1 u
´1 “ Resz“0 (see Remark 7.5) to both sides gives the equality

τpbKpV qq “ bHpτpV qq

as desired.

8.3. Homological lifts of ε classes. In the (co)homological setting, Joyce defines ele-

ments that we denote by

εµ,Hα P H2´2χpα,αqpM
rig
α q

assuming the existence of framing functors. Note that 1 ´ χpα, αq is the dimension of

the derived stack Mrig
α . When all semistable objects are stable, these are simply the

pushforward of the virtual fundamental class rMµ
α svir to Mrig

α . The general construction

utilizes the moduli of Joyce–Song pairs P
µ`

p1,αq
, where stable=semistable holds, and defines

εµ,Hα recursively through a formula that resembles (23). More precisely,

Π˚

`

crkpTΠq X ε
µ`,H
pα,1q

˘

(35)

“
ÿ

α1`...`αn“α
µpαiq“µpαq

p´1qn´1

n!
λpα1q

““

. . .
“

εµ,Hα1
, εµ,Hα2

‰

, . . . , εµ,Hαn

‰

.
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where, on the left hand side, ε
µ`,H
pα,1q

is defined as the homological virtual fundamental class

rP
µ`

p1,αq
svir. The equality holds in the Lie algebra H˚pMrigq.

Theorem 8.8. Assume that there is a framing functor as in Section 6. Then Joyce’s

classes εµ,Hα are homological lifts of our classes εµα.

Proof. We argue by induction on α, as in the proof of Theorem 6.6. By induction and

Theorem 8.6,
““

. . .
“

εµ,Hα1
, εµ,Hα2

‰

, . . . , εµ,Hαn

‰

is a homological lift of
““

. . .
“

εµα1
, εµα2

‰

, . . . , εµαn

‰

for all non-trivial (n ą 1) partitions of α. Therefore, to prove that the remaining term

εµ,Hα on the right hand side of (35) is a homological lift of the remaining term εµα on the

right hand side of (23), it is enough to show that the left hand side of (35) is a homological

lift of the left hand side of (23).

By Lemma 8.4(4), the class εµ`,H
pα,1q

is a homological lift of εµ`

pα,1q
. Note that we have the

identity

chpΛ´1pT_
ΠqqtdpTΠq “ crkpTΠq

by setting z “ 0 (i.e. u “ 1) in Lemma 8.7. By (2) and (3) in Lemma 8.4 it follows that

Π˚

`

crkpTΠq X εµ`,H
pα,1q

˘

is a homological lift of Π˚

`

Λ´1pT_
Πq X εµ`

pα,1q

˘

, as we wanted. □

We expect that (canonical) homological lifts exist, even when there is no framing func-

tor. We state this as a conjecture:

Conjecture 8.9 (Homological lift and homogeneity). If µ is a stability condition as in

Assumption 2.11 and α P CpAqpe, then the classes εµα P K˚pMrigq admit a homological lift

with the expected homological degree:

εµ,Hα P H2´2χpα,αqpM
rig

q .

As explained in Remark 8.3, this conjecture is closely related to the no-pole Conjec-

ture 7.12. The homogeneity property with respect to the homological degree is an even

stronger property.

Remark 8.10. The homological lift conjecture is compatible under wall-crossing by The-

orem 8.6. This is a consequence of the homological Lie bracket being well behaved with

respect to the degree, in the sense that it maps

r´,´s : H2´2χpα,αqpM
rig
α q b H2´2χpβ,βqpM

rig
β q Ñ H2´2χpα`β,α`βqpM

rig
α`βq .

8.4. Cohomological descendents from K-theory descendents. Suppose that we

have homological lifts εµ,Hα of εµα. The K-theoretic classes εµα satisfy wall-crossing for-

mulas as shown in Section 5. The homological lifts are expected to satisfy the same

wall-crossing formulas, and indeed Joyce proves such formulas for his invariants, under

stronger assumptions. We will now explain that (co)homological wall-crossing formulas
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follow formally from K-theoretic wall-crossing formulas, at least when we restrict our-

selves to tautological integrals on moduli of sheaves/complexes on a variety X. By (21)

and Theorem 8.6, both sides of

εµ
1,H
α

?
“

ÿ

α1`...`αl“α

Ũpα1, . . . , αn;µ, µ
1
q ¨ rr. . . rεµ,Hα1

, εµ,Hα2
s, . . . , s, εµ,Hαn

s

are homological lifts of the same element εµ
1

α , and in particular their images under τ_ are

the same. Hence, deducing cohomological wall-crossing from K-theoretic wall-crossing is

related to injectivity properties of τ_, or equivalently surjectivity of τ . Of course, τ is far

from surjective since for example there are no odd classes in the image.

Given a smooth projective variety X, suppose that A is either CohpXq or, more gen-

erally, the heart of a t-structure on DbpXq. Then, there is a universal sheaf/complex F
on M ˆ X.

Definition 8.11 (Tautological classes). Given γ P H˚pXq and k ě 1, we let

chkpγq “ p˚

`

chkpFqq˚γ
˘

P H˚
pMq

where p, q are the projections of M ˆ X onto M and X, respectively.

We say that a monomial

(36) D “

n
ź

i“1

chkipγiq

is algebraic if γ1 b . . . b γn is in the image of the cycle class map CH˚
pXnq Ñ H˚pXnq.

We denote by

H˚
taut,algpMq Ď H˚

tautpMq Ď H˚
pMq

the subalgebra spanned by algebraic monomials and the subalgebra of tautological classes,

respectively.

Remark 8.12. If the Hodge conjecture holds for powers ofX, thenH˚
taut,algpMq is spanned

by Hodge balanced monomials of the form (36) with γi P Hpi,qipXq and
řn
i“1 pi “

řn
i“1 qi.

SupposeM is a moduli space with a virtual fundamental class. Since virtual fundamental

classes rM svir are algebraic, unbalanced monomials have trivial integral since19

ż

rMsvir

n
ź

i“1

chkipγiq

“

ż

Xn

pγ1 b . . . b γnq X q˚

`

pchk1pF1q . . . chknpFnqq X p˚
rM s

vir
˘

“ 0 ,

where Fi is the pullbacks of F along the i-th projection M ˆXn Ñ M ˆX and q : M ˆ

Xn Ñ Xn, p : M ˆ Xn Ñ M are the two obvious projections.

19This argument was explained to the second author by Y. Bae.
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The following proposition provides a tool to lift equalities from K-homology to homol-

ogy.

Proposition 8.13. Let A,B P H˚pMq and suppose that τ_pAq “ τ_pBq. Then A and

B agree on algebraic tautological classes, i.e.
ż

A

D “

ż

B

D

for any D P H˚
taut,algpMq.

If A,B are algebraic, in the sense that they are in the image of CH˚pZq Ñ H˚pZq
f˚
ÝÑ

H˚pMq for some morphism f : Z Ñ M from Z a proper algebraic space, and the Hodge

conjecture holds for powers of X then the statement holds for any D P H˚
tautpMq.

Proof. Since tdpTMq can itself be expressed in terms of algebraic tautological classes [She,

Proposition 3.3], it is enough to prove that for any monomial (36) there is some V P

K˚pMq such that
ż

A

D “

ż

A

chpV q “

ż

B

chpV q “

ż

B

D .

Note that D is given by

p˚

˜

ź

i

chkipFiqq
˚
pγ1 b . . . b γnq

¸

where Fi, p, q are as in Remark 8.12. We will construct the class V using Adams operations

to isolate chkipFiq from chpFiq.

Recall that the Adams operation ψj on K-theory has the property that chkpψjFq “

jkchkpFq. Let N “ N 1 ` n ¨ dimpXq where N 1 is such that

A,B P HďN 1pMq .

Given k ď N , we can pick rational numbers akj such that

N
ÿ

i“0

akj j
m

is 1 when m “ k and 0 when m P r0, N sztku; indeed, akj are the entries in the inverse of

a Vandermonde matrix. Now let

rFi “

N
ÿ

j“0

akij ψ
j
pFiq P K˚

pM ˆ Xn
q .

We have

chp rFiq “ chkipFiq mod HąN
pM ˆ Xn

q .
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Since the Chern character induces an isomorphism between K-theory and Chow for Xn

(with Q-coefficients), we can pick a class δ P K˚pXnqQ so that

chpδq “ pγ1 b . . . b γnqtdpTXnq
´1 .

Finally, we claim that

V “ p˚

`

rF1 b . . . b rFn b q˚δ
˘

does the job. Indeed, by Grothendieck–Riemann–Roch and the definition of rFi, we have

chpV q “ p˚pchk1pF1q . . . chknpFnqq˚
pγ1 b . . . b γnqq mod HąN 1

pMq .

The second part of the statement follows from Remark 8.12. □

Remark 8.14. If one replaces algebraic K-theory by Blanc’s topological K-theory (cf.

Remark 3.3) then the same argument works for any D P H˚
tautpMq since the Chern char-

acter defines an isomorphism between K˚
toppXnq and H˚pXnq. We expect that equality

in Blanc’s K-theory actually implies A “ B.
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[BNK] C. Bu, A. I. Núñez, and T. Kinjo, Intrinsic Donaldson-Thomas theory. II. Stability measures

and invariants, 2025, https://arxiv.org/abs/2502.20515.

[Bor] R. E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proceedings of the

National Academy of Sciences 83 (1986), no. 10, 3068–3071.

[BR] K. Behrend and P. Ronagh, The inertia operator on the motivic Hall algebra, Compos. Math.

155 (2019), no. 3, 528–598.

[Bri1] T. Bridgeland, Hall algebras and curve-counting invariants, J. Amer. Math. Soc. 24 (2011),

no. 4, 969–998.

[Bri2] T. Bridgeland, Hall algebras and Donaldson-Thomas invariants, Algebraic geometry: Salt

Lake City 2015, Proc. Sympos. Pure Math., vol. 97.1, Amer. Math. Soc., Providence, RI,

2018, pp. 75–100.
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[STV] T. Schürg, B. Toën, and G. Vezzosi, Derived algebraic geometry, determinants of perfect com-

plexes, and applications to obstruction theories for maps and complexes, J. Reine Angew. Math.

702 (2015), 1–40.

[Tho] R. P. Thomas, Refined sheaf counting on local K3 surfaces, 2024, preprint, https://arxiv.

org/abs/2403.12741.

[Tod1] Y. Toda, Semistable objects in derived categories of K3 surfaces, Higher dimensional algebraic
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