COMMUTATIVE ALGEBRA - PSET 9

Problem 1. (Chinese remainder theorem¹) (5 points) We say that two ideals I, J are coprime if I + J = R.

(1) Show that if I and J are coprime then

$$R/(I \cap J) \simeq R/I \oplus R/J$$

- (2) Show that if I and J are coprime then $I \cap J = IJ$.
- (3) Show that if I is coprime to J, J' then I is also coprime to JJ'.
- (4) Use the previous parts to show by induction that if I_1, \ldots, I_n are pairwise coprime ideals then

$$R/(I_1 \cap \ldots \cap I_n) \simeq R/I_1 \times \ldots \times R/I_n$$
.

and

$$I_1 \cap \ldots \cap I_n = I_1 \ldots I_n$$
.

Problem 2. (prime avoidance) (5 points) Let $n \ge 2$ and $I, P_1, \ldots, P_n \subseteq R$ be ideals such that P_3, P_4, \ldots, P_n are prime. Show that if I is contained in the union of $P_1 \cup \ldots \cup P_n$ then it is contained in at least one of the P_i .²

Problem 3. (5 points)

- (1) Let $x \in R$ and $P \in \text{Spec}(R)$ be a finitely generated prime such that $P \subsetneq (x)$. Show that xP = P and use Nakayama to conclude that P is a minimal prime.
- (2) Show that a principal ideal domain has dimension 0 or 1.

Problem 4. (5 points) Let k be an algebraically closed field and R = k[x, y]. Let $P \in \text{Spec}(R)$.

- (1) Show that if $P \cap k[x] \neq 0$ then either P = (x a) or P = (x a, y b) for some $a, b \in k$.
- (2) Suppose now that $P \cap k[x] = 0$. Let $U = k[x] \setminus \{0\} \subseteq k[x, y]$ and B = k(x). Then

$$P[U^{-1}] \subseteq B[y] \,.$$

Use the fact that B[y] is a principal ideal domain (and R is a UFD) to conclude that P is principal.

(3) Show that the dimension of R is 2 and that

$$\dim(P) + \operatorname{codim}(P) = 2$$

for every prime P. Give examples of primes with dimensions 0,1 and 2.

¹Do you see why this is called the Chinese remainder theorem?

²Try to prove the contrapositive by induction on n. This problem looks easier than it is!