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1. Introduction

This paper is divided in two parts: the first is an introduction to Riemann
surfaces and some of their fundamental results and the second one is devoted to
elliptic and modular functions.

For the first part, our exposition will follow closely [6]. We begin by defining
a Riemann surface (which is a 1-dimensional complex manifold) and holomorphic
functions between them. In 2.1 we prove some generalizations of classical complex
analysis results, such as the identity theorem and the open mapping theorem.
Section 2.2 is about differential forms and integration in a Riemann surface. In
section 2.3 we introduce sheaves and sheaf cohomology, a very powerful tool in
Riemann surfaces. After that, in 2.4 we present the exact sequence of cohomology
of sheaves and Dolbeault lemma. Finally, 2.5 is dedicated to some central results in
Riemann surfaces: the Riemann-Roch theorem, the uniformization theorem (which
we will only prove in the compact case, as an easy consequence of Riemann-Roch
theorem), Serre duality and the Hurwitz formula.

In the second part we talk about elliptic functions and modular functions/forms.
Here we will combine the approach in [2] with the Riemann surface’s tools we
developed earlier. This will make some of the proofs and results much more elegant
and motivated; we will usually skip the more computational proofs. We begin with
the study of elliptic functions in 3.1, which can be seen as meromorphic functions
on a torus; in particular we construct the Weierstrass elliptic function ℘. In
section 3.2 we consider the modular group and modular functions, motivated by
the problem of determining the complex tori up to biholomorphism. After that, in
3.3 we define Hecke operators and use them to prove that the Fourier coefficients
of ∆ satisfy a multiplicative property. In the last section 3.4 we study a class
of subgroups of the modular group and study the Riemann surfaces associated
to them using the Dedekind eta functions to construct explicitly isomorphisms
with the Riemann sphere when possible; we use the results obtained and Hecke
operators to show some remarkable congruences satisfied by the Fourier coefficients
of J .
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2. Riemann surfaces

2.1. Riemann surfaces and holomorphic functions. We begin by introduc-
ing Riemann surfaces. A Riemann surface is a 1-dimensional complex manifold.
Instead of requiring that the transition functions between charts are smooth (as
in the definition of a smooth manifold), in a complex manifold they must be holo-
morphic, which gives a much stronger structure to Riemann surfaces.

Definition 1. Let X be a two dimensional connected manifold. A complex chart on
X is a pair (U,ϕ) where U ⊆ X is an open set and ϕ : U → V is a homeomorphism
where V ⊆ C is an open set. Two charts (Ui, ϕi), i = 1, 2 are said to be compatible
if

ϕ2 ◦ ϕ−1
1 : ϕ1(U1 ∩ U2)→ ϕ2(U1 ∩ U2)

is a biholomorphic complex function.
A complex atlas on X is a family of compatible complex charts {(Uα, ϕα)} such

that {Uα} are a cover of X. A complex structure on X is a maximal atlas. We say
that a 2-dimensional manifold X equiped with a complex structure is a Riemann
surface.

We give some examples of Riemann surfaces that will be relevant in the future.

Example 1. (1) The complex plane C. In this case we have a global atlas
consisting simply of (C, idC). More generally any open set of C is a Riemann
surface. A connected open set of C is called a domain. In particular the
unit disk D is a domain.

(2) The Riemann sphere P1 = C ∪ {∞}. Topologically this is the Alexandrov
compactification of C and we can give it a complex structure with the atlas
given by (P1\{∞}, idC) and (P1\{0}, ϕ2) where ϕ2(z) = 1/z and we define
1/∞ = 0.

(3) The tori. Given a lattice Γ = Zω1 + Zω2 (with ω1, ω2 linearly independent
over R) we can give the tori C/Γ a complex structure in the following
way: if V ⊆ C is an open set without points equivalent under Γ then
the projection on the quotient π : V → π(V ) is a homeomorphism and
π−1 : π(V ) → V is a complex chart. It’s easy to see that such complex
charts are compatible and that they cover C/Γ.

Definition 2. Let X and Y be Riemann surfaces. We say that f : X → Y is
holomorphic if, for every pair of charts ψ1 : U1 → V1 on X and ψ2 : U2 → V2 on
Y such that f(U1) ⊆ U2, the mapping

ψ2 ◦ f ◦ ψ−1
1 : V1 → V2

is holomorphic (in the usual sense of a complex map). The mapping f is said to
be a biholomorphism if it’s injective and both f and f−1 are holomorphic. Two
Riemann surfaces are said to be isomorphic if there is a biholomorphism between
them.



4 MIGUEL MIRANDA RIBEIRO MOREIRA

In particular we have defined holomorphic functions X → C. The set of such
functions is denoted by O(X) and has a natural ring structure. A meromorphic
function is a function f : X → P1 that is not identically ∞, and we denote by
M(X) the set of such functions. We have a natural inclusion O(X) ↪→ M(X).
We will now recover some important results of complex analysis in the context of
Riemann surfaces.

Theorem 1 (Identity Theorem). Suppose that X and Y are Riemann surfaces
and f1, f2 : X → Y are two holomorphic maps not identically equal. Then the set
of points in which f1 and f2 coincide is discrete.

Proof. Let A be the set of points in which they coincide and suppose by contradic-
tion that a ∈ X is a limit point of A. Considering a chart around a and using the
identity theorem on the plane it’s easy to see that there is a neighborhood W of a
in which f |W = g|W . We define G to be the set of points in X such that there is a
neighborhood W around them such that f1|W = f2|W ; we already saw that a ∈ G
and it’s clear that G ⊆ A. It’s clear by definition that G is open. On the other
hand, if x ∈ ∂G\G then x would be a limit point of G, and hence of A; but by the
same argument we used for a it follows that x ∈ G. Thus ∂G ⊆ G, which shows
that G in closed, open and non-empty, proving that G = X and f1 ≡ f2. �

Notice that the identity theorem implies that the set of points x ∈ X such that
f(x) = ∞ is discrete. Such points are called poles of f . Notice also that, if X is
compact a subset of X is discrete if and only if it’s finite, so on a compact set f1

and f2 can only coincide on a finite number of points; in particular a meromorphic
function can only have a finite number of zeros or poles. We proceed now to the
definition of multiplicity on a Riemann surface; we use the following lemma on the
local behavior of a holomorphic function.

Lemma 2. Let f : X → Y be a non-constant holomorphic mapping, a ∈ X,
b = f(a) ∈ Y . Then there is an integer k ≥ 1 and charts (U,ϕ) and (V, ψ)
around a and b, respectively, such that ϕ(a) = ψ(b) = 0, f(U) ⊆ V and the map
F = ψ ◦ f ◦ ϕ−1 is given by F (z) = zk.

Proof (sketch). Chose local coordinates (U, z) and (V,w) around a and b, respec-
tively, such that z(a) = w(b) = 0. In this charts, the function f reads w = zkh(z)
for some k and some holomorphic h non-vanishing at 0. In a neighborhood around
0 we can find a holomorphic function g such that gk = h. Thus w = (zg(z))k and
the charts (U, z′) and (V,w) where z′ = zg(z) are as required. �

The integer k is called the multiplicity of f at a and can be characterized in the
following way: for every sufficiently small neighborhood U around a and W ⊆ f(U)
around f(a), given y ∈ W \ {f(a)} the equation f(x) = y has exactly k solutions
in U . This caracterization shows that k is well defined (i.e. is unique and doesn’t
depend on the parametrizations chosen); we call k the multiplicity of f at a.
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Theorem 3 (Open mapping theorem). Let f : X → Y be a non-constant holo-
morphic map between Riemann surfaces. Then f is an open function.

Proof. Let a ∈ X and consider U as in lemma 2. Then it’s clear that f(U) is an
open neighborhood of f(a) since F is open and ϕ, ψ are homeomorphisms. �

Theorem 4. Let f : X → Y be an injective holomorphic map between Riemann
surfaces. Then f is a biholomorphic map of X onto f(X).

Proof. Since f is injective the multiplicity defined in lemma 2 is 1 for every a ∈ X.
This makes clear that f−1 : f(X)→ X is holomorphic (notice that since f is open
f(X) is open in Y , hence it’s a Riemann surface) since in the coordinates of lemma
2 it’s given by the identity. �

Theorem 5 (Maximum principle). If X is a Riemann surface and f : X → C is
a non-constant holomorphic function, then |f | does not attain a maximum.

Proof. By the open mapping theorem f(X) is open in C, so {|f(x)| : x ∈ X} is
open in R and therefore doesn’t admit a maximum. �

Theorem 6. Suppose X is compact and f : X → Y is a non-constant holomorphic
function between Riemann surfaces. Then Y is compact and f is surjective.

Proof. By the open mapping theorem f(X) is open. But since X is compact f(X)
is also compact, hence closed. Thus f(X) = Y and the result follows. �

Theorem 7. Every holomorphic function f : X → C on a compact X is constant.

Proof. This follows directly from theorem 6 and the fact that C isn’t compact.
Alternatively we could use the maximum principle and Weierstrass theorem to
obtain a contradiction. �

This is is a generalization of the classic Liouville theorem in complex analysis.
Indeed, if f : C → C is bounded it can be extended to a holomorphic function
f : P1 → C, and since P1 is compact if follows from theorem 7 that f is constant.
With this theorem we can now give a very simples caracterization of meromorphic
function on P1.

Corollary 8. Every meromorphic function on P1 is a rational function.

Proof. We can suppose without loss of generality that f doesn’t have a pole at
∞, otherwise just consider 1/f . Since P1 is compact is admits a finite set of poles
a1, . . . , an ∈ C. Let hj(z) =

∑−1
i=−kj cji(z − aj)

i be the principal part of f around

aj. Then the function g = f − (h1 + . . . + hn) is a holomorphic function in P1,
hence it’s constant and the desired follows. �
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2.2. Differential forms and integration. By identifying C with R2, a Riemann
surface X is also a manifold of dimension 2 over R. In particular we can talk about
differentiable functions (that is, C∞ functions in the real sense) f : X → C. We
denote by E(U) the set of differentiable functions f : U → C; we have the trivial
inclusion O(U) ⊆ E(U) where O(U) denotes the holomorphic functions. We can
also talk about the complexified tangent and cotangent spaces of X. If z : U → C
is a chart around a ∈ U ⊆ X, we can write z = x+ iy and the cotangent space at
a, which we denote by T 1

a , is the complex vector space with basis {dx, dy}; that is,
T 1
a is the tensor product of the real cotangent space with C. Notice that {dz, dz̄}

is also a basis for T 1
a where dz = dx+ idy, dz̄ = dx− idy. This admits a dual basis

for the (complexified) tangent space given by

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

Notice that by the Cauchy-Riemann equations a function f ∈ E(U) is holomorphic
if and only if ∂f

∂z̄
= 0.

It can be easily shown using the Cauchy-Riemann equations that if z, z′ are
different charts then the spaces generated by dz and dz̄ do not depend on our
choice of chart z, so we have a decomposition T 1

a = T 1,0
a ⊕ T 0,1

a where T 1,0
a = Cdz

and T 0,1
a = Cdz̄. We denote by E (1)(U) the vector space of 1-forms on U ⊆ X; the

decomposition of the cotangent space induces a decomposition E (1)(U) = E1,0(U)⊕
E0,1(U). If a 1-form ω in U can be written locally as ω = f dz with f holomorphic,
we say that ω is a holomorphic 1-form and we denote the vector space of such form
by Ω(U). We have the obvious inclusions Ω(U) ⊆ E1,0(U) ⊆ E (1)(U). The exterior
derivative of a differentiable function f is given, again in local coordinates, by

df =
∂f

∂x
dx+

∂f

∂y
dy =

∂f

∂z
dz +

∂f

∂z̄
dz̄.

Composing the operator d with the projections on the subspaces E1,0 and E0,1,
respectively, we get the operators d′ : E → E1,0 and d′′ : E → E0,1, respectively.
These are given locally by d′f = ∂f

∂z
dz, d′′f = ∂f

∂z̄
dz̄ and satisfy d = d′ + d′′.

A meromorphic 1-form on U with a set of isolated poles A is a holomorphic 1-
form on U \A that, near each pole a ∈ A, in local coordinates it can be written as
f dz where f is a meromorphic function having a pole at a; the vector space of such
1-forms is denoted byM(1)U . We shall now define the residue of a meromorphic 1-
form and recover a version of the classic residue theorem in the setting of compact
Riemann surfaces.

Definition 3. Let ω be a meromorphic 1-form on Y , open set in X, and a ∈ Y .
Let (U, z) be a coordinate neighborhood of a such that z(a) = 0 and, on U \ {a},
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we can write ω = f dz with f ∈ O(U \ {a}). Let

f(z) =
∞∑

j=−∞

cjz
j

be the Laurent series for f around a. Then we define the residue of ω at a by
Resa(ω) = c−1.

One has to check that this definition doesn’t depend on the coordinate neighbor-
hood chosen (see [6], 9.9). It’s clear that if ω is holomorphic at a then Resa(ω) = 0.

We denote by E (2)(U) the complex valued 2-forms on the open set U ⊆ X. Any
2-form ω can be written locally in the form

ω = fdx ∧ dy =
i

2
fdz ∧ dz̄, f ∈ E(U).

We now give a proof of the residue theorem using the Stokes theorem.

Theorem 9 (Residue Theorem). Let X be a compact Riemann surface and ω ∈
M(1)(X) with poles at {a1, . . . , an}. Then

n∑
k=1

Resak(ω) = 0.

Proof. Consider a coordinate chart zk : Uk → C around ak. By restricting them,
we can suppose that Uk don’t overlap and that in the coordinate system they are
a disk Brk(ak). Let X ′ = X \

⋃n
k=1 Uk. Then X ′ is a compact manifold with

boundary and we can apply Stokes’ theorem:∫
X′
dω =

∫
∂X′

ω =
n∑
k=1

∫
∂Uk

ω.

Since ω is a holomorphic form in X ′, locally ω = f dz with holomorphic f , thus
dω = ∂f

∂z
dz ∧ dz = 0, so the left hand side is 0. On the other hand,∫

∂Uk

ω =

∫
|z|=rk

ω = 2πiResak(ω)

by the residue theorem on the plane, so we have the desired result. �

As a result, we have the following:

Theorem 10. Let f : X → P1 be a non-constant meromorphic function on a
compact Riemann surface X. Then f has as many poles as zeros (counting with
multiplicity). More generaly, there is an n ∈ Z+ (called the order of f) such that
f takes every value of P1 exactly n times.
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Proof. Let ω = df
f

. It’s easy to see that ω has poles precisely at the zeros and poles

of f and Resa(ω) = k if a is a zero of order k or Resa(ω) = −k if a is a pole of
order k, so the first claim follows from the Residue theorem. For the second, just
notice that the poles of f and f − c are the same and the number of zeros of f − c
is the number of times f takes the value c. �

2.3. Sheaf cohomology. Given a topological space X possibly with some more
structure (for example a Riemann surface or a manifold), given an open set U
of X we can assign to U the space of continuous (or holomorphic or smooth, for
example) functions defined in U , possibly with some extra structure (for example
the vector space or ring structure of the holomorphic functions). If V ⊆ U we
can also consider the restriction f |V of a function defined on U . The definition of
sheaf intends to put these ideas in an abstract setting and it will be an important
tool in discussing local to global problems. Given a topological space X denote by
Xop the category whose objects are the open sets of X and the morphisms are the
inclusions ιV,U : V ↪→ U when V ⊆ U .

Definition 4 (Sheaf). Let C be a concrete category (for example of abelian groups,
rings or vector spaces). A presheaf on X with values in C is a contravariant functor
F : Xop → C. If V ⊆ U we denote by ρUV : F(U) → F(V ) (called the restriction
homomorphisms) the image by F of the inclusion V ↪→ U and, given f ∈ F(U),
we denote ρUV (f) by f |V .

A presheaf is said to be a sheaf if, for every open set U ⊆ X and family of open
sets (Ui)i∈I such that U =

⋃
i∈I Ui, the following two sheaf axioms are satisfied:

(1) If f, g ∈ F(U) are such that f |Ui = g|Ui for every i ∈ I, then f = g.
(2) Given fi ∈ F(Ui) such that

fi|(Ui ∩ Uj) = fj|(Ui ∩ Uj) for every i, j ∈ I

there is f ∈ F(U) such that f |Ui = fi.

Notice that by (1) the element f ∈ F(U) whose existence is assured by (2) is
unique. We can think of axioms (1) and (2) as follows: if two elements are locally
identical then they are globally the same and if a family of elements defined on a
cover is compatible (in the sense that they agree on the intersections of the cover)
then they can be glued together. A lot of important examples of sheaves in the
context of Riemann surfaces have already appeared.

Example 2. (1) Given an open set U ⊆ X let O(X) be the additive abelian
group (respectively vector space, ring) of holomorphic functions X → C.
With the usual restriction mappings O(U) → O(V ) when V ⊆ U this
defines a sheaf of abelian groups (respectively vector spaces, rings). In the
same way we can define the sheaves M, Ω, E , E (1), E (2), E1,0 and E0,1.
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(2) Letting O∗(U) be the multiplicative group of holomorphic functions f :
U → C∗, we also define a sheaf O∗. In a similar way we define the sheaf
M∗ of meromorphic functions which don’t vanish identically on any open
set.

(3) Suppose that G is an abelian group (for instance G = Z or G = C). We can
consider the sheaf of functions with values in G which are locally constant
(that is, which are constant in each connected component of U ⊆ X) and
we will denote this sheaf simply by G.

Definition 5 (Stalk of a sheaf). Suppose F is a sheaf on X and a ∈ X. On the
disjoint union ⋃

U3a

F(U)

we can define an equivalence relation in the following way: if f ∈ F(U), g ∈ F(V )

we say that f
a∼ g if there is an open set W ⊆ U ∩V such that f |W = g|W . Then

the stalk of F at a is the direct limit

Fa =

(⋃
U3a

F(U)

)
/

a∼

For f ∈ F(U) we define its germ at a ρa(f) ∈ Fa as the equivalence class of f .

Consider for example the sheaf of holomorphic functions C→ C. Then we can
identify the germ of f with its Taylor series expansion at a and the stalk at a
with the ring C{z − a} of Taylor series

∑∞
j=0 aj(z − a)j with a non-zero radius of

convergence.

From now on, we will only consider sheaves of abelian groups, unless stated
otherwise. We will now define the cohomology group H1(X,F) of a sheaf of
abelian groups F on X. For that we need first to introduce cochains, cocycles and
coboundaries. Given a cover U = (Ui)i∈I of X by open sets, for q = 0, 1, 2, . . . the
q-th cochain group of F with respect to U is

Cq(U,F) =
∏

(i0,...,iq)∈Iq+1

F(Ui0 ∩ . . . ∩ Uiq)

For instance C0(U,F) = {(fi)i∈I : fi ∈ F(Ui)} and C1(U,F) = {(fij)i,j∈I : fij ∈
F(Ui ∩ Uj)}. We can now define the coboundary operators

δ : C0(U,F)→ C1(U,F)

δ : C1(U,F)→ C2(U,F)

by:
(1) If (fi)i∈I ∈ C0(U,F), define δ((fi)i∈I) = (gij)i,j∈I where gij = fi − fj ∈
F(Ui ∩Uj); here fi− fj should be interpreted as fi|(Ui ∩Uj)− fj|(Ui ∩Uj) so that
the difference makes sense.
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(2) If (fij)i,j∈I ∈ C1(U,F), define δ((fij)i,j∈I) = (gijk)i,j,k∈I where gijk = fjk −
fik + fij ∈ F(Ui ∩ Uj ∩ Uk).

These coboundary operators δ are group homomorphisms, so we can define

Z1(U,F) = ker
(
C1(U,F)

δ→ C2(U,F)
)
< C1(U,F)

B1(U,F) = im
(
C0(U,F)

δ→ C1(U,F)
)
< C1(U,F)

The elements in Z1 are called cocyles and elements in B1 are coboundaries. An
element (fij) ∈ C1(U,F) is a cocyle if it satisfies fij + fjk = fik for every i, j, k ∈ I
(in particular fii = 0 and fij = −fji and is a coboundary if there is (gi) ∈ C0(U,F)
such that fij = gi − gj. It’s clear that a coboundary is a cocyle. We say that a
cocycle splits if it’s a coboundary. We can now define the first cohomology group
of F with respect to a cover as H1(U,F) = Z1(U,F)/B1(U,F).

We now have to define the cohomology group of the surface X. To do so we will
take a direct limit of the groups H1(U,F) by defining a direct system on the set
of covers of X. We say that a cover B = (Vk)k∈K is finer than U = (Ui)i∈I (and
write B < U) if every Vk is contained in at least a Ui; that is, if there’s a function
τ : K → I such that Vk ⊆ Uτk for every k ∈ K. Given τ we can define a map
tUB : Z1(U,F) → Z1(B,F) in the following way: given (fij) ∈ Z1(U,F), define
tUB((fij)) = (gkl) where

gkl = fτk,τ l|Vk ∩ Vl, for k, l ∈ K
Since tUB send coboundaries into coboundaries, it induces a map tUB : H1(U,F)→
H1(B,F). It can be shown (see lemmas 12.3 and 12.4 in ??) that tUB doesn’t
depend on τ and is injective.

Define the equivalence relation ∼ in
⋃
H1(U,F) by saying that ξ ∼ η, with

ξ ∈ H1(U,F) and η ∈ H1(U′,F), if there is B < U,U′ such that tUB(ξ) = tU
′

B(η).
The first cohomology group of X with coefficients in the sheaf F is finally defined
as the direct limit

H1(X,F) =
⋃

H1(U,F)/ ∼ .

The 0-th cohomology is simpler and will also be useful. The 0-cocycles are
elements (fi) ∈ C0(U,F) such that fi|Ui ∩ Uj = fj|Ui ∩ Uj; by the sheaf axioms,
there is a 1-to-1 correspondence between Z0(U,F) and globally defined f ∈ F(X).
Thus

H0(U,F) = Z0(U,F)/B0(U,F) = Z0(U,F) = F(X)

since we set B0(U,F) = 0. This does not depend on the cover U, so there is no
need to use a direct limit and we can simply define H0(X,F) = F(X).

Notice that from the fact that tUB is injective follows easily that the obvious
mapping H1(U,F)→ H1(X,F) is also injective. In particular, H1(X,F) is trivial
if and only if H1(U,F) is trivial for every cover U. We can use this and the
existence of partitions of unity to prove that the sheaf of differentiable functions
has a trivial 1st cohomology.
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Proposition 11. Let X be a Riemann surface and E be the sheaf of differentiable
functions on X. Then H1(X, E) = 0

Proof. Let U = (Ui)i∈I be an open cover of X and (ψi)i∈I a differentiable partition
of unity subordinate to U. Let (fij) ∈ Z1(U, E); we want to show that it splits.
The function ψjfij is defined on Ui ∩ Uj and can be extended differentiably to a
function on Ui by setting it to be 0 outside of its support. Thus we can set

gi =
∑
j∈I

ψjfij ∈ E(Ui).

We have

gi − gk =
∑
j∈I

ψjfij −
∑
j∈I

ψjfkj =
∑
j∈I

ψj(fij − fkj)

=
∑
j∈I

ψjfik =

(∑
j∈I

ψj

)
fik = fik.

Thus (fij) splits, as desired, proving thatH1(U, E) for every cover U, as desired. �

We cannot adapt the proof to show that H1(X,O) is trivial because a holo-
morphic partition of unit does not exist in general; indeed, we will later see that
H1(X,O) is trivial if and only if X is simply connected. We state now a result that
assures that the embedding H1(U,F) → H1(X,F) is actually an isomorphism if
the cover is “fine enough”, and enables us to compute cohomology in practical
cases without requiring the use of the direct limit definition.

Theorem 12 (Leray). Let F be a sheaf of abelian groups on topological space X.
A cover U = (Ui)i∈I is said to be a Leray cover if H1(Ui,F) = 0 for every i ∈ I.
If U is a Leray cover, then H1(X,F) = H1(U,F).

2.4. The exact cohomology sequence and Dolbeault’s lemma. Here we will
develop a very important tool in the study of Riemann surfaces, the exact coho-
mology sequence. With this tool, the Riemann-Roch theorem in its formulation
with the cohomology groups, one of the central theorems in Riemann surfaces, will
be almost straightforward. We begin by defining homomorphisms of sheaves.

Definition 6. If F and G are sheaves of abelian groups, a sheaf homomorphism
α : F → G is a natural transformation between the functors F and G. We denote
by αU : F(U)→ G(U) the group homomorphism with respect to the open set U ; if
the open set U is clear we may omit it and write α : F(U)→ G(U).

Example 3. (1) The exterior derivatives d : E → E (1) and d : E (1) → E (2) are
sheaf homomorphisms. Similarly d′ and d′′ are also sheaf homomorphisms.

(2) The natural inclusions Z ↪→ C ↪→ O ↪→ E and Ω ↪→ E1,0 ↪→ E (1) are all
sheaf homomorphisms.
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(3) We can define a sheaf homomorphism ex : O → O∗ by exU(f) = exp(2πif)
for f ∈ O(U).

We can define the kernel of a sheaf homomorphism in a quite natural way.

Definition 7. Given a sheaf homomorphism α : F → G we can define its kernel.
For U open, let K(U) = kerαU ; notice that αU : F(U) → G(U) is a group ho-
momorphism, so K(U) is a subgroup of F(U). Now it can be seen that K defines
a sheaf with the restriction homomorphisms induced by the restriction homomor-
phisms of F .

One could try to define the image of a sheaf homomorphism is a similar way,
as the sheaf defined by I(U) = imαU , but this wouldn’t satisfy the second sheaf
axiom. For instance, consider ex : O → O∗ and U1 = C \ R+

0 , U2 = C \ R−0 . Since
we can define a logarithm in U1 and U2, there are functions f1 ∈ I(U1), f2 ∈ I(U2)
such that f1(z) = z and f2(z) = z. We have f1|U1 ∩ U2 = f2|U1 ∩ U2 but there
is no element f ∈ I(U1 ∪ U2) such that f |Ui = fi, that is, such that f(z) = z in
U1 ∪ U2 = C∗. We can define the concept of exact sequence.

Definition 8. Suppose α : F → G is a sheaf homomorphism. Given x ∈ X, α
induces a homomorphism of the stalks αx : Fx → Gx. A sequence of sheaves

F α−→ G β−→ H
is said to be exact if, for each x ∈ X,

Fx
αx−→ Gx

βx−→ Hx

is an exact sequence of groups, that is, if ker βx = imαx. A long sequence

F1
α1−→ F2

α2−→ . . .
αn−1−→ Fn−1

is exact if

Fi−1
αi−1−→ Fi

αi−→ Fi+1

is exact for i = 2, . . . , n− 1.

We call α : F → G a monomorphism if 0 −→ F α−→ G is exact and an
epimorphism if F α−→ G −→ 0 is exact. Notice that α being a monomorphism is
equivalent to kerαx = 0 for every x ∈ X; thus, if f ∈ F(U) is such that αU(f) = 0
there is, for each x ∈ X, a neighborhood Ux ⊆ U of f such that f |Ux = 0. By the
first sheaf axiom it follows that f = 0. This shows that if α is a monomorphism
then αU is injective for every open set U ; in other words, if α is a monomorphism
then kerα is the trivial sheaf.

On the other hand, α being an epimorphism does not imply that αU is surjective
for every U . The reason for this is that the definition of exact sequence (and
therefore of epimorphism) is local. Indeed, α is an epimorphism if and only if for
every x ∈ X, U neighborhood of x and f ∈ G(U) there is a smaller neighborhood
x ∈ V ⊆ U such that f |V ∈ imαV . An instance of this is again the example of
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ex : O(C∗)→ O∗(C∗). It’s clear that exC∗ is not surjective (for example it doesn’t
have the identity in its image); however, ex is an epimorphism since, because
f(x) 6= 0, we can always find a neighborhood V of x for which which we can
define a holomorphic logarithm on f(V ); for such a V the homomorphism αV is
surjective. Let’s consider now a few examples of short exact sequences of sheaves
occurring naturally in Riemann surfaces.

Example 4. (1) Let K = ker
(
E (1) d→ E (2)

)
be the sheaf of closed 1-forms.

Then the sequence

0 −→ C −→ E d−→ K −→ 0

is exact. Here C −→ E is the obvious inclusion, so it’s clearly a monomor-
phism. It’s also clear that the kernel of d is C, that is, the differentiable
functions f such that df = 0 are the locally constant ones. The fact that
d : E → K is an epimorphism follows from the Poincaré lemma that says
that, locally (in a neighborhood homeomorphic to the disk), every closed
form is exact.

(2) A holomorphic version of the above is the following sequence:

0 −→ C −→ O d−→ Ω −→ 0

The fact that d is an epimorphism can be proven by noticing that locally
any holomorphic function has a holomorphic primitive, so if g dz ∈ Ω there
is f such that df = ∂f

∂z
dz = g dz.

(3) The sequence

0 −→ Z −→ O ex−→ O∗ −→ 0

is exact. ex is an epimorphism since we can always define locally a loga-
rithm. We also have the constant version of the above with O substituted
by C:

0 −→ Z −→ C ex−→ C∗ −→ 0

(4) The following two sequences are exact:

0 −→ O −→ E d′′−→ E0,1 −→ 0

0 −→ Ω −→ E1,0 d−→ E (2) −→ 0.

That they are exact in the middle isn’t hard to show: locally we can write
d′′f = ∂f

∂z̄
dz̄, which vanishes if and only if and only if f is holomorphic;

a similar reasoning for the second one. However, we are not yet able to
justify that d′′ and d are epimorphisms; that shall follow from Dolbeault’s
lemma, see 17.

Lemma 13. Suppose

0 −→ F α−→ G β−→ H
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is an exact sequence of sheaves on X and let U be an open set on X. Then

0 −→ F(U)
αU−→ G(U)

βU−→ H(U)

is an exact sequence of groups.

A homomorphism of sheaves α : F → G induces homomorphisms

α0 :H0(X,F)→ H0(X,G)

α1 :H1(X,F)→ H1(X,G).

The homomorphism α0 is simply αX : F(X) → G(X). The homomorphism α1 is
constructed in the following way: given a cover U = (Ui) of X, let αU : C1(U,F)→
C1(U,G) be defined by αU((fij)) = α(fij). It’s easy to see that αU sends cocy-
cles to cocyles and coboundaries to coboundaries, so it induces a homomorphism
αU : H1(U,F) → H1(U,G). The collection of homomorphisms αU now induces a
homomorphism α1 : H1(X,F)→ H1(X,G) in the obvious way.

If we fix X then H0 and H1 are functors from the category of sheaves on X to
the category of abelian groups acting on the morphisms by sending α to α0 and
α1, respectively. Lemma 13 with U = X tells us that H0 is a left exact functor.
However, it’s not right exact because α : F → G being an epimorphism doesn’t
imply that α0 : F(X)→ G(X) is surjective, as we saw in the example of ex; again,
this is a problem of passing from local to global. With the long exact sequence
we are going to prove, the 1st cohomology groups can be used to measure how H0

fails to be right-exact.
To construct this exact sequence, we need the connecting homomorphism δ∗.

If 0 → F α→ G β→ H → 0 is a short exact sequence of sheaves on X, we are
going to define a homomorphism δ∗ : H0(X,H)→ H1(X,F) in the following way.
Suppose h ∈ H0(X,H) = H(X). Since β is an epimorphism, there is a cover
U = (Ui) such that h|Ui ∈ im βUi , so there is a cochain (gi) ∈ C0(U,G) such
that β(gi) = h|Ui. But then β(gj − gi) = 0 in Ui ∩ Uj, so by lemma 13 there is
fij ∈ F(Ui ∩ Uj) such that α(fij) = gj − gi. We have α(fij + fjk − fik) = 0 in
Ui ∩Uj ∩Uk, and since α is a monomorphism this implies that fij + fjk − fik = 0;
therefore (fij) ∈ Z1(U,F) is a cochain. We now defined δ∗ by setting δ∗(h) to be
the cohomology class corresponding to (fij) in H1(X,F). It should be checked
that this is well defined, i.e. it doesn’t depend on the choice of the cover U and on
the choice of (gi) ∈ C0(U,G) such that β(gi) = h|Ui.

Theorem 14 (Long exact sequence). Suppose

0 −→ F α−→ G β−→ H −→ 0
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is a short exact sequence of sheaves on X. Then

0 −→ H0(X,F)
α0

−→ H0(X,G)
β0

−→ H0(X,H)
δ∗−→

δ∗−→ H1(X,F)
α1

−→ H1(X,G)
β1

−→ H1(X,H)

is an exact sequence of abelian groups.

Corollary 15. Suppose

0 −→ F α−→ G β−→ H −→ 0

is a short exact sequence of sheaves on X such that H1(X,G) = 0. Then

H1(X,F) ∼= H(X)/βG(X)

Proof. By the long exact sequence the sequence of groups

G(X)
β0

−→ H(X)
δ∗−→ H1(X,F)

α1

−→ 0 = H1(X,G)

is exact. The desired follows. �

Theorem 16 (de Rham). Let Rh1(X) be the first deRahm group of X, that is,
the closed 1-forms modulo the exact 1-forms, defined by

Rh1(X) =
ker
(
E (1) d→ E (2)

)
im
(
E d→ E (1)

) .

Then Rh1(X) ∼= H1(X,C)

Proof. This follows directly from the exact sequence

0 −→ C −→ E d−→ ker
(
E (1) d→ E (2)

)
−→ 0

we saw in example 4, corollary 15 and the fact that H1(X, E) = 0. �

Although here we gave a proof only in the case of Riemann manifolds and
1-forms, this result admits a more general form with differentiable manifolds of
arbitrary dimension and higher order forms. By Poincaré lemma it follows that
if X is simply connected then H1(X,C) is trivial; using the exact sequence of
example 4 (3) we conclude that H1(X,Z) is also trivial if X is simply connected.

We will state and sketh the proof of an analytic result that will have interesting
consequences in our study of cohomology in Riemann surfaces.

Lemma 17 (Dolbeault). Let X = {z ∈ C : |z| < R} with 0 < R ≤ ∞ and
g ∈ E(X). Then there is f ∈ E(X) such that g = ∂f

∂z̄
.
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Proof (sketch). If R <∞, we can define the function

f(ζ) =
1

2πi

∫
X

g(z)

z − ζ
dz ∧ dz̄.

This integral exists, depends differentiably on ζ and f has the desired property,
but we won’t show this here. A complete proof can be found in [6], Lemma 13.1.

In the case R = ∞ the above integral may not converge, so we construct a
sequence of functions (gn) with support in Bn+1(0) such that gn|Bn(0) = g. By
the above we can find (fn) such that ∂̄fn = gn. We can then modify the sequence

(fn) to a sequence (f̃n) that still obeys ∂̄f̃n = gn and converges uniformly to a
function f – such f has the desired property. Again, the details may be found in
[6], Theorem 13.2. �

Thanks to this, locally every form in E0,1 can be written as g dz̄ = ∂f
∂z̄
dz̄ = d′′f ,

which shows that d′′ in example 4 (4) is an epimorphism. Similarly, g dz̄ ∧ dz =
∂f
∂z̄
dz̄∧dz = d (f dz), proving that d in the second sequence is also an epimorphism.

With the sequences in example 4 (4) and corollary 15 we get the following two
isomorphisms

H1(X,O) ∼= E0,1/d′′E
H1(X,Ω) ∼= E (2)/dE1,0.

Finally, we use Dolbeault lemma to show that the 1st cohomology of H1(X,O) is
trivial when X = D,C,P1.

Theorem 18. Let X = D,C or P1 be either the unit disk, the complex plane or
the Riemann sphere. Then H1(X,O) = 0.

Proof. We consider first the case X = D or X = C2. By Dolbeault’s lemma the
following sequence is exact:

0 −→ O −→ E ∂̄−→ E −→ 0.

By corollary 15, H1(X,O) ∼= E/∂̄E . But by Dolbeault’s lemma ∂̄E = E , proving
the desired in this case.

Now suppose that X = P1 and consider the cover U = {U1, U2} where U1 =
P1 \ {∞} = C, U2 = P1 \ {0}. By what we just saw this is a Leray cover, so it’s
enough to show that H1(U,O) is trivial. Indeed, if (fij) ∈ Z1(U,O) we can write
f12 as

f12(z) =
∞∑

j=−∞

ajz
j = g1(z)− g2(z)

where g1(z) =
∑∞

j=0 ajz
j ∈ O(U1) and g2(z) =

∑−1
j=−∞ ajz

j ∈ O(U2). Thus (fij)
splits, as desired. �



RIEMANN SURFACES AND MODULAR FUNCTIONS 17

2.5. The Riemann-Roch theorem. We are going to prove the Riemann-Roch
theorem, a central theorem in compact Riemann surfaces. Essentially, it says how
many linearly independent meromorphic functions we can find with a “bounded”
amount of poles. A proof of the following theorem can be found in [6], corollary
14.10.

Theorem 19. Suppose X is a compact Riemann surface. Then H1(X,O) is finite
dimensional.

Thanks to the above theorem, we can define the genus of Riemann surface.

Definition 9. The genus of a compact surface X is g = dimH1(X,O).

In fact, the genus of X is a topological invariant. Indeed, the genus can also be
given by 2g = dimH1(X,C) and, since the sheaf C only depends on the topological
structure of X, so does the genus. This identity follows from the decomposition
(see chapter 19 of [6])

ker
(
E (1) d→ E (2)

)
= dE ⊕ Ω(X)⊕ Ω̄(X)

together with the deRham theorem and the fact that dim Ω(X) = dim Ω̄(X) = g
which we will prove later; here Ω̄(X) denotes the 1-forms which are locally of the
form f(z̄) dz̄ for holomorphic f . Topologically, X is a two-dimensional compact
and orientable manifold, thus by the classification theorem X is a connected sum
of g tori (if g = 0, X is S2) for some g; this g is precisely the genus of X and can
be seen as the “number of holes” in X.

We want to introduce some terminology to state and prove the Riemann-Roch
theorem.

Definition 10. A divisor on X is a map D : X → Z such that D(x) = 0 except
for finitely many points x ∈ X We denote by Div(X) the abelian group of divisors.
We say that D ≤ D′ if D(x) ≤ D′(x) for every x ∈ X.

Notice that a divisor can also be seen as an element in Z[X], the abelian group
generated by X, by identifying D with

∑
x∈X D(x)x ∈ Z[X]. Given a meromorphic

function f 6= 0, its order at a, denoted by orda(f) is 0 if f is holomorphic and
non-zero at a, k if f has a zero of order k at a and −k if f has a pole of order k at
a; for f = 0 set ordx(f) = −∞. If X is compact, the number of zeros and poles of
f is finite. Therefore the mapping x → ordx(f) is a divisor; we denote it by (f).
We also define the order of a meromorphic 1-form ω ∈ M(1)(X) in a similar way;
in this case, the order is given by ordx(ω) = ordx(f) where, in a neighborhood
around x, ω = f dz. We call a divisor of the form (f) for some f ∈ M(X) \ {0}
principal and of the form (ω) for some ω ∈M(1)(X) \ {0} canonical. We say that
two divisors D and D′ are equivalent if D −D′ is principal.

The degree is the homomorphism deg : Div(X)→ Z given by

deg D =
∑
x∈X

D(x).
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By the definition of divisor, only a finite number of terms in the sum are non-zero.
By theorem ?? the degree of a principal divisor is 0.

Definition 11. Given a divisor D, we define its sheaf of meromorphic functions
OD by

OD(U) = {f ∈M(U) : (f) ≥ −D|U}.
Similarly, define the sheaf ΩD of meromorphic 1-forms by

ΩD(U) = {ω ∈M(1)(U) : (ω) ≥ −D|U}.

Notice that if D and D′ are equivalent then D − D′ = (ψ) and we can check
that the mapping OD → OD′ that sends f to ψf is an isomorphism.

The sheaf OD corresponds to meromorphic functions with restrictions on their
poles and zeros. For instance, if D = 0 the sheaf OD is the sheaf of functions with
no poles, that is, OD = O. Thus, the 0-th cohomology of such sheaves H0(X,OD)
consists of the globally defined functions the given restrictions on zeros and poles.
If degD < 0 there are no such functions.

Proposition 20. Let D be a divisor with degD < 0. Then H0(X,OD) = 0.

Proof. Suppose f ∈ H0(X,OD) = OD(X). Then (f) ≥ −D, thus 0 = deg(f) ≥
deg−D > 0, contradiction. �

The Riemann-Roch theorem gives information about the dimension ofH0(X,OD).

Theorem 21 (Riemann-Roch). Let X be a compact Riemann surface with genus
g and D a divisor on X. Then H0(X,OD) and H1(X,OD) are finite dimensional
vector spaces and

dimH0(X,OD)− dimH1(X,OD) = 1− g + deg D.

The proof will be a quite simple induction after we construct an exact sequence
relating OD and OD+P where P is the divisor that is 1 in P and 0 otherwise.

Given a point P ∈ X, let CP be the skyscraper sheaf defined by CP (U) = C
if P ∈ U and 0 otherwise with the obvious restriction morphisms. Suppose that
D is a divisor on X. We have a natural inclusion OD → OD+P (here P denotes
a divisor that is 1 in P and 0 elsewhere). Let k = D(P ). We define a sheaf
homomorphism β : OD+P → CP as follows: if P /∈ U , βU = 0. If P ∈ U , f has
a Laurent series of the form f =

∑∞
n=−k−1 anz

n around P (with z(P ) = 0) and
we set βU(f) = c−k−1 ∈ C = CP (U). It’s clear that β is an epimorphism. Also,
f ∈ ker β if and only if c−k−1 = 0, which is equivalent to the pole of f at P having
order at most k; thus ker β = OD and we have the short exact sequence

0 −→ OD −→ OD+P
β−→ CP −→ 0.

Lemma 22. The cohomology groups of CP are H0(X,CP ) = C and H1(X,CP ) =
0.
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Proof. The first statement is trivial since H0(X,CP ) = CP (X) = C as P ∈ X. For
the second one, we prove that H1(U,CP ) = 0. Consider a refinement B of U such
that exactly one open set of B contains P ; for example take B = {U}∪{V \{P} :
V ∈ U} where U ∈ U contains P . Since tUB : H1(U,CP ) → H1(B,CP ) is injective
it’s enough to show that H1(X,B) = 0. But any cocycle (fij) ∈ Z1(B,CP ) is zero
since fii = 0 and for i 6= j we have fij ∈ CP (Bi∩Bj) = 0 because P /∈ Bi∩Bj. �

Proof (Riemann-Roch). We check the base case D = 0. Here dimH1(X,OD) =
dimH1(X,O) = g, by definition, and dimH0(X,OD) = dimO(X) = 1 because
by theorem 7 O(X) consists of the constant function, so for D = 0 the result is
correct.

Now we suppose that the result holds for D (respectively D + P ) and we prove
it for D + P (respectively D). Since every divisor can be written in the form
D = P1 + . . .+Pn−Q1− . . .−Qm where Pi, Qj are points, this is enough to prove
the theorem.

Applying the long exact sequence theorem to the short exact sequence

0 −→ OD −→ OD+P
β−→ CP −→ 0

and using lemma 22 we have the following exact sequence:

0 −→ H0(X,OD) −→ H0(X,OD+P ) −→ C −→
−→ H1(X,OD) −→ H1(X,OD+P ) −→ 0.

Therefore

dimH0(X,OD)+dimC+dimH1(X,OD+P ) = dimH0(X,OD+P )+dimH1(X,OD),

which is the same as

dimH0(X,OD+P )− dimH1(X,OD+P ) = dimH0(X,OD)− dimH1(X,OD) + 1.

This clearly shows the desired. �

The utility of Riemann-Roch is mainly to compute (or estimate) the term
H0(X,OD) and we regard H1(X,OD) as an “error” term. In particular, Riemann-
Roch implies the inequality

dimH0(X,OD) ≥ 1− g + deg D.

For instance, if we chose D = (g + 1)P we have dimH0(X,OD) ≥ 2 and, as
a result, there is a non-constant meromorphic function on X with a pole only
at P with order at most g + 1. In particular this ensures the existence of a non-
trivial meromorphic function on every compact Riemann surface, and a non-trivial
meromorphic 1-form by applying the exterior derivative. The above observation
for g = 0 gives the compact case of the uniformization theorem.

Theorem 23. If X is a compact Riemann surface of genus g = 0 then X is
biholomorphic to the Riemann sphere P1.
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Proof. By the observation above, there is a meromorphic mapping f : X → C
which has only a single pole at at a point P . Regarding f as a holomorphic function
X → P1, f takes the value ∞ exactly once, so by theorem 10 f is injective. By
theorem 4 f is a biholomorphism. �

This theorem is a special case of the more general uniformization theorem, whose
proof is out of the scope of this paper.

Theorem 24 (Uniformization Theorem). A simply connected Riemann surface is
biholomorphic to either the Riemann sphere P1, the complex plane C or the unit
disk D.

The uniformization theorem gives a complete description of Riemann surfaces.
Given a Riemann surface X, we can give a complex structure to its universal
covering X̃. Then X is isomorphic to X̃/G where X̃ ∈ {P1,C, D} and G is a
discrete group acting freely on X̃. If X̃ = P1 there is no such non-trivial group G.
If X̃ = C then G is trivial or G = ω1Z or G = ω1Z + ω2Z acts by translations; in
the first case we get the punctured plane C \ {0} and in the second the torus. If
X̃ = D ∼= H where H = {z ∈ C : Im z > 0} is the hyperbolic plane, G must be a
discrete subgroup of PSL(2,R), called a Fuchsian group; in the second part of this
paper we will study some examples of those. A Riemann surface is called elliptic,
parabolic or hyperbolic, respectively, if its universal cover is P1,C or D ∼= H,
respectively.

A nicer interpretation for the “error” term dimH1(X,OD) is given by Serre
duality. In particular, it will enable us to show that it’s 0 in a lot of cases.

Theorem 25 (Serre Duality). Let X be a compact Riemann surface, D a divisor
on X and K be a canonical divisor. Then

dimH1(X,OD) = dimH0(X,Ω−D) = dimH0(X,OK−D).

Proof (sketch). We begin by the second equality, which is easy. If ω is a meromor-
phic 1-form with (ω) = K, it can be easily verified that the mappingH0(X,OK−D)→
H0(X,Ω−D) sending f → fω is a group isomorphism, as required.

Recall that we have an isomorphism H1(X,Ω) ∼= E (2)(X)/dE1,0(X). Given
ξ ∈ H1(X,Ω) let ω ∈ E (2)(X) be a representative of ξ under the above isomorphism
and define

Res(ξ) =
1

2πi

∫
X

ω.

We can then define a bilinear mapping 〈, 〉 : H0(X,Ω−D) × H1(X,OD) → R by
〈ω, ξ〉 = Res(ξω). This bilinear mapping induces a linear mapping H0(X,Ω−D)→
H1(X,OD)∗ into the dual space. This mapping is actually an isomorphism (see
[6], 17.9), which shows that

dimH0(X,Ω−D) = dimH1(X,OD)∗ = dimH1(X,OD). �
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In particular, for D = 0 one gets

g = dimH1(X,O) = dimH0(X,Ω) = dimH0(X,OK).

Corollary 26. Let ω be a (non-vanishing) meromorphic 1-form on a compact
Riemann surface of genus g. Then deg(ω) = 2g − 2.

Proof. By the Riemann-Roch for K = (ω) we have

dimH0(X,OK)− dimH1(X,OK) = 1− g + degK.

By the above observation dimH0(X,OK) = g and by Serre duality dimH1(X,OK) =
dimH0(X,O) = 1, proving the desired result. �

We use this result to show that H1(X,OD) is zero in some cases.

Corollary 27. If D is a divisor with degD > 2g − 2 then H1(X,OD) = 0.

Proof. By Serre duality H1(X,OD) = H0(X,OK−D) and deg(K −D) = 2g − 2−
degD < 0 by corollary 26, so the desired follows from proposition 20. �

We end this section with the Hurwitz formula. Consider a holomorphic map
f : X → Y between compact Riemann surfaces such that there is an integer n
such that each value y ∈ Y is taken exactly n times (counting with multiplicity);
see theorem 10. We say that f is an n-sheeted covering map. We denote by ex
the multiplicity with which f takes the value f(x) at x ∈ X; this is the value k
in lemma 2. If ex > 1 we say that f is branched at x; this happens if and only if
f ′(x) = 0, and since X is compact that may only happen finitely often.

Theorem 28 (Hurwitz formula). Let f : X → Y be an n-sheeted holomorphic
covering map between compact Riemann surfaces. Let g and g′ be the genera of X
and Y respectively. Then

2g − 2 = n(2g′ − 2) +
∑
P∈X

(eP − 1).

Proof. Let ω be a non-vanishing meromorphic 1-form on Y . Then f ∗ω is a non-
vanishing 1-form on X, so by corollary 26 we have deg(ω) = 2g′−2 and deg(f ∗ω) =
2g − 2.

Suppose that x ∈ X and let y = f(x). Let k = ex and choose charts (U, z) and
(V,w) around x and y, respectively, such that in terms of the charts f is given by
w = zk, which is possible by lemma 2. Locally, we can write ω = ψ(w)dw. Thus,

f ∗ω = ψ(zk)dzk = ψ(zk)kzk−1dz.

Therefore

ordx(f
∗ω) = k ordy(ψ) + k − 1 = ex ordy(ω) + (ex − 1).
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Summing over x ∈ f−1(y),∑
x∈f−1(y)

ordx(f
∗ω) = ordy(ω)

 ∑
x∈f−1(y)

ex

+
∑

x∈f−1(y)

(ex − 1).

But
∑

x∈f−1(y) ex = n because it’s the number of times (counting with multiplicity)
that f takes y. Summing now over y we get

deg(f ∗ω) =
∑
x∈X

ordx(f
∗ω) = n

∑
y∈Y

ordy(ω) +
∑
x∈X

(ex − 1)

= n deg(ω) +
∑
x∈X

(ex − 1),

which gives the desired result. �
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3. Elliptic functions and modular forms

3.1. Elliptic functions. We turn our attentions now to the study of the complex
structures on the torus. By the classification of Riemann surfaces given by the
uniformization theorem, the complex structures of the torus can be given by C/Λ
where Λ = Λ(ω1, ω2) = ω1Z + ω2Z (with ω1, ω2 linearly independent over R) or
by H/G where G is a Fuchsian group; but G ∼= π1(T 2) ∼= Z × Z and there is no
Fuchsian group isomorphic to Z × Z (an abelian Fuchsian group must be cyclic).
The torus has genus 1, as one would expect; indeed, the 1-form dz on C induces a
holomorphic 1-form ω on C/Λ with no zeros. By corollary 26, 2g− 2 = degω = 0.

Definition 12. A meromorphic function f : C→ C is double periodic if it admits
a pair of periods (ω1, ω2) with ω1, ω2 linearly independent over R.

Such a function obeys f(z+ω) = f(z) for every ω ∈ Λ(ω1, ω2). Thus, it induces a
meromorphic function on the torus C/Λ and we have the entire first part of theory
about such functions! By theorem 7 a non-constant double periodic function can’t
be holomorphic. By the residue theorem a double periodic function cannot have
a single pole having order 1, since in that case its residue would be nonzero. We
call the positive integer n given by theorem 10 of a double periodic function its
order; thus the order of a double periodic function is at least 2.

Proposition 29. Let P1, . . . , Pn, Q1, . . . , Qn ∈ C/Λ and n ≥ 2 be two sets of
points with possible repetitions but with Pi 6= Qj. Then there is a double-periodic
function f such that P1, . . . , Pn are exactly its poles and Q1, . . . , Qn are exactly its
zeros (with the correct multiplicities) if and only if

n∑
i=1

Pi ≡
n∑
i=1

Qi mod Λ.

Proof. We start with the “only if” part. Let C = C1∪C2∪C3∪C4 be the boundary
of a fundamental paralelogram of Λ where C1, C2, C3 and C4 are the edges from 0

to ω1 to ω1 + ω2 to ω2 to 0. The function g(z) = zf ′(z)
f(z)

has poles at the zeros and

poles of f and Resa (g) = ka if a is a zero of multiplicity k and −ka if a is a pole
of multiplicity k. By the residue theorem,

n∑
i=1

Qi −
n∑
i=1

Pi =
1

2πi

∫
C

g(z)dz

=
1

2πi

∫
C1

(g(z)− g(z + ω2))dz +
1

2πi

∫
C2

(g(z)− g(z − ω1))dz

= − ω2

2πi

∫
C1

f ′(z)

f(z)
dz +

ω1

2πi

∫
C2

f ′(z)

f(z)
dz

= − ω2

2πi

∫
f(C1)

1

w
dw +

ω1

2πi

∫
f(C1)

1

w
dw.
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But 1
2πi

∫
f(Ck)

1
w
dw is an integer since it is the winding number of the closed curve

f(Ck) around 0, and the desired follows.
For the if part we consider the divisor D =

∑n
i=1 Pi−

∑n−1
i=1 Qi. By the Riemann-

Roch theorem dimH0(C/Λ,OD) ≥ 1−g+degD = 1, so there is a double periodic
function f such that (f) ≥ −D. Therefore f has zeros at Q1, . . . , Qn−1 and poles
at most at P1, . . . , Pn, so f has order n− 1 or n. If f has order n− 1, its poles are
Pi for i = 1, . . . , t− 1, t+ 1, . . . , n; but by the “only if” part and the hypothesis it
would follow that Pt = Qn, a contradiction. If f has order n its poles are precisely
P1, . . . , Pn and its zeros are Q1, . . . , Qn−1, Q̃n for some Q̃n. By the “only if” part
and the hypothesis it follows that Qn = Q̃n, so f is the desired function. �

Now we are going to construct a double periodic function with order 2 explicitly,
the Weierstrass ℘ function. The Weierstrass function has a double pole at every
point in Λ and is even. The idea is to use a sum over Λ; the obvious approach would
be to define the function as

∑
ω∈Λ

1
(z−ω)2

, but this does not converge absolutely.

Lemma 30. The sum ∑
ω∈Λ\{0}

1

ωα

converges absolutely if and only if α > 2.

Proof. We can easily see that
∣∣∣ 1

(mω1+nω2)α

∣∣∣ � (m2 + n2)−α/2, so the sum above

converges absolutely if and only if
∑

(m,n)6=(0,0)(m
2 + n2)−α/2 converges. By the

integral test, this happens if and only if∫ ∫
x2+y2>1

(x2 + y2)−α/2 dx dy =

∫ 2π

0

∫ ∞
1

r−2α+1 dr dθ

converges, which happens if and only if −2α + 1 < −1, as desired. �

Definition 13. The Weierstrass ℘ function is defined by

℘(z) =
1

z2
+

∑
ω∈Λ\{0}

(
1

(z − ω)2
− 1

ω2

)
.

This series converges absolutely since we can bound∣∣∣∣ 1

(z − ω)2
− 1

ω2

∣∣∣∣ =

∣∣∣∣ z(2ω − z)

(z − ω)2ω2

∣∣∣∣ = O

(
1

ω3

)
and use lemma 30. The function is holomorphic except at the points in Λ since it
is the uniform limit of holomorphic functions; at the points in Λ the function has
a pole of order 2. Since ω ∈ Λ if and only if −ω ∈ Λ it’s also clear that ℘ is even.
We compute the Taylor expansion of ℘ around 0 and use it to derive an important
diferential equation that ℘ obeys.
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Proposition 31. Let r = min{|ω| : ω ∈ Λ \ {0}}. Then, for 0 < |z| < r,

℘(z) =
1

z2
+
∞∑
n=1

(n+ 1)G2n+1z
2n

where

Gm =
∑

ω∈Λ\{0}

1

ωm
for m ≥ 3.

Proof. This is simply a matter of computing the Taylor expansion of 1
(z−ω)2

− 1
ω2 ,

summing over ω 6= 0 and interchanging the summations (which we can, since they
converge absolutely). The odd coefficients vanish since ℘ is even. �

Proposition 32. The function ℘ satisfies the differential equation

[℘′(z)]2 = 4℘(z)3 − g2℘(z)− g3

where g2 = 60G4 and g3 = 140G6.

Proof. Consider the difference between the left and the right side. Using propo-
sition 31 we can see that this difference vanishes at 0, so it’s a double periodic
holomorphic function with a zero at 0. Hence, by theorem 7, it’s constant equal
to 0, proving the result. �

By the differential equation we expect that g2 and g3 determine the function
℘. Indeed, differentiating the equation we get that ℘′′(z) = 6℘(z)2 − g2/2 and
this enables us to write a recursive definition for Gn by comparing the Laurent
expansion of both sides; with this we can write Gn as a polynomial function in g2

and g3. Given prescribed zeros and poles (like in proposition 29), we can construct
explicitly a meromorphic function with those zeros and poles as a rational function
in ℘ and ℘′. Since two meromorphic functions with the same zeros and poles differ
by a constant, every meromorphic function can be written in that form. Therefore
the field of meromorphic functions on the torus C/Λ is

C(℘, ℘′) ∼= C(x, y)/〈y2 − 4x3 + g2x+ g3〉.
Let

e1 = ℘(ω1/2), e2 = ℘(ω2/2), e3 = ℘((ω1 + ω2)/2).

Proposition 33. We have

4℘(z)3 − 60G4℘(z)− 140G6 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3).

Moreover the roots e1, e2, e3 are distinct and g3
2 − 27g2

3 6= 0.

Proof. Since ℘ is even and double periodic, we have ℘(z) = ℘(ω − z). Differen-
tiating and plugging z = ω/2 we get ℘′(ω/2) = 0, so ω1/2, ω2/2, (ω1 + ω2)/2 are
zeros of ℘′. By the differential equation e1, e2 and e3 are roots of the polynomial
4x3 − g2x − g3. They are distinc because, if for instance e1 = e2 then ℘(z) − e1



26 MIGUEL MIRANDA RIBEIRO MOREIRA

would have a double zero both at ω1 and ω2, contradiction with ℘ having order 2;
this proves the factorization since e1, e2, e3 are 3 distinct roots of the polynomial.
The last observation follows from the fact that g3

2− 27g2
3 is the discriminant of the

polynomial 4x3 − g2x− g3 which doesn’t have repeated roots. �

We now regard g2, g3 as functions of ω1, ω2, that is, gk = gk(ω1, ω2). It’s easy
to see that we have g2(λω1, λω2) = λ−4g2(ω1, ω2) and g3(λω1, λω2) = λ−6g2(ω1, ω2)
(that is, they are homogeneous of degrees −4 and −6, respectively). Thus, g2 and
g3 can be reduced to the 1-variable functions g2(τ) = g2(τ, 1) and g3(τ) = g3(τ, 1)
defined on C \ R, where τ = ω1/ω2. By possibly switching ω1 with ω2 we may
suppose that τ ∈ H = {z ∈ C : Im z > 0}, so g2, g3 are functions H → C. Recall
that we have

g2(τ) = 60G4(τ, 1) = 60
∑

(m,n) 6=(0,0)

1

(m+ nτ)4
and

g3(τ) = 140G4(τ, 1) = 140
∑

(m,n) 6=(0,0)

1

(m+ nτ)6
.

Definition 14. We define the functions ∆ = g3
2 − 27g2

3 and J =
g32
∆

which, like
g2 and g3, can be regarded both as 2-variable functions or as 1-variable functions
H → C.

By proposition 33 the function ∆ doesn’t vanish, so J is well defined. As g2

and g3 are homegeneous of degrees −4 and −6, respectively, ∆ is homogeneous
of degree −12 and J is homogeneous of degree 0. Thus J(ω1, ω2) = J(ω1/ω2).
The functions g2, g3,∆ and J are all of them holomorphic in H; this is proven in
theorem 1.15 in [2] by showing that the series defining g2 and g3 converge uniformly
at the strips {x+ iy : |x| < A, y > δ > 0}. These functions will be of main interest
in the rest of the paper.

Remark 1. An elliptic curve is an algebraic curve of the form y2 = x3 − ax −
b with no repeated roots. Knowing that J is surjective (which we will prove
in the next section) it’s easy to show that we can always find ω1, ω2 such that
g2(ω1, ω2) = a and g3(ω1, ω2) = b. Thus there is a correspondence between elliptic
curves and complex tori. Moreover, the mapping z → [℘(z) : ℘′(z) : 1] defines a
bihololorphism between the torus C/Λ and the projective curve defined by Y 2Z =
X3 − g2XZ

2 − g3Z
3. Since there is a natural group structure on the torus, this

isomorphism induces a group structure on the elliptic curve, which is the well
known elliptic curve group law (see for example [7]).

3.2. The modular group and modular functions. We have constructed func-
tions g2, g3,∆ and J . Notice that these functions only depend on the lattice gen-
erated, that is, if (ω1, ω2) and (ω′1, ω

′
2) generate the same lattice Λ = Λ(ω1, ω2) =
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Λ(ω′1, ω
′
2) then f(ω1, ω2) = f(ω′1, ω

′
2) for f = g2, g3,∆, J . The following proposition

tells us when this happens.

Proposition 34. The pairs (ω1, ω2) and (ω′1, ω
′
2) generate the same lattices if and

only if there is a matrix (
a b
c d

)
∈ GL2(Z)

such that (
a b
c d

)(
ω1

ω2

)
=

(
ω′1
ω′2

)
.

This shows that if

(
a b
c d

)
∈ GL2(Z) then f(aω1 + bω2, cω1 + dω2) = f(ω1, ω2)

if f only depends on the lattice. Now the next theorem tells when do two lattices
give the same torus.

Theorem 35. Let Λ, Λ′ be two lattices. The Riemann surfaces C/Λ and C/Λ′
are isomorphic if and only if there is a ∈ C∗ such that Λ′ = aΛ.

Proof. The “if” is obvious as the transformation z → az induces a biholomorphism
C/Λ→ C/Λ′. Suppose that f : C/Λ→ C/Λ′ is a biholomorphism; up to transla-
tion we can suppose that f(0) = 0. In that case f lifts to a map F : C→ C such
that F (0) = 0, F (Λ) = Λ′ and F (z + ω) − F (z) ∈ Λ′ for every z ∈ C, ω ∈ Λ. As
Λ′ is discrete, F (z + ω) − F (z) is constant for fixed ω, thus F ′(z + ω) = F ′(z).
Hence F ′ is a double periodic holomorphic function, therefore it’s constant and
F (z) = az. �

Geometrically this corresponds to rotate and scale the lattice. By the theorem,
every torus can be written in the form C/Λ where Λ = Λ(τ, 1) = τZ + Z for some
τ ∈ H. When do two parameters τ, τ ′ ∈ H give the same torus? By proposition

34 and the theorem above, this happens if and only if there is

(
a b
c d

)
∈ GL2(Z)

such that

(
a b
c d

)(
τ
1

)
and

(
τ ′

1

)
are a multiple of each other, that is, if τ ′ = aτ+b

cτ+d
.

Notice that

Im
aτ + b

cτ + d
=

(ad− bc)Im τ

|cτ + d|2
.

Thus, if τ ∈ H then τ ′ = aτ+b
cτ+d
∈ H if and only if ad− bc = 1, that is, if the matrix

is in SL2(Z). Hence SL2(Z) acts on H and, since the action of A and −A is the
same, we actually have a faithful action of PSL2(Z) = SL2(Z)/〈−I〉 on H. We
denote Γ = PSL2(Z) and call this the modular group. By our observations, there
is a one to one correspondence between H/Γ and the complex structures on the
torus up to biholomorphism. This correspondence is defined by [τ ]Γ → C/(τZ+Z).
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We return now to our functions f = g2, g3,∆, J and see how they behave under
Γ. We have

f(τ) = f(τ, 1) = f(aτ + b, cτ + d) = (cτ + d)−kf

(
aτ + b

cτ + d

)
.

Here −k is he degree of homogeneity of f , which is 4, 6, 12 and 0 for g2, g3,∆, J ,
respectively. In particular, J is invariant under the action of the modular group
Γ.

Definition 15. A meromorphic function f : H → C is said to be a modular form
of weight k if it satisfies

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ)

for every

(
a b
c d

)
∈ Γ and has a Fourier expansion of the form

f(τ) =
∞∑

n=−N

c(n)e2πinτ .

A modular form of weight 0 is called a modular function.

The last condition may seem strange, but it will be soon clarified; for now, let’s
ignore it. We consider for now just the case of modular functions. The action of Γ
in H is not free, but we will be able to define a complex structure on H/Γ. This
will be done essentially in the same way as described in [11]; notice that in our
case the group is not discrete, but we’ll see soon that Γ has “small isotropy”, in
the sense that the points with nontrivial isotropy are discrete and, for those, the
isotropy group is finite, so proposition 3.3 in [11] still applies. Then a modular
function (forgetting for now the last condition) is a meromorphic function in H/Γ.
To describe H/Γ and its complex structure we need a description of Γ.

Proposition 36. The group Γ is generated by the matrices

S =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
.

Also, we have the relations T 2 = 1, (ST )3 = 1 and Γ ∼= 〈S, T |T 2 = (ST )3 = 1〉 ∼=
Z2 ∗ Z3.

The proof that S and T generate Γ is found in [2], 2.1. In [1] there is a proof
that Γ ∼= Z2 ∗ Z3.

We say that RΓ ⊆ H is a fundamental region of Γ if RΓ is an open and connected
space such that no two points in RΓ are equivalent under Γ and every point in H
is equivalent to some point in the closure RΓ of RΓ.
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Proposition 37. The set

RΓ = {z ∈ H : |z| > 1, |z + z̄| < 1}
is a fundamental region of Γ. Moreover, the only points τ ∈ RΓ with non-trivial
isotropy are i and ρ, ρ + 1; the isotropy of i is {I, S} and the isotropy of ρ is
{I, TS, (TS)2}.

Proof. The proof is done in [2], theorem 2.3, except for the part of the isotropy
groups on ∂RΓ. A simple extension of the the same reasoning shows that we can’t
have isotropy except at i, ρ, ρ + 1. To compute the isotropy of ρ, for example,
notice that Aρ = ρ is equivalent to

aρ+ b

cρ+ d
= ρ⇔ cρ2 + (d− a)ρ− b = 0.

If A 6= I this implies that c = d − a = −b, because x2 + x + 1 is the minimal
polynomial of ρ. But then 1 = ad− bc = a(a + c) + c2 implies that (a, c) = (0, 1)
or (a, c) = (1, 0), which give the solutions TS and (TS)2, respectively. �

Denote by π : H → H/Γ the projection in the quotient. We shall now give a
complex structure to H/Γ. By the proposition, if x ∈ H is not equivalent to i
or ρ it has no isotropy, so we can chose a neighborhood U of x such that π|U is
a homeomorphism and define a coordinate chart around π(x) by (π(U), π−1). It
remains to construct coordinate charts around π(i) and π(ρ). To do so, notice
that the map z → z−i

z+i
sends a small disk U (small enough so that the only points

in U equivalent under Γ are equivalent under the isotropy group of i) around i to
a small disk around 0. By this map, the action of T in U is transformed in the

action z → −z. Thus, the mapping z →
(
z−i
z+i

)2
is invariant under S, and we take

it to be the coordinate function around π(i). Similarly, the mapping z →
(
z−ρ2
z−ρ

)3

gives coordinates around π(ρ).
With this complex structure, it’s easy to see that π has multiplicity 2 at i,

multiplicity 3 at ρ and 1 at points not equivalent to either i or ρ. The surface
we obtain is not compact. However, we can compactify it by adding a point i∞
– a cusp – which we think of as a point in the end of the imaginary axis. To
define a complex structure in H/Γ = H/Γ ∪ {i∞} let U = {z ∈ H : Im z >
1} ∪ {i∞} and q : U → C be defined by q(z) = e2πiz and q(i∞) = 0. By
proposition 37 the only points in U equivalent by Γ are equivalent by 〈S〉 and q is
invariant by S, so q induces a function q : π(U)→ C; we take (π(U), q) to be the
coordinate neighborhood around i∞. We can see that RΓ∪{i∞} is the Alexandroff
compactification of RΓ, so H/Γ = π

(
RΓ ∪ {i∞}

)
is compact, as desired.

Now the condition on the Fourier expansion in the definition of modular function
should be clear: the Fourier expansion is the Laurent expansion of f with respect
to the coordinate q = e2πiz, so the condition that its principal part is a finite sum
says that we can extend f to a meromorphic function f : H/Γ→ C; if the Fourier
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series was infinite to the left, i∞ would be an essential singularity of f . Thus, there
is a 1-to-1 correspondence between modular functions and meromorphic functions
on the compact Riemann surface H/Γ.

Thanks to this observation, we can now apply the results about compact Rie-
mann surfaces in the first section of this paper to modular functions. By theorem
10 a modular function (when seen as a meromorphic function in H/Γ) takes every
value exactly the same amount of times. However, one has to be careful because
if we regard a modular function as a meromorphic function in H we have to di-
vide the multiplicity of a zero/pole at i, ρ by 2 and 3, respectively, because π has
multiplicity 2 and 3 at those points; also, we have to consider the multiplicity of
the point i∞, which is seen by looking at the Fourier series of the function (that
is, the Laurent series with respect to q).

We can also give a similar geometric interpretation for modular forms of weight
2k > 0. Consider a meromorphic k-form on H given by ω = f dzk. Notice that

f

(
az + b

cz + d

)
d

(
az + b

cz + d

)k
= f

(
az + b

cz + d

)
(cz + d)−2kdz.

Hence, ω is invariat by the action of Γ if and only if f is modular of weight 2k, so
there is a correspondence between modular forms of degree 2k and meromorphic
k-forms.

We compute the Fourier expansion of the functions g2, g3,∆ and J to analyze
their behavior near i∞.

Proposition 38. We have the following Fourier expansions:

(1)

g2(τ) =
4π4

3

(
1 + 240

∞∑
k=1

σ3(k)e2πikτ

)
(2)

g3(τ) =
8π6

27

(
1− 504

∞∑
k=1

σ3(k)e2πikτ

)
(3)

∆(τ) = (2π)12

∞∑
k=1

τ(k)e2πikτ

(4)

123J(τ) = e−2πiτ + 744 +
∞∑
k=1

c(n)e2πinτ

where σα(k) =
∑

d|k d
α and τ(k), c(k) are sequences of integers.



RIEMANN SURFACES AND MODULAR FUNCTIONS 31

A proof of these can be found in 1.18, 1.19 and 1.20 in [2] and it relies essentially
on the identity

π cot πnτ =
1

nτ
+

∑
k∈Z\{0}

(
1

nτ +m
− 1

m

)
.

Comparing this identity to the Fourier expansion of cot, differentiating repeatedly
and summing over n gives the expressions for g2 and g3.

This shows that J has a simple pole at i∞. We can see, by looking at the
identifications on the edges of RΓ given by the action of Γ, that topologically H/Γ
is a sphere, and therefore simply connected. By the uniformization theorem, H/Γ
is biholomorphic to the Riemann sphere. Indeed, J defines such a biholomorphism.

Theorem 39. The function J defines a biholomorphism from H/Γ to the Riemann
sphere. Also, J(ρ) = 0 and J(i) = 1 with multiplicities 3 and 2, respectively.

Proof. The only pole of J is a simple pole at i∞. Thus J has order 1. Hence it’s
injective, and by theorem 4 it’s a biholomorphism. The values at ρ and i can be
verified by checking that g2(ρ) = g3(i) = 0 and their multplicities follow from the
fact that J has order 1. �

This shows that C/Λ(ω1, ω2)→ J(ω1/ω2) defines a correspondence between the
possible complex structures on the torus and C. The space of complex structures
on the torus is called the moduli space of the torus and is identified with C. For
g > 1 the moduli space of the topological surface with genus g has dimension
3g − 3.

Corollary 40. Every modular function is a rational function of J .

Proof. This is straightforward from theorem 39 and corollary 8. �

3.3. Hecke operators. Hecke operators are an important tool in the theory of
modular forms. They were introduced to study modular forms with coefficients
obeying certain multiplicative relations. Hecke operators can be defined either
directly from their formula (this is done in [2]) or as abstract operators on lattices
(as in [12]); we follow the later approach. Here we will use Hecke operators to
show that τ defined in proposition 38 is a multiplicative function (and satisfies
a more general multiplicative property), but won’t explore much more of their
applications; such applications can be found in chapter 6 of [2].

Denote by L the space of lattices of C and by Z[L] the abelian free group
generated by L.

Definition 16. Let n ≥ 1 be an integer. We define the Hecke operator Tn : Z[L]→
Z[L] by

TnΛ =
∑

(Λ:Λ′)=n

Λ′ for Λ ∈ L.
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The (formal) sum runs every lattice Λ′ ⊆ Λ with index n in Λ. Given λ ∈ C∗ we
also define the scalar operators Rλ : Z[L]→ Z[L] by

RλΛ = λΛ.

The sum defining the Hecke operators is finite since (Λ : Λ′) = n implies that
nΛ ⊆ Λ′ ⊆ Λ. Hence there is a 1-to-1 correspondence between lattices with
(Λ : Λ′) = n and subgroups of index n of Λ/nΛ ∼= Z2

n. We have the following
identities about the composition of Hecke and scalar operators.

Proposition 41. Let n,m, k ∈ Z+, let p be a prime and λ ∈ C∗. Then we have

(1) RλRµ = Rλµ;
(2) RλTn = TnRλ;
(3) If (m,n) = 1 then TmTn = Tmn;
(4) TpkTp = Tpk+1 + pTpk−1Rp;
(5) TmTn =

∑
d|(m,n) dTmn

d2
Rd.

Proof (sketch). The first four are proved in proposition 10 of chapter VII in [12].
To prove the last one we can show, using (4), by induction on l that the formula
holds when n = pk,m = pl are powers of the same prime. After that, using (3) we
get the general case easily. �

The next proposition describes what are the lattices Λ′ such that (Λ : Λ′) = n.

Proposition 42. Let Λ = ω1Z+ω2Z be a lattice. There is a bijection between the

set of matrices of the form A =

(
a b
0 d

)
with a, d ≥ 0, ad = n and 0 ≤ b < d and

the set of lattices Λ′ such that (Λ : Λ′) = n given by

A =

(
a b
0 d

)
→ Λ(aω1 + bω2, dω2) ≡ Λ(A).

Proof. Since detA = n it’s clear that (Λ : Λ(A)) = n. If Λ′ is such that (Λ : Λ′) =
n, define

Y1 = Λ/(Λ′ + Zω2) and Y2 = Zω2/(Zω2 ∩ Λ′).

These are cyclic groups generated by the images of ω1 and ω2, respectively; let a
and d be their orders. By the second isomorphism theorem

(Λ′ + Zω2)/Λ′ ∼= Zω2/(Zω2 + Λ′) = Y2.

By the third isomorphism theorem (Λ/Λ′)/Y2
∼= Y1, and therefore ad = |Λ/Λ′| = n.

Since Y2 has order d we know that dω2 ∈ Λ′ and since Y1 has order a we get that
aω1 ∈ Λ′ + Zω2, so there is b ∈ Z such that 0 ≤ b < d and aω1 + bω2 ∈ Λ′. This
defines a map from the set of lattices with (Λ : Λ′) = n to the set of described
matrices which can be easily seen to be an inverse of the map A→ Λ(A). �
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We can also look at Hecke operators as operators on the space of holomorphic
modular forms. Recall that a modular form f of weight k can be regarded as a
function F : L → C homogeneous of degree −k by defining

F (Λ(ω1, ω2)) = ω−k2 f(ω1/ω2).

We can then extend linearly F to F : Z[Λ] → C. By (2) in proposition 41 the
function T ∗nF = F ◦ Tn : Z[Λ] → C is also homogeneous of degree −k, so it
corresponds to a modular function; we define the Hecke operator as this function
multiplied by nk−1 (this factor serves only to simplify formulae). Concretely, we
are defining

(Tnf)(τ) = nk−1(F ◦ Tn)(Λ(τ, 1)).

Using proposition 42 we can give an explicit formula for Tnf :

(Tnf)(τ) = nk−1
∑
ad=n

0≤b<d

F (Λ(aτ + b, d)) = nk−1
∑
ad=n

0≤b<d

d−kf

(
aτ + b

d

)

=
1

n

∑
ad=n

0≤b<d

akf

(
aτ + b

d

)

From this formula it’s definitely not evident that if f is a modular form then
Tnf is also a modular form, but considering its construction from a homogeneous
function on L that should be clear. It’s also obvious from the formula that if f
is meromorphic in H then so is Tnf . At last, the following lemma computes the
Fourier expansion of Tnf showing that it’s also meromorphic at the cusp i∞.

Lemma 43. Let f : H → C be a modular form of weight k with Fourier series

f(τ) =
∞∑

m=−N

c(m)e2πimτ .

Then Tnf is also a modular form of weight k with Fourier series

(Tnf)(τ) =
∞∑

m=−N

γn(m)e2πimτ .

where γ is given by

γn(m) =
∑
d|(n,m)

dk−1c
(mn
d2

)
.

Also, if f is holomorphic, then Tnf is also holomorphic.

The proof is a simple computation after plugging the Fourier series of f in the
formula for Tnf and can be found in proposition 11 of chaper VII of [12]. With
these results, we can now prove easily an interesting identity.



34 MIGUEL MIRANDA RIBEIRO MOREIRA

Theorem 44. The coefficients τ(n) in the Fourier series of ∆ in proposition 38
satisfy the following multiplicative property:

τ(n)τ(m) =
∑
d|(m,n)

d11τ
(mn
d2

)
.

In particular τ is a multiplicative function.

Proof. Recall that ∆ is a holomorphic modular form of weight 12, so Tn∆ is also a
holomorphic modular form of weight 12. By proposition 38 ∆ has a zero of order
1 at i∞. By lemma 43 Tn∆ also has a zero of order 1 at i∞. Therefore Tn∆

∆
is

a holomorphic modular function, hence it’s constant and Tn∆ = λ(n)∆ for some
λ(n) ∈ C. Comparing the Fourier expansions using lemma 43 it follows that

λ(n)τ(m) =
∑
d|(m,n)

d11τ
(mn
d2

)
.

Plugging m = 1 we get that λ(n) = τ(n) and the stated identity follows. �

3.4. Congruence subgroups. In this last section we will study functions which
are not invariant under the action of Γ but are invariant under the action of certain
subgroups G of Γ, namely the congruence subgroups. Such functions are called
automorphic functions under G; in particular a automorphic function under Γ is
a modular function.

Definition 17. The n-congruence subgroup Γ0(n) is the subgroup{(
a b
c d

)
∈ Γ : n|c

}
< Γ.

The next proposition describes the cosets of Γ0(p) in Γ

Proposition 45. Let p be a prime. Then the set {I, S, ST, . . . , ST p−1} is a set of
representatives of the right cosets of Γ0(p) in Γ. That is, for every A ∈ Γ either
A ∈ Γ0(p) or there is a unique 0 ≤ k < p such that V (ST k)−1 ∈ Γ0(p).

Proof. Notice that if V =

(
a b
c d

)
,W =

(
a′ b′

c′ d′

)
∈ Γ then(

a b
c d

)(
a′ b′

c′ d′

)−1

=

(
a b
c d

)(
d′ −b′
−c′ a′

)
=

(
∗ ∗

cd′ − dc′ ∗

)
.

Thus VW−1 ∈ Γ0(p) if and only if cd′−dc′ ≡p 0. Suppose that V /∈ Γ0(p) (that is,

p - c). Noticing that ST k =

(
0 −1
1 k

)
, V (ST k)−1 ∈ Γ0(p) if and only if ck ≡p d,

which has a unique solution 0 ≤ k < p. �

From this, a description of a fundamental region of Γ0(p) follows straightfor-
wardly.
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Proposition 46. For a prime p the set

RΓ0(p) = RΓ ∪
p−1⋃
k=0

ST k(RΓ)

is a fundamental region of Γ0(p).

We can give H/Γ0(p) a complex structure the same way we gave a complex
structure to H/Γ. We can think of this complex structure as the unique one such
that the natural projection f : H/Γ0(p) → H/Γ is holomorphic. However, if
p > 1 in order to compactify H/Γ it’s not enough to add the point i∞; this is
because 0(= S(i∞)) is in the closure of RΓ0(p) as a subset of C. Hence we define

H/Γ0(p) = H/Γ0(p) ∪ {0, i∞} for p > 1. We can define a chart around 0 by
z → e−2πi/z; notice that this is just the composition of S with the chart z → e2πiz

around i∞. The Riemann surface obtained is compact since RΓ0(p) ∪ {0, i∞} is
compact.

Remark 2. In general, if G is a subgroup of Γ, to compactify H/G we must add
cusps. Cusps are the points in the extended hyperbolic plane (which is H ∪ R ∪
{i∞}) which are fixed points of parabolic elements of Γ; here we are considering
Γ acting on the extended hyperbolic plane in the natural way, in particular with
S(i∞) = 0 and T (i∞) = i∞. The cusps for Γ are easily seen to be Q ∪ {0}.
Therefore, in general we have a compactification H/G of H/G where H = H ∪
Q∪{0}. Under Γ every cusp is equivalent to i∞, so H/Γ = H/Γ∪{i∞}; however,
in Γ0(p) for p > 1 the cusps 0 and i∞ are not equivalent because S /∈ Γ0(p). Given
a fundamental region of G, the cusps which are in the boundary of G give a set of
representatives for the equivalence classes of cusps under the action of G.

Recall that compact Riemann surfaces are topologically determined by their
genus. We compute the genus of the surface H/Γ0(p).

Theorem 47. Let p be a prime and denote by gp the genus of the Riemann surface
H/Γ0(p). Then g2 = g3 = 0 and, for p > 3,

gp =


(p− 13)/12 if p ≡12 1
(p− 5)/12 if p ≡12 5
(p− 7)/12 if p ≡12 7

(p+ 1)/12 if p ≡12 11.

Proof. We will skip the cases p = 2, 3 as the same method applies. The inclusion
Γ0(p) ⊆ Γ gives a natural projection f : H/Γ0(p) → H/Γ; f sends the cusp 0 to
f(0) = i∞ ∈ H/Γ. We denote by π1 and π2 the projections of H in H/Γ and in
H/Γ0(p), respectively; we have f ◦ π2 = π1. Recall that by theorem 39 the surface
H/Γ is isomorphic to P1. Thus, by theorem 10 we know that f is an n-sheeted
holomorphic function for some n. But proposition 46 gives n = p + 1 because, if
π1(y) ∈ H/Γ and π1(y) 6= π1(i), π1(ρ) then f takes the value π1(y) with multiplicity
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1 (because at those points f is locally an isomorphism, since those points have
trivial isotropy) at the p+ 1 distinct points π2(y), π2(Sy), . . . , π2 (ST p−1y). Hence
we can apply the Hurwitz formula to get

2gp − 2 = −2(p+ 1) +
∑

P∈H/Γ0(p)

(eP − 1).

Since
∑

P∈f−1(y) eP = p+ 1, we can also write the sum as∑
P∈H/Γ0(p)

(eP − 1) =
∑
y∈H/Γ

∑
P∈f−1(y)

(eP − 1) =
∑
y∈H/Γ

(p+ 1− |f−1(y)|).

If y 6= i, ρ, i∞ (here we are writing i, ρ for π1(i), π1(ρ), respectively) we already saw
that the corresponding term in the sum is 0. It’s clear that f−1(i∞) = {i∞, 0}.

We now compute |f−1(i)|. By proposition 45 every point x ∈ f−1(i) has the
form π2(i) or π2(ST ki) for some 0 ≤ k < p. However, some of those points are the
same. Clearly π2(i) = π2(Si). We shall see for what pairs 0 ≤ k, l < p we have
π2(ST ki) = π2(ST li). This is equivalent to the existence of some A ∈ Γ0(p) such
that ST ki = AST li, that is, (T−kSAST l)i = i. But since the isotropy of i is just
{I, S} we either have T−kSAST l = I or T−kSAST l = S. For the first case,

A = ST k−lS =

(
−1 0
k − l −1

)
.

which is in Γ0(p) if and only if l = k, since 0 < k, l < p. For the second case,

A = ST kST−lS =

(
l 1

−1− kl −k

)
.

Hence, π2(ST ki) = π2(ST li) if and only if k = l or p|kl + 1, that is, l ≡p k or
k 6= 0 and l ≡p −1/k. If p ≡3 4 there is no 0 < α < p such that p|α2 + 1, so
we can group the p − 1 points ST ki in pairs with the same image by π2. Thus,
in this case |f−1(i)| = 1 + p−1

2
= p+1

2
. If p ≡4 1 there is an α such that p|α2 + 1.

For k ≡p α,−α the only 0 < l < p such that π2(ST ki) = π2(ST li) is l = k; the
remaining p − 3 points ST ki are again grouped in pairs, so in this case we get
|f−1(i)| = 1 + 2 + p−3

2
= p+3

2
.

To compute |f−1(ρ)| we proceed in a similar way. We have ρ = STρ so we
just have to see for what pairs 0 ≤ k, l < p we have π2(ST kρ) = π2(ST lρ). Since
the isotropy of ρ is {I, ST, (ST )2}, by an argument similar to the above one this
happens if and only if T−kSAST l ∈ {I, ST, (ST )2}. Again the case of the identity
only gives k = l. For the remaining two, we compute the matrices

ST k(ST )T−lS =

(
−1 + l 1

−1 + k − kl −k

)
and ST k(ST )2T−lS =

(
−l 1

−1 + (1− k)l −k

)
.
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We conclude that π2(ST kρ) = π2(ST lρ) if and only if k = l, {k, l} = {0, 1} or
l, k 6= 0, 1 and

l ≡p (−1 + k)/k, 1/(1− k).

If p ≡3 2 there is no β such that −1 + β − β2 ≡p 0, hence each of the sets
{k, (−1 + k)/k, 1/(1− k)} has 3 distinct elements mod p and induce a partition of
{2, . . . , p−1}. In this case, |f−1(ρ)| = 1+ p−2

3
= p+1

3
. If p ≡3 1 there is a β such that

−1+β−β2 ≡p 0; for k ≡ β, 1−β the only 0 < l < p such that π2(ST ki) = π2(ST li)
is l = k; the remaining p−4 points ST kρ (with k 6= 0, 1, β, 1−β) are again grouped
in sets of three elements, so in this case we get |f−1(ρ)| = 1 + 2 + p−4

3
= p+5

2
.

Now the result follows from analyzing each case. For instance, if p ≡12 1 then
p ≡4 1 and p ≡3 1 and the Hurwitz formula reads

2gp−2 = −2(p+1)+(p+1−2)+

(
p+ 1− p+ 3

2

)
+

(
p+ 1− p+ 5

3

)
=
p− 13

6
−2

which is equivalent to the stated answer. The other cases are similar. �

As a consequence of the above result, the surface H/Γ0(p) is simply connected
(has genus 0) if and only if p = 2, 3, 5, 7, 13. By the uniformization theorem, this
means that H/Γ0(p) is biholomorphic to P1. Thus, for such primes there is a
fuction Φ automorphic under Γ0(p) having order 1; this function Φ plays the same
role in Γ0(p) that J plays in Γ.

The idea to define Φ is to consider the function ϕ(τ) = ∆(pτ)
∆(τ)

. This function is

automorphic under Γ0(p) because, if

(
a b
c d

)
∈ Γ0(p), we can write c = pc′ and

∆

(
p
aτ + b

cτ + d

)
= ∆

(
a(pτ) + bp

c′(pτ) + d

)
= (cτ + d)12∆(pτ).

Since we also have ∆
(
aτ+b
cτ+d

)
= (cτ + d)12∆(τ), the invariance of ϕ follows. Since

∆ has no zeros and no poles in H, ϕ only has a zero at i∞. The zero of ∆ at i∞
has multiplicity 1, hence the zero of ϕ at i∞ has multiplicity p− 1. We would like
to take a (p− 1)-root of ϕ and define Φ = ϕ1/(p−1). We will be able to do this for
the primes p = 2, 3, 5, 7, 13 using the Dedekind eta function.

Definition 18. The Dedekind eta function is the function η : H → C defined by

η(τ) = eπiτ/12

∞∏
n=1

(
1− e2πinτ

)
.

When τ ∈ H we have |e2πiτ | < 1, so the product converges absolutely and is non-
zero. The convergence is uniform on compact sets of H, hence η is holomorphic
in H. The Dedekind eta function satisfies the following transformations under the
action of the modular group:
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Theorem 48. The Dedekind eta function η satisfies the identities

η(τ + 1) = eπi/12η(τ) and η

(
−1

τ

)
= (−iτ)1/2η(τ).

More generally, for

(
a b
c d

)
∈ Γ

η

(
aτ + b

cτ + d

)
= ε(a, b, c, d)(−i(cτ + d))1/2η(τ)

where

ε(a, b, c, d) = exp

(
πi

(
a+ d

12c
+ s(−d+ c)

))
and s(h, k) are the Dedekind sums given by

s(h, k) =
k−1∑
r=1

r

k

(
hr

k
−
⌊
hr

k

⌋
− 1

2

)
.

A proof of these can be found in theorems 3.1 and 3.4 of [2]. Now we have the
following remarkable relation between the functions η and ∆.

Theorem 49. We have, for τ ∈ H and x = e2πiτ the equality

∆(τ) = (2π)12η(τ)24 = (2π)12x
∞∏
k=1

(1− xn)24.

Proof. Using theorem 48 it’s clear that η24 is a modular form of weight 12. The
last equality is obvious from the definition of η and tells that η has a zero at i∞.
Using the same argument we used in the proof of theorem 44 there is a constant
λ such that ∆ = λη24. Comparing the first term in the Fourier expansion of both
sides (recall proposition 38) we get λ = (2π)12. �

The primes p = 2, 3, 5, 7, 13 are precisely the primes such that p − 1|24. Con-
sidering the identity we just proved, we now have a very natural way of defining a
p− 1 root of ϕ.

Proposition 50. Let p = 2, 3, 5, 7 or 13 and let r = 24/(p−1). Then the function

Φ(τ) =

(
η(pτ)

η(τ)

)r
is automorphic under Γ0(p). Moreover it defines a biholomorphism between H/Γ0(q)
and P1.

The fact that Φ is automorphic is not immediate and requires theorem 48 and
some congruence relations satisfied by the Dedekind sums. A proof can be found
in [2], theorem 4.9. Since Φq−1 = ϕ, Φ has a single 0 at i∞, so it has order 1 and
is a biholomorphism.
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Remark 3. For composite n > 1 the group Γ0(n) has a different structure: for
instance its index in Γ is not n + 1 and H/Γ0(n) has more cusps than just 0 and
i∞. In [5] there is a list of the subgroups of Γ with a corresponding Riemann
surface of genus at most 24 and some of their properties such as their index in
Γ and number of cusps. The composite numbers n > 1 for which H/Γ0(n) has
genus 0 are n = 4, 6, 8, 9, 10, 12, 16, 18, 25. For those n we can still construct a
biholomorphism to P1 using the Dedekind η function. For example the function

Φ(τ) =
η(8τ)6

η(4τ)2η(16τ)8

is automorphic under Γ0(4) and defines a biholomorphism H/Γ0(n)→ P1 (see [9]).

Finally, we will use the function Φ we constructed to prove some congruence
relations that are satisfied by the coefficients c of the Fourier expansion of j =
123J which are given in proposition 38; more precisely, we will prove that c(pn)
is divisible by certain powers of p for p = 2, 3, 5, 7. To do this, we construct
automorphic functions under Γ0(p) from modular functions in the following way:

Definition 19. Suppose that f is a modular function and p is prime. We define
fp by

fp(τ) =
1

p

p−1∑
b=0

f

(
τ + b

p

)
= (Tpf)(τ)− 1

p
f(pτ)

where Tp is the Hecke operator.

Proposition 51. If f is a modular function with Fourier expansion f(τ) =∑∞
n=−N a(n)e2πinτ then fp(τ) is a function automorphic under Γ0(p) with Fourier

expansion

fp(τ) =
∞∑

n=−bN/pc

a(np)e2πinτ .

Proof. Since Tpf is a modular function it’s enough to show that τ → f(pτ) is
automorphic under Γ0(p), which follows from the same argument we used to prove
that ϕ is automorphic under Γ0(p).

The Fourier expansion is a straightforward computation with the Fourier ex-
pansion of Tpf given in lemma 43. �

This proposition shows that we have the Fourier expansion jp(τ) =
∑∞

n=0 c(pn)xn

where x = e2πiτ . In particular, jp is holomorphic at τ = i∞; therefore jp has a
pole only at 0. By corollary 8 and the fact that Φ is a biholomorphism between
H/Γ0(p) for p = 2, 3, 5, 7, 13 we expect to be able to write jp has a rational function
of Φ; but since both jp and Φ only have poles at 0, this rational function should
actually be a polynomial. To find its form we analyze the behavior of jp near 0.
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Lemma 52. If p is a prime and τ ∈ H then

jp

(
− 1

pτ

)
= jp(pτ) +

1

p
j(p2τ)− 1

p
j(τ).

Hence, denoting x = e2πiτ we have the Fourier expansion

pjp

(
− 1

pτ

)
= x−p

2 − x−1 + I(x)

were I(x) is a power series in x with integer coefficients.

Proof. Since Tpf is modular,

jp

(
−1

τ

)
+

1

p
j
(
−p
τ

)
= (Tpf)

(
−1

τ

)
= (Tpf)(τ) = jp(τ) +

1

p
j(pτ).

Substituting τ → pτ and noticing that j
(
− 1
τ

)
= j(τ) gives the stated identity.

To get the Fourier expansion we simply plug the Fourier expansions of j and jp
obtained from propositions 38 and 51. �

When τ → i∞ we have −1/(pτ)→ 0 and x→ 0. To get the behavior of Φ near
0 notice that, by theorem 48

Φ

(
− 1

pτ

)
=

η
(
− 1
τ

)r
η
(
− 1
pτ

)r =
(−iτ)r/2η(τ)r

(−ipτ)r/2η(pτ)r
=
p−r/2

Φ(τ)
.

The Fourier series of Φ(τ) is the expansion of x
∏∞

j=1

(
1−xpk
1−xk

)r
, which clearly has

integer coefficients. This shows that we have the Fourier expansion

Ψ(τ) ≡ pr/2Φ

(
− 1

pτ

)
=

1

Φ(τ)
= x−1 + I(x)

where I(x) is a power series in x = e2πiτ with integer coefficients.

Theorem 53. For n > 0 the coefficients in the Fourier expansion of j(τ) satisfy
the following congruences:

c(2n) ≡ 0 (mod 211)

c(3n) ≡ 0 (mod 35)

c(5n) ≡ 0 (mod 52)

c(7n) ≡ 0 (mod 7)

Proof. We will now form a linear combination of powers of Ψ in order to cancel

the principal part of the Fourier expansion of pjp

(
− 1
pτ

)
, making jp holomorphic

at 0. Since Ψ(τ)k = x−k + . . . (where the remaining coefficients are integers) and
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pjp

(
− 1
pτ

)
= x−p

2 − x−1 + I(x) by lemma 52, we can find integers b1, . . . , bp2 such

that

f

(
− 1

pτ

)
≡ pjp

(
− 1

pτ

)
− bp2Ψ(τ)p

2 − bp2−1Ψ(τ)p
2−1 − . . .− b1Ψ(τ)

is holomorphic at x = 0. Replacing τ by −1/(pτ) we get that

f(τ) = pjp(τ)− bp2
(
pr/2Φ(τ)

)p2 − bp2−1

(
pr/2Φ(τ)

)p2−1 − . . .− b1p
r/2Φ(τ)

is holomorphic at τ = i∞; hence it’s an holomorphic function in the compact
Riemann surface H/Γ0(p), so f is constant and, computing f at i∞ we get f(τ) =
pc(0) for every τ , showing that

pjp(τ) = bp2
(
pr/2Φ(τ)

)p2
+ bp2−1

(
pr/2Φ(τ)

)p2−1
+ . . .+ b1p

r/2Φ(τ) + pc(0).

Comparing the Fourier expansions and considering that Φ has a Fourier expansion
with integer coefficients it follows that pr/2−1|c(pn) for n > 0 where r = 24/(p −
1). �
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